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Quantum theory of high-order above-threshold ionization (HATI) of atoms, prepared in a coherent superposi-
tion of bound states, by a strong laser field is formulated. Numerical results are obtained using the solutions of
the time-dependent Schrödinger equation and the improved strong-field approximation. As an example, coherent
superposition of the excited 2s and 2p states of the He atom is used. Applying a two-level model, it is shown
how the relative amplitude and phase of the states in this coherent superposition can be controlled with a weak
resonant laser pulse. Numerical results presented for HATI by a strong nonresonant probe laser pulse confirm
that the photoelectron spectra and the momentum distributions strongly depend on the relative phase of the
states in the prepared coherent superposition. For the case of HATI by a strong resonant laser pulse, we modify
our strong-field-approximation theory by applying the two-level model to describe the time evolution of the
atomic bound state before the instant of ionization. Contrary to the HATI from a single state by a long laser
pulse, the corresponding photoelectron spectra of HATI from the coherent superposition of states depend on
the carrier-envelope phase of the resonant ionizing pulse. Therefore, the strong-field ionization from a coherent
superposition of states by a resonant laser pulse can be used to determine the carrier-envelope phase for long
pulses for which the standard methods such as stereo–above-threshold ionization technique fail. The results
strongly depend on the relative amplitude and phase of states in the coherent superposition of states, which can
be controlled with a weak resonant laser pulse.
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I. INTRODUCTION

The main subject of strong-field physics is the study
of strong-laser-field-induced atomic and molecular pro-
cesses [1]. These processes enable insights into the dynamics
of electrons in atoms and molecules on the subfemtosec-
ond timescale, which stimulated the development of at-
toscience [2,3]. Theoretical analysis of these processes is
usually based on the strong-field approximation (SFA) in
which the electron is initially bound in the atomic or molecu-
lar ground state and in intermediate and final states is driven
by the laser field alone (in the so-called Volkov state). Excited
states are usually neglected. However, it is desirable to obtain
information about the atomic or molecular level structure and,
more importantly, about the electron dynamics in a bound
potential. Such information can be obtained from the spec-
tra of high-order harmonic photons [in high-order harmonic
generation (HHG) [4–8]] and photoelectron spectra (in (high-
order) above-threshold ionization [(H)ATI] [9–12] as well as
nonsequential multiple ionization [13,14]). For this purpose it
is necessary to prepare an atomic or molecular initial state in a
superposition of bound states. This can be achieved by excit-
ing atoms or molecules using HHG radiation with harmonic
photon energy resonant with the transition from the ground to
an excited state [15–20] or using a free-electron laser [21].

First observation of HHG from an optically prepared ex-
cited state of a rubidium atom irradiated simultaneously by

an intense 3.5-μm fundamental field and a weak cw diode
laser was reported in [22]. An orders-of-magnitude increase
in harmonic yield was observed when the excited states were
populated. Theoretically, HHG from a coherent superposi-
tion of ground and excited atomic states was considered
in [23–28]. An increase in HHG efficiency in comparison to
HHG from the ground state alone was observed. In [29] the
mapping of the attosecond electron wave-packet motion was
demonstrated using a two-state one-dimensional molecular
model.

In addition to HHG from atomic and molecular gases,
HHG was observed in experiments with different media such
as ablation plasma. A strong resonance enhancement of single
harmonics was observed in ablation plasma of metals [30]
(for more information see the review articles [31,32] and
monograph [33]). The positive ions of such ablation plasma
have a large absorption strength for the transition between the
ground state and a metastable excited state which is embed-
ded in the continuum. The theory of HHG from a coherent
superposition of states [27], adjusted to this case of metastable
excited states, was used to qualitatively explain experimental
results [34–36]. A related explanation is based on autoionizing
states and the four-step model [37].

The SFA neglects the role of excited states in the ionization
process. However, it is well known that excited states can
play a role in strong-field processes. We mention Freeman
resonances [38], the work [39] in which it was shown (by
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probing with a second laser) that the atoms subjected to an
intense subpicosecond laser pulse survive in excited states,
observation that neutral and ionic Rydberg states of Kr and
Xe are populated during the interaction of ground-state atoms
with intense 100-fs 770-nm laser pulses [40], recollision exci-
tation with subsequent ionization [41], multiphoton excitation
spectroscopy [42], resonance-enhanced multiphoton ioniza-
tion [43], and frustrated tunneling ionization (FTI) [44]. If the
dressing laser field couples bound states to the continuum,
light-induced structures may appear [45,46]. A method of
measurement of Stark shift in excited helium was considered
in [47,48]. We should also mention observation of an excep-
tional stability of Rydberg atoms in strong laser fields [49] (for
strong-field stabilization with much more intense pulses, see
the review article [50]). Strong-field ionization from a coher-
ent superposition of electronic states of Ar+ ion was studied
in [51]. More precisely, a pump-probe scheme is used and a
spin-orbit wave packet is launched via the first ionization of
the neutral Ar atom and then the wave packet of Ar+ is probed
as a function of time by the second pulse that produces an
Ar2+ ion. As a result, information about electron momentum
distributions and the tunneling process itself is obtained. The
authors of Ref. [51] were also studying creation and survival
of autoionizing states in krypton and argon by strong laser
fields over a large range of wavelengths [52]. For more recent
experimental results we mention Refs. [53–55]. In [53] in-
tense optical attosecond pulses are synthesized which allows
generation of electronic bound-state wave packets in atoms
involving electronic intershell coherences without strong cou-
pling to ionization channels. Strong-field excitation in Ne and
Ar in both the tunneling and multiphoton regimes was consid-
ered in [54] and an enhancement of the excitation of Rydberg
states in the vicinity of a channel closing was observed. In [55]
HHG from He atoms excited by intense few-cycle laser pulses
via FTI was considered. For more references on the excitation
and probing of electronic coherences in atoms and a theoreti-
cal formulation in terms of the time evolution of the (reduced)
density matrix and the Liouville operator formulation, see the
recent paper [56]. It should be mentioned that, very recently,
strong-field ionization of He prepared in an excited p state was
considered in [57].

A coherent superposition of atomic states can be created
using a weak resonant laser field with photon energy equal
to the energy difference between the states which form this
superposition. In Sec. II we show how the relative amplitude
and phase of the states forming this superposition can be
controlled with the parameters of this resonant laser pulse.
We first prove this using a two-level model and then confirm
this model using exact solutions of the three-dimensional (3D)
time-dependent Schrödinger equation (TDSE) in Sec. III. In
Sec. IV we present the improved SFA (ISFA) theory of HATI
from a coherent superposition of states for the case when the
laser field is nonresonant. Our numerical results show that the
photoelectron spectra and momentum distributions strongly
depend on the values of the relative phase between the states
in the superposition used. In Sec. V we consider the possi-
bility that the wavelength of the ionizing strong laser pulse
is resonant with the transition between the atomic states in the
superposition used. For this case we present the corresponding
ISFA and TDSE numerical results. Ionization from a coherent

superposition of states allows for different paths of the ion-
ization process. We show how the interplay between different
interference paths manifests in the photoelectron momentum
distribution. A discussion and our conclusions are given in
Sec. VI. We also provide Appendix A, in which we present
analytical results for the dipole matrix elements that appear in
the SFA, and Appendix B, in which we estimate the optimal
parameters for observation of new effects in HATI from a
coherent superposition of states. We use atomic system of
units (e = h̄ = me = 1).

II. TWO-LEVEL SYSTEM IN A LASER FIELD

Consider a two-level system with the Hamiltonian H0, hav-
ing the eigenstates |ψ j〉 and the eigenenergies Ej , j = 1, 2.
The most general wave function of this system is [58]

|�(t )〉 =
∑
j=1,2

c j (t )|ψ j〉e−iE jt , c j (t ) = a j (t )eiϕ j (t ), (1)

where a j (t ) and ϕ j (t ) are real and

H0|ψ j〉 = Ej |ψ j〉, 〈ψk|ψ j〉 = δk j,
∑

j

a2
j (t ) = 1. (2)

We introduce the interaction with a linearly polarized laser
field E (t ) having the amplitude E0, angular frequency ω,
envelope f (t ), and carrier-envelope phase ϕR:

E (t ) = E0 f (t ) cos(ωt + ϕR). (3)

The envelope can, for example, be sine squared with the total
pulse duration equal to an integer number np of optical cycles
T = 2π/ω,

f (t ) = sin2

(
ωt

2np

)
, t ∈ [0, Tp], Tp = npT . (4)

The intensity of this field is I = E2
0 and the pulse duration,

defined as the full width at half maximum of the intensity, is
τp = 0.364 06Tp [59].

The wave function |�(t )〉 satisfies the time-dependent
Schrödinger equation

i
∂|�(t )〉

∂t
= H (t )|�(t )〉, H (t ) = H0 + zE (t ), (5)

where H (t ) is the total Hamiltonian of our two-level system
in interaction with the laser field in the dipole approximation
and length gauge and we suppose that the laser field is po-
larized along the quantization axis z so that r · E(t ) = zE (t ).
Introducing (1) into (5), we obtain the system of differential
equations for the coefficients c j (t ),

ċ1(t ) = −iμ f (t )[ei
ωt+iϕR + e−i(ω+ω0 )t−iϕR ]c2(t ),

ċ2(t ) = −iμ∗ f (t )[e−i
ωt−iϕR + ei(ω+ω0 )t+iϕR ]c1(t ), (6)

where we use the relation 〈ψ j |z|ψ j〉 = 0 and introduce the
notation

μ = E0〈ψ1|z|ψ2〉/2, ω0 = E2 − E1, 
ω = ω − ω0.

(7)
Supposing that the detuning 
ω is such that |
ω| � ω0,

we apply the rotating-wave approximation [58], according
to which e±i
ωt is slowly varying while e±i(ω+ω0 )t is rapidly
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varying and therefore when integrated gives approximately
zero. Neglecting the corresponding terms in Eq. (6), we obtain
the system

ċ1(t ) = −iμ f (t )ei(
ωt+ϕR )c2(t ),

ċ2(t ) = −iμ∗ f (t )e−i(
ωt+ϕR )c1(t ). (8)

The solution of this system in the resonant case (
ω = 0) and
for μ real is

c1(t ) = c1(0) cos[F (t )] − ic2(0) sin[F (t )]eiϕR ,

c2(t ) = c2(0) cos[F (t )] − ic1(0) sin[F (t )]e−iϕR ,
(9)

where for the envelope (4) we have

F (t ) = μ

∫ t

0
f (t ′)dt ′ = npμ

2ω

[
ωt

np
− sin

(
ωt

np

)]
. (10)

For the initial condition c2(0) = 1 and c1(0) = 0, we obtain

c1(t ) = −i sin[F (t )]eiϕR , c2(t ) = cos[F (t )]. (11)

For example, for the hydrogenic 2s and 2p states we have

〈ψ2s|z|ψ2p〉 = −3, μ = μ∗ = −3E0

2
. (12)

The ionization potentials of the excited states of He atoms are
(see Appendix B)

Ip(2s) = −E1 = 3.972 eV, Ip(2p) = −E2 = 3.369 eV,

(13)
so λ0 = 2057 nm where ω0 = 2πc/λ0. Using a free-electron-
laser or high-order-harmonic source of photons, we excite the
ground 1s state of He to the 2p state [according to selection
rules, this excitation is possible; we do not calculate the prob-
ability of the transition 1s → 2p, but we suppose that some
of the atoms (not 100%) in He gas are excited to the 2p
state, which is the initial state for our calculations]. Then we
expose the He gas in this 2p excited state to a resonant IR
laser having wavelength λ0. Therefore, the initial condition is
c2(0) = c2p(0) = 1 and c1(0) = c2s(0) = 0 and the result (11)
with (10) and (12) is valid. At the end of the laser pulse we
have F (npT ) = −Fp, Fp = 3npA0π/2, and A0 = E0/ω. The
population is completely transferred from the 2p state to the
2s state if

3npA0 = 2 j + 1, j = 0, 1, 2, . . . . (14)

In Fig. 1, for a fixed wavelength of 2057 nm, we present the
parameter 3npA0 as a function of the laser intensity for pulse
duration from one to ten optical cycles. If 3npA0 is even (odd),
the population of the 2s state is zero (one). The horizontal
line in Fig. 1 intersects the curves 3npA0 for particular values
of the intensity. For example, for np = 4 (red circles) and for
an intensity of 1.2 × 1011 W/cm2 we have 3npA0 ≈ 1, so the
population is completely transferred from the 2p to the 2s
state.

After the IR pulse is gone (t � Tp), the excited He state is
the superposition

|�(t )〉 = [
sin(Fp)ei(ϕR−π/2)|ψ2s〉e−iE2st

+ cos(Fp)|ψ2p〉e−iE2pt
]
. (15)

The relative amplitude for the 2s and 2p states is tan(Fp) and
depends on the pulse duration np and the field amplitude E0.
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FIG. 1. Parameter 3npA0 as a function of the laser intensity in
units of 1010 W/cm2 for different pulse durations (np is from 1 to
10). The laser pulse is sine squared with a total duration of np optical
cycles and a wavelength of 2057 nm.

On the other hand, the relative phase between the 2s and
2p states is ϕR − π/2 and depends on the carrier-envelope
phase of the few-cycle IR pulse. For example, for np = 4 and
the intensity I = E2

0 = 6.88 × 1010 W/cm2 we obtain a2p =
cos(Fp) = 0.37. We will use this ratio in our calculations of
the HATI spectra.

III. NUMERICAL SOLUTION OF THE TIME-DEPENDENT
SCHRÖDINGER EQUATION

Our numerical method for solving the 3D TDSE within
the single-active-electron approximation and dipole approx-
imation is described in detail in [60]. This method is here
applied to a coherent superposition of states. We first solve the
stationary Schrödinger equation in order to obtain the wave
functions and energies of the 2s and 2p excited states of the
He atom. We model the single-active-electron potential using
the spherically symmetric potential

V (r) = −1 + a1e−a2r + a3re−a4r + a5e−a6r

r
, (16)

where the parameters a j are chosen such that they give cor-
rect values for the energies of the chosen atomic state. For
the excited 2s and 2p states of the He atom these parame-
ters are a1 = 2.201, a2 = 5.6606, a3 = −4.054, a4 = 2.740,
a5 = 0.5810, and a6 = 1.4623. Using the potential (16), we
calculated the ionization potential of the 2s and 2p states and
obtained Ip(2s) = 3.972 eV and Ip(2p) = 3.369 eV.

After obtaining the wave function which is a coherent
superposition of the excited states by solving the stationary
Schrödinger equation, we propagate this wave function under
the influence of the laser field by numerically solving the
TDSE

i
∂�(r, t )

∂t
= [H0 + VI (t )]�(r, t ), (17)

where H0 = −∇2/2 + V (r) is the field-free Hamiltonian and
VI (t ) is the interaction operator in the dipole approxima-
tion and length gauge [VI (t ) = zE (t )] or velocity gauge
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FIG. 2. Survival probabilities of the 2s (red solid line for the
length gauge L and orange dot-dashed line for the velocity gauge
V, labeled 2s] and 2p (blue solid line for length gauge and violet
double-dot–dashed line for velocity gauge, labeled 2p) states and
the ionization probability (green line labeled ion L), obtained using
the TDSE solutions, presented as functions of the time in optical
periods. Populations of the 2s (magenta dotted line) and 2p (cyan
dot-dashed line) states, according to the two-level model (labeled 2l)
are also presented. The linearly polarized laser electric-field vector
is presented on the right-hand ordinate by a black dashed line. The
laser pulse is sine squared with a total duration of four cycles,
carrier-envelope phase ϕR = 0, wavelength of 2057 nm, and intensity
of 1 × 1011 W/cm2.

[VI (t ) = −iA(t )∂z] (in all calculations, except in Fig. 2, we
use the velocity gauge since the calculations are faster in
this gauge). At the end of the laser-atom interaction at
the time t = Tp we obtain the final time-dependent wave
function �(r, Tp) from which we extract the corresponding
photoelectron momentum distribution P(Ep, θ ) by projecting
�(r, Tp) onto the continuum states (−)

p (r) of the field-free
Hamiltonian,

P(Ep, θ ) = 2π p|〈(−)
p |�(Tp)〉|2, (18)

where p = (pz, px ) = (p cos θ, p sin θ ). The continuum states
(−)

p have to obey the incoming boundary condition and we
calculate them by solving the radial Schrödinger equation for
the fixed photoelectron kinetic energy Ep = p2/2. We also
calculate survival probabilities of the 2s and 2p states as
functions of time using the formula

|c j (t )|2 = |〈ψ j |�(t )〉|2, j = 2s, 2p. (19)

It should be mentioned that only the probabilities at the end
of the laser pulse, c j (Tp), are observable, while the quantities
c j (t ) are gauge dependent (in principle, they can be defined in
a gauge-covariant way, but this goes beyond the consideration
of the present paper [61,62]).

As we have mentioned, we will present numerical results
for the excited 2s and 2p states of the helium atom. Using
a free-electron-laser or a high-order-harmonic source of pho-
tons, we excite the ground 1s state of He to the 2p state.
Then we act with the resonant laser having the wavelength
λ0 = 2057 nm on this 2p state. The final state at the end of
the laser pulse is a superposition of the 2s, 2p, and contin-
uum states. Initially, at t = 0, only the 2p state is occupied,

i.e., c2p(0) = 1 and |�(0)〉 = |ψ2p〉. In Fig. 2 we compare
populations obtained using the two-level model and survival
probabilities obtained using the TDSE solutions as functions
of the time, for np = 4 and an intensity of 1 × 1011 W/cm2.
We see that, in accordance with the results of Fig. 1, the
population is largely transferred from the 2p state to the 2s
state. The TDSE results, in both length and velocity gauges,
and the two-level-model results agree very well. The reason
is that for the low intensity used the ionization probability is
low (see the green line labeled “ion L” in Fig. 2; this result is
obtained in the length gauge).

IV. IMPROVED STRONG-FIELD APPROXIMATION FOR
IONIZATION BY A NONRESONANT LASER PULSE

The differential ionization probability Wp for the emission
of an electron with the energy Ep into the solid-angle element
d�p̂ is [59]

Wp = |M f i|2dp
dEpd�p̂

= p|M f i|2. (20)

Within the ISFA, the ATI transition amplitude is M f i =
Mdir

f i + Mres
f i , where the direct and rescattering matrix elements

are

Mdir
f i = −i

∫ Tp

0
dt0eiSp(t0 )〈p + A(t0)|r · E(t0)|ψi(t0)〉, (21)

Mres
f i = (−i)2

∫ Tp

0
dt

∫ t

0
dτ

(
2π

iτ

)3/2

eiSp(t )〈p|V |q〉

× ei[Sq (t0 )−Sq (t )]〈q + A(t0)|r · E(t0)|ψi(t0)〉. (22)

Here t0 = t − τ , E(t ) = −dA(t )/dt is the electric-field
vector, dSp(t )/dt = [p + A(t )]2/2, p is the final electron
momentum at the detector, |p〉 is a plane-wave ket vector
such that 〈r|p〉 = (2π )−3/2 exp(ip · r), V (r) is the rescatter-
ing potential, q = −[α(t ) − α(t0)]/τ is the electron stationary
momentum, and α(t ) = ∫ t A(t ′)dt ′. The initial atomic bound
state is a linear superposition of the orthonormal states |ψ j〉
with the energies Ej and the coefficients c j (t0):

|ψi(t0)〉 =
∑

j

c j (t0)|ψ j〉e−iE jt0 . (23)

The direct transition amplitude corresponds to the process
in which the electron, liberated from the atom at the time
t0 via the interaction r · E(t0), goes directly to the detector
with the asymptotic momentum p. The rescattering transition
amplitude is described by the so-called three-step model: The
electron, liberated (virtually) at the time t0, propagates in the
laser field during the travel time τ up to the time t = t0 + τ ,
when it returns to the parent ion and elastically scatters off the
potential V (r), and then moves towards the detector reaching
it with the asymptotic momentum p. The rescattering potential
is modeled by Eq. (16) with the Coulomb potential screened
with the factor exp(−0.3r).

The photoelectron energy spectra and momentum distri-
butions in strong-field ionization from the ground atomic
state are explored in detail (see, for example, the review
articles [12,59] and references therein). For electron emis-
sion in the laser-field polarization direction the low-energy
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FIG. 3. Differential ionization probabilities of the He atom in a
coherent superposition of the 2s and 2p states, with a2p = 0.37 and
the relative phase ϕ2p (in degrees) labeled in the legend, as functions
of the photoelectron energy Ep in units of the ponderomotive energy
Up. The laser pulse is sine squared with the carrier-envelope phase
ϕ = 0 and the total pulse duration of six optical cycles. The laser
wavelength and intensity are 3100 nm and 3 × 1012 W/cm2, respec-
tively. The results are obtained using the ISFA.

exponentially decreasing part of the spectrum corresponds to
the electrons which go directly to the detector (the Coulomb
effects can change this part of the spectrum inducing low-
energy structures caused by forward-scattered electrons; for
more about the Coulomb effects in ATI, see the recent review
article [63]). This low-energy part is followed by a plateau
which extends approximately from 3Up to 10Up and is lower
by many orders of magnitude. This plateau corresponds to the
electrons which, virtually liberated in the atomic ionization,
are driven by the laser field and return to and rescatter off the
ionic core (this is in accordance with the three-step model).
For energies larger than 10Up the photoelectron yield again
exponentially decreases (this is the so-called cutoff). The
photoelectron momentum distribution has a figure-8 form,
elongated along the polarization axis, with different off-axis
structures which have exotic names such as spider, rhomb,
fork, and carpet.

Let us now present the ISFA numerical results for the
differential ionization probabilities of the He atom in the
coherent superposition of the 2s and 2p states with the ampli-
tudes a2p = 0.37 and a2s = (1 − a2

2p)1/2, fixed phase ϕ2s = 0,
and various values of the phase ϕ2p. For the chosen amplitudes
the contributions of the 2s and 2p states to the differen-
tial ionization probability are comparable. The laser pulse
is sine squared and is given by Eqs. (3) and (4) with the
carrier-envelope phase ϕR → ϕ. The laser wavelength and
intensity are 3100 nm and 3 × 1012 W/cm2, respectively, the
total pulse duration is six cycles, and the carrier-envelope
phase is ϕ = 0. These parameters are close to that of a recent
experiment [64] with the Cs atom, which has an ionization
potential of 3.9 eV, which is close to Ip(2s) = 3.972 eV. Since
the wavelength used is nonresonant, the states 2s and 2p are
not coupled and the coefficients c j = a jeiϕ j do not depend on
time.

FIG. 4. Logarithm of the differential ionization probabilities of
the He atom in a coherent superposition of the 2s and 2p states,
with a2p = 0.37 and the relative phase ϕ2p equal to (a) 0, (b) 3π/2,
(c) π/2, and (d) 5π/3, presented in the photoelectron momentum
plane using false colors with the color scale that covers approxi-
mately seven orders of magnitude. The laser pulse parameters are
the same as in Fig. 3 and the results are obtained using the ISFA.

In Fig. 3 we present the spectra for emission in the laser-
field polarization direction θ = 0 for the relative phases ϕ2p =
0◦, 90◦, 270◦, and 300◦. We see that the results strongly
depend on the value of this phase. Due to its lower ionization
potential, the ionization probability of the 2p state is higher
than that of the 2s state. However, the relative amplitude
of these states in our coherent superposition is chosen such
that the corresponding ionization amplitudes are comparable.
Therefore, the contributions from the 2s and 2p states inter-
fere constructively or destructively, depending on the relative
phase ϕ2p, and produce different spectra, as can be seen in
Fig. 3.

In Fig. 4 we present the photoelectron momentum distribu-
tions for the same parameters as in Fig. 3. We see that both
the low-energy (direct electrons) and high-energy (rescattered
electrons) spectra strongly depend on the relative phase ϕ2p.
As we have mentioned, this phase can be controlled in the
experiment by choosing the carrier-envelope phase ϕR of our
weak resonant laser pulse [taking into account that the wave
functions are determined up to a phase factor, the connection
is ϕ2p = −ϕR + π/2; see Eq. (15)].

V. STRONG RESONANT LASER PULSE

In Appendix B we explore how the ionization rates depend
on the ionization potential Ip and the laser-field intensity I
and frequency ω. We estimate that, for an experimental ob-
servation of novel effects in strong-field ionization from a
coherent superposition of states, the most suitable example
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FIG. 5. Differential ionization probabilities for HATI of the He
atom in a coherent superposition of the 2s and 2p states, with
a2p = 0.37, a2

2s + a2
2p = 1, ϕ2s = 0, and ϕ2p (a) from 0 to 180◦ and

(b) from 180◦ to 330◦, as functions of the photoelectron energy Ep

in units of the ponderomotive energy Up. A linearly polarized four-
cycle sine-squared laser pulse with a carrier-envelope phase ϕ = 0, a
wavelength of 2057 nm, and an intensity of 4 × 1012 W/cm2 is used.
The electrons are emitted in the laser-field polarization direction
(θ = 0◦).

is the superposition of the 2s and 2p excited states of the
He atom exposed to a laser field having an intensity of few
units of 1012 W/cm2 and a resonant wavelength 2057 nm (one
photon resonance). Therefore, in this section we suppose that
the laser field is resonant with the transition from the 2s state
to the 2p state. In order to have comparable contributions of
the 2s and 2p states to the ionization amplitude we choose
a2p = 0.37 and a2

2s + a2
2p = 1. We fix the phase of the 2s state

ϕ2s = 0 and change the phase ϕ2p of the 2p state.

A. ISFA results

The laser pulse is turned on at the time t = 0 when the
initial bound state is ψ (0) = a2sψ2s + a2peiϕ2pψ2p. Since the
laser pulse is resonant, we can suppose that the bound atomic
states evolve from the time t = 0 to the ionization time t = t0
in accordance with the two-level model described in Sec. II.
In this case the bound atomic state is given by Eq. (23), where

FIG. 6. Logarithm of the differential ionization probabilities of
the He atom in a coherent superposition of the 2s and 2p states,
presented in the photoelectron momentum plane using false colors
with a color scale that covers six orders of magnitude. The relative
phase is (a) ϕ2p = 0 and (b) ϕ2p = π . The laser pulse parameters are
as in Fig. 5.

the coefficients c j (t ) are given by

c2s(t ) = a2s cos[F (t )] − ia2p sin[F (t )]ei(ϕ+ϕ2p),

c2p(t ) = a2p cos[F (t )]eiϕ2p − ia2s sin[F (t )]e−iϕ,
(24)

with F (t ) = −3npE0[ωt/np − sin(ωt/np)]/4ω. Equa-
tions (21)–(23), with (24), constitute our modified ISFA
which we will use in this section.

Let us first analyze how the photoelectron spectra depend
on the relative phase between the states in the coherent su-
perposition of the 2s and 2p states. In Fig. 5 we present the
results for a laser intensity of 4 × 1012 W/cm2, a wavelength
of 2057 nm, and the four-cycle sine-squared pulse with the
carrier-envelope phase ϕ = 0 [compare Eqs. (3) and (4) for
ϕR → ϕ]. We see that the spectra strongly depend on the value
of the relative phase ϕ2p. The differential ionization proba-
bility is maximal for ϕ2p ≈ 0◦ and slowly decreases with the
increase of ϕ2p. For ϕ2p > 90◦ the decrease of the probability
with the increase of ϕ2p is faster. The minimum appears for
ϕ2p ≈ 180◦. This is followed by a fast increase of the rate with
the increase of ϕ2p from 180◦ to 270◦ and a slower increase for
ϕ2p > 270◦.

In Fig. 6 we present the photoelectron momentum dis-
tributions for the same laser pulse parameters as in Fig. 5.
Due to a short pulse duration, the momentum distributions
exhibit known asymmetry along the polarization axis (θ = 0◦
vs θ = 180◦ [59]). We see that the ionization probability is
higher for ϕ2p = 0 [Fig. 6(a)] than for ϕ2p = π [Fig. 6(b)].

It is known that for long pulses (say, Tp > 10T ) the photo-
electron spectra do not depend on the carrier-envelope phase
and that they can be approximated by the spectra obtained
using a T -periodic infinitely long flat pulse [59]. We have
checked that this is valid for ionization from the 2s and 2p
states alone. However, for ionization from a coherent superpo-
sition of states this is not so. This is obvious from the results
presented in Fig. 7: The results for ϕ = 0◦ and −180◦ differ
by more than one order of magnitude (for some energies this
difference is by a factor larger than 30). Therefore, by mea-
suring the differential ionization probability from a coherent
superposition of states, one can determine the phase ϕ. This
is a different method for measurement of the carrier-envelope
phase. It can be used for long pulses and for arbitrary electron
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FIG. 7. Differential ionization probabilities of the excited He
atom as functions of the photoelectron energy Ep in units of the pon-
deromotive energy Up for above-threshold ionization by a linearly
polarized sine-squared laser pulse of the total duration Tp = 14T
having a wavelength of 2057 nm (E2p − E2s = ω) and an intensity
of 4 × 1012 W/cm2. The electrons are emitted in the laser-field
polarization direction (θ = 0◦). Ionization is from a coherent super-
position of the 2s and 2p states, with a2p = 0.37, a2

2s + a2
2p = 1, and

ϕ2s = ϕ2p = 0. The results for the carrier-envelope phases ϕ = 0◦,
−90◦, and −180◦, are presented.

emission angles. This method can be used instead of the
known stereo-ATI method [59,65].

B. TDSE results

In this section we present numerical results obtained using
the solutions of the time-dependent Schrödinger equation as it
is described in Sec. III. We take the initial state in the form of
a superposition of the ψ2s(r) and ψ2p(r) states:

�(r, 0) = a2sψ2s(r) + a2peiϕ2pψ2p(r). (25)

In Fig. 8 we compare the results for ϕ2p = 0 and ϕ2p = π

for the four-cycle sine-squared pulse with the carrier-envelope
phase ϕ = 0, a wavelength of 2057 nm, and intensities of
2 × 1012 W/cm2 [Fig. 8(a)] and 4 × 1012 W/cm2 [Fig. 8(b)].
For an intensity of 2 × 1012 W/cm2 the ionization probability
in the low-energy region is larger for ϕ2p = 0, while for high
energies the situation is the opposite. For two times higher
intensity [Fig. 8(b)] the spectra change qualitatively: Now the
ionization probability for ϕ2p = 0 is higher in the plateau and
cutoff region, while in the low-energy region the probabili-
ties for ϕ2p = 0 and ϕ2p = π are comparable. Comparing the
TDSE results with the results obtained using the ISFA (Fig. 5),
we see that the agreement is good (having in mind that the
SFA fails in the low-energy region due to the neglect of the
Coulomb effects).

In Fig. 9 we present the survival probabilities of the 2s and
2p states as functions of time during the laser pulse, for ion-
ization by the laser pulse with an intensity of 4 × 1012 W/cm2

and other parameters as in Fig. 8. We see that both sur-
vival probabilities oscillate. Interestingly, in most cases the
maxima in survival probability appear each half cycle, at the
times when the field has an extremum. The 2s state survival
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FIG. 8. Differential ionization probabilities of the He atom in a
coherent superposition of the 2s and 2p states, with a2p = 0.37, a2

2s +
a2

2p = 1, ϕ2s = 0, and ϕ2p = 0 (black dashed curve) and ϕ2p = π

(red solid curve). The ionization is by a linearly polarized four-cycle
sine-squared pulse with the carrier-envelope phase ϕ = 0, wave-
length 2057 nm, and intensities (a) 2 × 1012 W/cm2 and (b) 4 ×
1012 W/cm2. The electrons are emitted in the laser-field polarization
direction. The results are obtained using the TDSE solutions.

probability decreases and at the end of the pulse the survival
probability of the 2p state is larger than that of the 2s state.

VI. DISCUSSION AND CONCLUSIONS

Using radiation from a free-electron-laser or a high-
harmonic source, we first excited the ground atomic state.
For example, for the 1s ground state of the helium atom
the selection rules allow transition to a p state. In this way
we obtained the He atomic gas in the 2p excited state. In
order to prepare a coherent superposition of the 2s and 2p
bound states of the He atom we used a weak resonant laser
pulse having a wavelength of 2057 nm. Using the two-level
model, we have shown that the relative phase between the
states in this coherent superposition of states depends on the
carrier-envelope phase of the weak resonant laser pulse used,
while the corresponding relative amplitude is equal to tan(Fp),
where Fp = 0.75Tp

√
I , with Tp the total pulse duration and I

the laser intensity [see Eq. (15)]. The validity of our two-level
model was confirmed using the exact TDSE solutions.
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FIG. 9. Survival probabilities of the 2s (red dot-dashed lines) and
2p (green solid lines) states as functions of the time in ionization
from the coherent superposition of these states for (a) ϕ2p = 0 and
(b) ϕ2p = π and for the parameters of Fig. 8 and a laser intensity of
4 × 1012 W/cm2. The laser electric-field vector is presented on the
right-hand ordinate by a black dashed line.

After preparing a coherent superposition of states with
controlled relative amplitude and phase, we considered
strong-laser-field-induced ionization from such a superposi-
tion. We separately examined the cases of nonresonant and
resonant intense laser fields. For ionization by a strong non-
resonant few-cycle pulse, the photoelectron spectra and the
momentum distributions strongly depend on the relative phase
of the states in the coherent superposition. The differential
ionization probability of the high-energy plateau and cutoff
electrons can differ by orders of magnitude for different values
of this relative phase. We expect that some additional informa-
tion about the ionization process can be deduced from these
photoelectron spectra and the momentum distributions. For
example, information about the ionization time, which may be
different for the 2s and 2p states, can be tracked by changing
the relative phase between these states. We have shown that
this relative phase is equal to ϕR − π/2 and can be controlled
by changing the carrier-envelope phase ϕR of the weak reso-
nant pulse which generates this coherent superposition.

We have also considered the case of ionization by a strong
resonant laser field. For this purpose we modified our ISFA
theory for the resonant case. It is known that the carrier-
envelope phase of a few-cycle pulse can be determined by

measuring the asymmetry in the photoelectron yield in the two
opposite directions (the so-called stereo-ATI method). This
works well for short pulses and high photoelectron energies.
For pulses longer than ten optical cycles this asymmetry be-
comes negligibly small. The above conclusions are valid for
the ATI from a single state. However, for the ATI from a
coherent superposition of states the influence on the carrier-
envelope phase is much more pronounced and is strong even
for long pulses. In this case the carrier-envelope phase can
be determined using the spectra for a fixed photoelectron
emission angle for which the time-of-flight method with only
one detector can be used to record the photoelectron spectrum.
The strong-field ionization is moving rapidly into the mid-IR
region, and typical mid-IR pulses are long (i.e., many-cycle).
The presented results show how our proposed method can
be used to determine the carrier-envelope phase of a mid-IR
pulse, which is of interest for the new trends in laser-matter
interactions.

In conclusion, we have shown how it is possible to prepare
a coherent superposition of states with controllable relative
amplitude and phase of these states. We have developed the
ISFA theory of HATI from a superposition of the bound
atomic states, for both the nonresonant and resonant cases
of the ionizing intense laser field. Our numerical results,
confirmed by using the exact TDSE solutions, show that
the photoelectron spectra and the momentum distributions
strongly depend on the mentioned relative amplitude and
phase. Furthermore, in the resonant case the ionization am-
plitude depends strongly on the carrier-envelope phase of the
intense laser pulse used, so the HATI from the coherent su-
perposition of states can be used for the measurement of this
phase. This is valid even for long pulses, where other methods,
such as stereo-ATI, fail, so the strong-field ionization from
a coherent superposition of states may be a unique method
for measurement of the carrier-envelope phase of long laser
pulses.

A suggested experiment would be done by means of three
relatively delayed pulses in a pump-control-probe manner.
First, an XUV pulse transfers the He ground state to the
He∗ 2p state via one-photon-absorption process. After the
XUV pulse is gone, a weak resonant laser pulse creates a
coherent superposition of the 2p and 2s states, whose rela-
tive phase and amplitudes can be controlled by means of the
carrier-envelope phase and laser intensity. In the third step, a
strong laser probe arrives after the controlling pulse is gone.
In this work we discuss several options for the probe pulse.
In one case, labeled as resonant, the probe can be the same
wavelength as the one used for the control pulse. In the second
case we discuss, the probe pulse wavelength is not resonant
with the 2p-2s transition.

In our work we considered analytically the simple case of
a sine-squared pulse. For a Gaussian pulse with the inten-
sity distribution I (t ) = Imaxe−t2/τ 2

g , we can use the fact that
the function sin4(πt/4.75) is fitted well with the function
e−t2

. From this we estimate that Tp = 4.75τg (the pulse dura-
tion time usually used in the experiment is τp = 2

√
ln 2τg ≈

τg/0.6). Therefore, our method can be useful for pulse-shape
characterization, since, although Gaussian, the pulse shape
is not necessarily precisely known in the experiment [for
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a Gaussian pulse, the result for F (t ), Eq. (10), is F (t ) =
μ

√
π/2τgerf (t/

√
2τg)].
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APPENDIX A: DIPOLE MATRIX ELEMENTS

Our S-matrix element is expressed as a double integral
over the ionization and travel times of highly oscilla-
tory functions. For fast calculations we need an analytical
form of the subintegral function, which contains a product
of the dipole matrix elements. For the initial hydrogen-
like atomic state wave function ψ

αn�

n�m(r), α2
n� = 2Ip(n�),

with Ip(n�) the ionization potential; the dipole matrix el-
ement is 〈q|r|ψαn�

n�m〉 = i∂φ
αn�

n�m(q)/∂q = i(êq
∂
∂q + êθq

1
q

∂
∂θq

+
êφq

1
q sin θq

∂
∂φq

)φαn�

n�m(q), where (q, θq, φq ) are the spherical co-

ordinates and φ
αn�

n�m(q) are the momentum-space hydrogenic
wave functions, which (up to a phase factor) can be expressed
via the Gegenbauer polynomial C�+1

n−�−1 and the spherical har-
monic Y�m [66],

φ
αn�

n�m(q) =
[

2

π

n(n − � − 1)!

(n + �)!

]1/2

(−i)�22�+2�! α
�+5/2
n�

× q�Y�m(êq)(
q2 + α2

n�

)�+2 C�+1
n−�−1

(
q2 − α2

n�

q2 + α2
n�

)
. (A1)

For the ns state we have � = m = 0 and Y00(êq) = 1/
√

4π ,
while for the np states we have � = 1, m = 0, and Y10(êq) =√

3
4π

cos θq. For a laser field which is linearly polarized along
the êz axis, E(t ) = E (t )êz; in spherical coordinates we have
êq · êz = cos θq and êθq · êz = − sin θq.

Since φ
αn0
n00(q) does not depend on the angles (θq, ϕq ), us-

ing the notation y = q2, xn0 = 1/(y + α2
n0), and zn0 = (y −

α2
n0)xn0, we obtain

〈q|r · êz

∣∣ψαn0
n00

〉 = i
qz

q

∂φ
αn0
n00

∂q
= cn0qzFn0(q), (A2)

where Fn0(q) = −d[x2
n0C

1
n−1(zn0)]/dy = x3

n0C
1
n−1(zn0) −

2α2
n0x4

n0C
2
n−2(zn0), cn0 = −i(2αn0)5/2/π , and we used

the relation dCλ
n (z)/dz = 2λCλ+1

n−1 (z) [67]. Using the
relations [66] Cλ

0 (z) = 1, Cλ
1 (z) = 2λz [λ = 0 and

C0
1 (z) = 2z], Cλ

2 (z) = 2λ(λ + 1)z2 − λ, and Cλ
3 (z) =

−2(1 + λ)λz + 4λ(1 + λ)(2 + λ)z3/3, for n = 1, 2, 3, 4
we get

F10(q) = 2x3
10, F20(q) = 4

(
q2 − 2α2

20

)
x4

20,

F30(q) = 2
(
3q4 − 18α2

30q2 + 11α4
30

)
x5

30,

F40(q) = 8
(
q6 − 12α2

40q4 + 21α2
40q2 − 6α6

40

)
x6

40. (A3)

For the np state we have

〈q|r · êz

∣∣ψαn1
n10

〉 = cn1

(
dFn1

dq
cos2 θq + Fn1

q
sin2 θq

)
, (A4)

where cn1 = (2αn1)7/2
√

3/(π
√

n2 − 1) and Fn1(q) =
qx3

n1C
2
n−2(zn1). In particular, for n = 2, 3, 4 we get

F21(q) = qx3
21, F31(q) = 4q

(
q2 − α2

31

)
x4

31,

F41(q) = 2q
[
6
(
q2 − α2

41

)2 − (
q2 + α2

41

)2]
x5

41,

dF21/dq = (
α2

21 − 5q2
)
x4

21,

dF31/dq = 4
(
10q2α2

31 − α4
31 − 5q4

)
x5

31,

dF41/dq = {
2
(
α2

41 − 5q2
)[

6
(
q2 − α2

41

)2 − (
q2 + α2

41

)2]
+ 96α2

41q2
(
q2 − α2

41

)}
x6

41. (A5)

APPENDIX B: ESTIMATION OF THE PARAMETERS

Let us estimate the laser parameters relevant for the ob-
servation of the interference of different contributions to the
strong-field ionization from a coherent superposition of ex-
cited atomic states. We consider the n j excited states of the
He atom, with the corresponding ionization potentials Ip(n j)
for n = 2, 3, 4 and j = s, p.

The appearance intensity is the laser intensity at which
the ionization becomes noticeable, while the saturation in-
tensity is the laser intensity at which almost all atoms of the
considered gaseous medium are ionized. The appearance and
saturation intensities for arbitrary atomic states can be esti-
mated using the known ionization potentials and appearance
and saturation intensities for noble-gas atoms. The quasistatic
Ammosov-Delone-Krainov tunneling rate (see [9] and refer-
ences therein) is given by an exponential function with the
factor ξ =

√
I3

p/I in the exponent. In Table I we present the
ionization potentials Ip and the appearance and saturation
intensities for the ground state of noble gases, taken from [68],
as well as the corresponding values of the parameter ξ . The
value of this parameter does not change much for different
noble gases. We suppose that this parameter has the same
value for the excited states of the He atom. Therefore, we
have In j

sat = [Ip(n j)/Ip]3Isat and an analogous relation for the
appearance intensities. In the last 12 columns of Table I we
present the so-estimated values of In j

app and In j
sat for n = 2, 3, 4

and j = s, p. Using these results, we can estimate the laser
intensities for which a pair of the excited states of He takes
part in the strong-field-ionization process.

The energy difference between the He 1s ground state and
the excited states is large, so the appearance intensity for the
1s state is much larger than the saturation intensity for the
excited states. Therefore, the required strong-field ionization
from a coherent superposition should be realized using excited
states. In this case, the ground state is not involved in the
strong-field ionization. It is only used in the pump process
in which, as we have mentioned in the Introduction, we can
use high-harmonic or free-electron-laser radiation to excite
the 1s state and populate the p states (selection rules allow
the transition 1s → np). However, the difference between the
ionization potentials Ip(np) and Ip(n + 1p), n = 2, 3, is large,
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TABLE I. Ionization potentials Ip, appearance intensities Iapp, saturation intensities Isat , and the parameters ξapp =
√

I3
p/Iapp and ξsat =√

I3
p/Isat (in a.u.) of the ground state of noble gases [68]. The corresponding intensities In j

app and In j
sat (n = 2, 3, 4 and j = s, p) for the excited

states of the He atom are also shown. Intensities are in units of 1011 W/cm2. The ionization potentials for the excited states of He atom are [69]
Ip(2s) = 3.972 eV, Ip(3s) = 1.667 eV, Ip(4s) = 0.9138 eV, Ip(2p) = 3.369 eV, Ip(3p) = 1.500 eV, Ip(4p) = 0.8454 eV.

Atom Ip (eV) Iapp Isat ξapp ξsat I2s
app I2s

sat I2p
app I2p

sat I3s
app I3s

sat I3p
app I3p

sat I4s
app I4s

sat I4p
app I4p

sat

He 24.59 2500 15000 10.18 4.155 10.5 63.2 6.43 38.6 0.779 4.67 0.567 3.40 0.128 0.770 0.102 0.610
Ne 21.56 2000 8300 9.342 4.586 12.5 51.9 7.63 31.7 0.924 3.84 0.674 2.80 0.152 0.632 0.121 0.500
Ar 15.76 200 2000 18.46 5.839 3.20 32.0 1.95 19.5 0.237 2.37 0.172 1.72 0.0390 0.390 0.0309 0.309
Kr 14.00 160 1300 17.28 6.063 3.65 29.7 2.23 18.1 0.270 2.19 0.197 1.60 0.0445 0.362 0.0352 0.286
Xe 12.13 40 700 27.88 6.664 1.40 24.6 0.857 15.0 0.104 1.82 0.0756 1.32 0.0171 0.299 0.237 0.237

so that the corresponding ionization probabilities can differ
by orders of magnitude and it would be difficult to observe
the interference of the corresponding amplitudes, which is the
aim of our work. For example, let us consider the strong-field
ionization from a coherent superposition of the 2p and 3p
states by the laser field having an intensity of 5 × 1011 W/cm2

and a resonant wavelength of 6634 nm (E3p − E2p = 10ω).
In this case, in order to have noticeable interference effects
of the ionization amplitudes of the 2p and 3p states, the
coefficient a3p should be very small (our calculations give
a3p = 0.000 21 and a2

2p + a2
3p = 1). The reason is the large

difference in the ionization potentials of the 2p and 3p states
(3.369 − 1.500 = 1.869 eV), which causes the difference be-
tween the ionization probabilities from these states alone to
be many orders of magnitude. For the 3p and 4p states this
difference is smaller (1.500 − 0.8454 = 0.6546 eV). For the
coherent superposition of the 3p and 4p states we can use an
intensity of I ≈ 1011 W/cm2 since it is only slightly above
the saturation intensity for the 4p states but is well above the

appearance intensity for the 3p state. We are interested in the
rescattering plateau which extends up to 10Up, Up = I/4ω2.
For an intensity of 1 × 1011 W/cm2 and a wavelength of
10 000 nm, 10Up is equal to 9.34 eV. Therefore, in order to ob-
serve the effect of the superposition of 3p and 4p states in the
photoelectron energy region of tens of eV, lasers with wave-
lengths longer than 10 000 nm should be used. An example
is the resonant wavelength of 11 365 nm (E4p − E3p = 6ω).
In this case our calculations show that the desired interference
can be obtained for a4p = 0.019.

The difference between the ionization potentials of the 2s
and 2p states is 0.603 eV, which corresponds to the resonant
wavelength of 2057 nm. According to Table I, one expects the
interference effects in strong-field ionization from a coherent
superposition of the 2s and 2p states for a wide interval of
laser intensities of a few times 1012 W/cm2. These intensities
and wavelengths are nowadays commonly used in strong-field
physics. Therefore, we considered this example in the present
paper.
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[34] D. B. Milošević, High-energy stimulated emission from plasma
ablation pumped by resonant high-order harmonic generation,
J. Phys. B 40, 3367 (2007).

[35] R. A. Ganeev and D. B. Milošević, Comparative analysis of the
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