
PHYSICAL REVIEW A 106, 013108 (2022)
Featured in Physics

Asymmetric longitudinal optical binding force between two identical dielectric particles
with electric and magnetic dipolar responses

Xiao-Yong Duan ,1,2,* Graham D. Bruce ,2 Feng Li,1 and Kishan Dholakia 2,3,4

1School of Data Science, Jiaxing University, Jiaxing 314001, China
2SUPA School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom

3Department of Physics, College of Science, Yonsei University, Seoul 03722, South Korea
4School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia

(Received 18 November 2021; revised 8 May 2022; accepted 2 June 2022; published 12 July 2022)

In general, the optical binding force between identical particles is thought to be symmetric. However, we
demonstrate analytically a counterintuitively asymmetric longitudinal optical binding force between two iden-
tical electric and magnetic dipolar dielectric particles. This homodimer is confined in two counterpropagating
incoherent plane waves along the dimer’s axis. The force consists of the electric dipolar, magnetic dipolar, and
electric-magnetic dipolar coupling interactions. The combined effect of these interactions is markedly different
than the expected behavior in the Rayleigh approximation. The asymmetric force is a result of the asymmetric
forward and backward scattering of the particles due to the dipolar hybridization and coupling interactions.
Consequently, it leads to a harmonic driving force on the pair, which decays with the interparticle distance to
the first power. We show the rich nonequilibrium dynamics of the dimer and of the two particles impelled by the
driving and binding forces and discuss the ranges of particle refractive index and size in which the asymmetric
binding force arises. Our results open perspectives for nonequilibrium light-driven multiparticle transport and
self-assembly.
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I. INTRODUCTION

The optical binding force is mediated by the momentum
exchange between light and matter to realize stable equi-
librium configurations of tiny objects [1,2]. Therefore, it is
one of the most important tools in light-induced micro- or
nanoparticle self-assembly of, e.g., arrays [3,4], metamolecule
[5], colloid optical waveguide [6], and optical matter [2,7]. In
general, there are two forms of the force. One is the transverse
optical binding force (TOBF) where the incident wave vector
is perpendicular to the connecting line of the two particles
[8]. The other is termed the longitudinal optical binding force
(LOBF), as the external light is incident on the two particles
along the dimer’s axis [9–11].

Recently, there is increasing interest in the nonreciprocal
optical binding force between dissimilar particles [12]. The
reason is that the symmetry breaking of the action-reaction
results in rich individual and collective nonequilibrium dy-
namics of the particles [13]. Therefore, it has potential
application in light-driven nanomotors [14,15] and nanoswim-
mers [16] as well as in the nonequilibrium assembly of
colloids [17]. In detail, the TOBF between two dissimilar
particles has been demonstrated in theory [18] and experi-
ment [19] to be asymmetric in the Rayleigh approximation
(where the particle size is much smaller than the incident
wavelength). As a result, this causes a net driving force on
the center of the heterodimer [20,21]. Interestingly, the TOBF
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between two identical silver particles confined in an optical
ring trap with an azimuthal phase gradient is also asymmetric
[22]. Excitingly, the nonreciprocal TOBF was recently har-
nessed to realize an optical microgear capable of doing work:
binding a probe particle around a hexagonal array composed
of seven identical particles who are differently sized than the
probe particle, and transferring spin angular momentum from
the array to orbital angular momentum of the probe particle
[23]. On the other hand, the numerical results of the cou-
pled dipole method show that the asymmetric LOBF between
two unequal polystyrene particles causes not only the motion
of the center of the heterodimer but also a stable bonding
structure [24,25].

Traditionally, the optical binding force between two iden-
tical particles is symmetric [9], and there is therefore no
net driving force on the pair [26]. In this work, however,
we demonstrate analytically a counterintuitively asymmetric
LOBF for two identical dielectric particles with electric and
magnetic dipolar responses. It is the result of the electric-
magnetic dipolar hybridization and coupling interactions of
the particles. Moreover, the resultant driving force is harmonic
while its envelope is inversely proportional to the interparticle
distance. Unexpectedly, the stable and unstable equilibrium
positions of the driving force interchange depending on the
particle size and interparticle distance.

The paper is organized as follows. In Sec. II, we present
the analytical asymmetric LOBF and driving force. More-
over, their physical origins are revealed. In Sec. III, both the
strengths and directions of the LOBF and driving force as
well as the stable and unstable equilibrium positions of the
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FIG. 1. Longitudinal optical binding between two identical elec-
tric and magnetic dipolar dielectric nanospheres with separation (R)
immersed in air and illuminated by two incoherent counterpropa-
gating plane waves. (a) Two p-polarized plane waves with electric
E0 (magnetic H0) fields along the z (x) axis propagate along the y
axis in Cartesian system (O-xyz) as shown by the wave vector k. pj

(mj) denotes the induced ED (MD) moment in the two particles A
and B along the z (x) axis. (b) The real parts of the dimensionless
pA (blue solid curve), pB (blue double dot-dashed curve), mA (red
dashed curve), and mB (red dotted curve) as functions of R (bottom
horizontal axis) and �ϕ = kR (top horizontal axis).

two forces are numerically investigated in detail. In Sec. IV,
the refractive index and size ranges of particles in which the
asymmetric LOBF appears are discussed. Finally, conclusions
are drawn in Sec. V.

II. THEORETICAL MODEL

Here, two counterpropagating incoherent plane waves have
been employed to trap two identical electric and magnetic
dipolar dielectric particles along the homodimer’s axis (y axis)
as shown in Fig. 1(a). The mutual incoherence avoids the
influence of the interference between two incident waves on
the binding force [27]. In particular, the LOBF is polarization
independent because of the symmetry between the induced
electric dipole (ED) pair and magnetic dipole (MD) pair in
the dimer. Hence, we take p-polarized waves whose electric
fields are along the z axis as an example. In the framework of
the optical force on a single dielectric particle [28] and elec-
tromagnetic wave mutual scattering [29] (or see Appendixes
in Ref. [30]), the LOBF is analytically decomposed into
the electric dipolar, magnetic dipolar, and electric-magnetic
dipolar coupling components. In detail, the electric dipolar
component of the LOBF on particle j ( j = A or B) is ex-
pressed as

F j
e = 2nsI0

c
Re

[±(αek) sin(kR)(μαe ∓ iηαm )
∓ ∂μ∗

∂R |αe|2 cos(kR) ∓ ∂η∗
∂R αeα

∗
m sin(kR)

]
,

(1)

where I0 = ε0nsc|E0|2/2 is the intensity of the incident wave
in the medium with refractive index ns, ε0 is the permittivity
of vacuum, c is the light speed in vacuum, and E0 is the
amplitude of the incident electric field. The time-dependent

factor of the incident wave is exp(−iωt) while ω is the
angular frequency. αe = i6πa1/k3 and αm = i6πb1/k3 rep-
resent individually the electric and magnetic polarizabilities
with radiation reaction terms [31] of the particles. a1 and
b1 denote respectively the electric and magnetic dipolar Mie
scattering coefficients [32]. i is the unit imaginary number,
Re represents the real part of a complex number, * denotes
complex conjugation. R is the separation between the cen-
ters of the two particles [see Fig. 1(a)], ∂/∂R denotes the
partial derivative with respect to R. k = 2π/λ is the wave
number in the medium, λ and λ0 are respectively the inci-
dent wavelength in the medium and vacuum with relation
λ = λ0/ns. μ = exp(ikR)(k2R2 + ikR−1)/(4πR3) and η =
exp(ikR)(ik2R2−kR)/(4πR3) are respectively the eigenvalues
of the electric and magnetic dyadic Green’s functions of a
point dipole [30]. Note that the terms on the right side of
Eq. (1) take the upper signs in the case of j = A while they
revert to the lower signs for j = B. [The rule of the signs is
also suitable for Eq. (2).]

Consider the LOBF acting on particle B as an example. The
first two terms in Eq. (1) represent the interaction between
the incident electric field and the ED in particle B. The ED
is induced by the radiated electric fields of the ED and MD
in particle A. The third term shows the interaction between
the radiated electric field of the ED in particle A and the ED
in particle B which is caused by the incident electric field.
The fourth term expresses the interaction between the radiated
electric field of the MD in particle A and the ED in particle
B, which is caused by the incident electric field. Note that
the secondary interactions of the radiated fields by both ED
and MD in particle A with the secondary ED and MD in
particle B induced by these fields are in general very small [9].
Hence, they can be ignored within our parameter range when
compared with the primary interactions in Eq. (1) [33]. On the
other hand, the magnetic dipolar components of the LOBF
(F j

m) are also expressed by Eq. (1) through exchanging the
subscript “e” and “m.” In other words, the difference between
Fe and Fm is just the αe and αm (a1 and b1) of the particles.
Analogy with F j

e , F j
m represents four interactions between the

corresponding magnetic field and MD. Finally, the electric-
magnetic dipolar coupling components of the LOBF are
described by

F j
em = nsI0

3πc
k4 sin(kR)Im

[
αeα

∗
m

(∓μ∗α∗
m ± μαe

∓i(η∗α∗
e ± ηαm )

)]
, (2)

where Im represents the imaginary part of a complex number.
Amazingly, the LOBF expressed by Eqs. (1) and (2) is

nonreciprocal, as denoted by the second term αekiηαm in
Eq. (1) and the fourth term αeα

∗
miηαm in Eq. (2). This is

the first important conclusion in this paper. The underlying
physics is the asymmetric forward and backward scattering of
the homodimer on the y axis. For the sake of clarity, we use the
term forward (backward) scattering to refer to the scattering
along the y (−y) axis, i.e., to the right (left) of the dimer,
as shown in Fig. 1(a), in the two counterpropagating plane
waves configuration. This asymmetric scattering is a result
of the symmetry breaking of the ED pair and MD pair [22],
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which are caused by different phases of the dipole moments,
as expressed by

pj = ε0εsαeδ
j
eE0, (3)

mj = αmδj
mH0, (4)

where H0 is the amplitude of the incident magnetic field and εs

is the permittivity of the medium. The phases of the moments
are caused by both the scattering properties (a1 and b1) of
particles and the relaxation of electromagnetic field between
the two particles due to the phase shift �ϕ = kR. The electric
and magnetic relaxations are respectively determined by

δ j
e = 1 + 2 sin(kR)(μαe ∓ iηαm), (5)

δ j
m = 1 + 2 sin(kR)(μαm ∓ iηαe). (6)

The relaxation includes not only the incident field but also
the dipolar hybridization and coupling interactions. In detail,
the hybridization refers to the fact that the ED (MD) in one
particle is affected by the radiated electric (magnetic) fields of
the ED and MD in the neighboring particle [34]. On the other
hand, the coupling comes from the interaction between the
ED and MD in one particle [30]. For the ED (MD) moment in
Eq. (3) [Eq. (4)] of one particle, Eq. (5) [Eq. (6)] denotes that
the first term depends on the incident electric (magnetic) field
while the last two terms are determined by the radiative elec-
tric (magnetic) field of the ED and MD in the other particle.
Note that the last terms in the second brackets in Eqs. (5) and
(6) take respectively the upper and lower signs for particles A
and B.

To illustrate the asymmetric ED and MD pairs in a di-
electric homodimer, we employ two identical polystyrene
particles with refractive index np = 1.59 and radius a =
130 nm immersed in air (ns = 1). The incident wavelength
is λ = 532 nm throughout. Considering only the phases and
relative intensities of the dipole moments, Eqs. (3) and (4) are
simplified as the dimensionless pj = ia1δ

j
e and m j = ib1δ

j
m

which are presented in Fig. 1(b). It is clearly seen that pA

(blue solid curve) and pB (blue double dot-dashed curve)
are asymmetrical (nonidentical) in general, as are mA (red
dashed curve) and mB (red dotted curve), with respect to
R. The reason is that the �ϕ (top horizontal axis) causes
nonzero phase difference sin(kR)η between the two EDs or
MDs [see Eqs. (5) and (6)]. Therefore, these result in asym-
metric forward and backward scattering of the homodimer
[22] even in the symmetric geometry configuration seen in
Fig. 1(a). As expected, the two ED moments as well as the two
MD moments become symmetrical (identical) at the positions
R = lλ/2 (l is integer number), i.e., λ and 1.5λ. These are
determined by the zero phase difference which is only caused
by sin(kR) = 0 due to �ϕ = kR = lπ , i.e., �ϕ = 2π and
3π , regardless of η. These result in symmetric forward and
backward scattering of the homodimer. However, the two ED
moments are also identical as well as the two MD moments
at positions R = 1.1λ and 1.6λ in spite of �ϕ � lπ . The
reason is that the phase difference is generally determined
by not only sin(kR) but also η. The solution of sin(kR)η = 0

with kR �= lπ is kR = π/4 + lπ . Therefore, the separations
R = 1.1λ and 1.6λ correspond almost to the zero points of
sin(kR)η when l = 2 and 3. Interestingly, the symmetric ED
pair and MD pair at these positions lead to asymmetric for-
ward and backward scattering of the dimer, which will be seen
in Fig. 3(a).

Furthermore, the nonreciprocal LOBF causes a net driving
force on the center of the homodimer. It is the sum of the
LOBFs on the two particles and consists of the electric dipo-
lar, magnetic dipolar, and electric-magnetic dipolar coupling
components as

Fdriv = F e
driv + F m

driv + F em
driv, (7)

where

F e
driv = F A

e + F B
e =F m

driv = 4nsI0

c
k sin(kR)Im[αeαmη], (8)

F em
driv = F A

em + F B
em = − nsI0

3πc
k4|αm|2 sin(kR)Re[αeη]. (9)

In the case of large separation (R > λ), where only the highest
order term of kR in η is retained because of kR � 1, Eqs. (8)
and (9) are simplified as

F e
driv = F m

driv = 18πnsI0

ck3R

{− sin(2kR)Re[a1b1]
+(1 − cos(2kR))Im[a1b1]

}
, (10)

F em
driv = 18πnsI0

ck3R
|b1|2

{
sin(2kR)Re[a1]
−(1 − cos(2kR))Im[a1]

}
. (11)

Equations (10) and (11) demonstrate clearly that the driving
force is harmonic as well as that its envelope is inversely
proportional to the separation R. This is the second important
conclusion in this paper. As expected, the asymmetric LOBF
described by Eqs. (1) and (2) reduces to the symmetric one in
the Rayleigh approximation (αm = 0 or b1 = 0) expressed by
Eq. (25) in Ref. [9].

III. RESULTS

The power density of the incident wave is I0 =
10 mW/μm2. The force, radius, and the separation are re-
spectively described in units of pN, nm, and λ throughout the
paper.

A. Polystyrene homodimer

Consider particle B (Fig. 1) as an example. Figure 2 shows
the LOBF F (black solid curve) and its electric dipolar Fe

(blue dashed curve), magnetic dipolar Fm (red dash-dot-dotted
curve), and electric-magnetic dipolar coupling Fem (green
dash-dotted curve) components on the particle with respect
to separation R. The results denote the remarkable contribu-
tions of Fm and Fem to LOBF even for low-refractive-index
polystyrene (np = 1.59) particles, which have been widely
employed in optical binding experiments [35,36], with ra-
dius a = 130 nm. In detail, the magnitude of the LOBF is
largely enhanced due to the magnetic and coupling interac-
tions compared with the classical LOBF FRay (magenta short
dashed curve) calculated by Eq. (30) in Ref. [27]. The reason
is that both EDs and MDs in the particles are effectively
excited when a � 130 nm even though they don’t resonate
[see Fig. 8(a) in Appendix A]. Consequently, FRay grossly
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FIG. 2. LOBF F B (black solid curve) on polystyrene (np = 1.59)
sphere B (Fig. 1) with radius a = 130 nm as well as its electric
dipolar Fe (blue dashed curve), magnetic dipolar Fm (red dash-dot-
dotted curve), and electric-magnetic dipolar coupling Fem (green
dash-dotted curve) components as a function of separation (R).
FRay represents the classical LOBF (magenta short dashed curve) in
Rayleigh approximation.

underestimates the LOBF and even departs from Fe where the
magnetic and electric-magnetic coupling effects are consid-
ered. This is similar to the TOBF for dielectric particles [30].
On the other hand, we focus on the stable and unstable equi-
librium positions of FRay and LOBF (also termed the stable
and unstable equilibrium separations of the two particles). At
these positions, the force is zero and the slope of the force
is respectively negative or positive. The stable equilibrium
positions of FRay deviate slightly from those of the LOBF
near R = λ and 1.5λ. Furthermore, the unstable one of FRay

at R = 1.15λ deviates largely from the counterpart of LOBF
at R = 1.25λ. Of course, these phenomena are similar to the
LOBF on particle A.

Figures 3(a)–3(c) show the LOBFs F A (red dashed curve)
and F B (blue short dashed curve) on polystyrene particles A
and B as well as the driving force Fdriv (black solid curve),
which is the vector sum of F A and F B, on the center of the
homodimer for three different radii. F A and F B show that the
LOBF is nonreciprocal as predicted by Eqs. (1) and (2). As a
result, this leads to a net driving force Fdriv which is similar to
that previously demonstrated for mismatched particles [24].
Importantly, we demonstrate analytically that Fdriv oscillates
harmonically and decays with R to the first power as shown
by Eqs. (10) and (11). In addition, the electric and magnetic
components F e

driv + F m
driv (purple solid curve with square) as

well as the coupling component F em
driv (orange solid curve with

triangle) of Fdriv are presented in Fig. 3(a). Note that Fdriv van-
ishes when R = lλ/2, i.e., λ and 1.5λ, because of sin(2kR) =
1− cos(2kR) = 0 regardless of the scattering properties (a1

and b1) in Eqs. (10) and (11). These separations correspond
exactly to �ϕ = lπ in Fig. 1(b). Thus, the symmetric ED pair
and MD pair cause symmetric forward and backward scat-
tering which results in a reciprocal LOBF. Interestingly, the
other separation R = 1.13λ where Fdriv = 0 does not coincide
with the position R = 1.1 λ in Fig. 1(b). The reason is that
the zero phase difference sin(kR)η = 0 with kR �= lπ results
in a symmetric ED pair and MD pair when R = 1.1 λ. Then,
the symmetric ED pair and MD pair result in zero F e

driv and
F m

driv, as shown by Eq. (10) and the purple curve with square
in Fig. 3(a), even though each term in Eq. (10) is nonzero.

FIG. 3. LOBFs F A (red dashed curve) and F B (blue short dashed
curve) on polystyrene particles A and B with radius a = 130 nm (a),
163 nm (b), and 172 nm (c) as well as the driving force Fdriv (black
solid curve) on the center of the dimer as a function of separation
(R). For 130-nm particle in subplot (a), the electric and magnetic
components F e

driv + F m
driv (purple solid curve with square) as well

as the coupling component F em
driv (orange solid curve with triangle)

of Fdriv are presented. The black solid (dashed) arrows denote the
stable (unstable) equilibrium positions of Fdriv while the green coun-
terparts denote the stable and unstable separations between the two
particles. (d) The four far-field scattering patterns of the homodimer
in x-y (blue solid curves) and y-z (red dashed curves) planes (see
Fig. 1) correspond respectively to the dimer with different radii and
separations.

However, F em
driv (orange curve with triangle) is nonzero and

leads to a net driving force at R = 1.1 λ. This is caused by the
asymmetric coupling interactions between the two particles
because of the different phase differences between the ED and
MD in different particles due to the nonzero �ϕ. Furthermore,
the nonzero three components of Fdriv cancel each other and
result in a zero Fdriv at R = 1.13 λ. A similar phenomenon also
arises in Fig. 3(c) as shown by the black dashed arrow. To
illuminate the origination of Fdriv as shown by Eqs. (3)–(6),
the far-field scattering patterns of the homodimer, wherein
the observational point from the center of the two particles
is much larger than R, in x-y (blue solid curves) and y-z (red
dashed curves) planes are presented in Fig. 3(d). In detail,
for 130-nm particles with R = 1.05 λ (1.3λ), the backward
scattering is stronger (weaker) than the forward scattering.
The result corresponds to the positive (negative) driving force
in Fig. 3(a). Similarly, for 163-nm particles with R = 1.15 λ

and the 172-nm particles with R = 1.2 λ, the forward scat-
tering is dominant over the backward scattering. They are
consistent with the negative driving forces in Figs. 3(b) and
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FIG. 4. Dependence of the driving force (Fdriv) on the center of
two polystyrene particles vs radius (a) and separation (R). The color
denotes the magnitude of Fdriv. The black (white) curves represent the
stable (unstable) equilibrium positions of Fdriv. The green (magenta)
curves represent the stable (unstable) equilibrium separation of the
two particles. The intersections of the white and black lines are
located at a = 163 nm. Inside the dotted rectangle at the bottom of
the figure, the black solid circles represent the particles. The thick
blue arrows denote the moving direction along the y or –y axis (blue
long directional ray) of the center of the dimer. The thin red arrows
show the relative motion (attraction or repulsion) between the two
particles in areas I–IV.

3(c). Interestingly, Fdriv and LOBF induce complex dynamics
of the dimer and of the two constituents, respectively. In detail,
the stable equilibrium separations of the two particles (green
solid arrows) are slightly shorter than the integer multiples of
half a wavelength, i.e., they are found to be 0.98λ and 1.48λ

rather than the expected λ and 1.5λ respectively. Meanwhile,
the unstable one (green dashed arrow) lies halfway between
the two stable separations. With the unstable equilibrium sep-
aration, F A and F B are identical in magnitude and direction.
Thus, the two particles move together along the –y axis. But
their relative motion is unstable and easily broken by any
external force. Notice that the stable and unstable separations
are independent of the particle size as shown in Fig. 3(a)–3(c).
On the other hand, the unstable equilibrium positions of Fdriv

(black dashed arrows) exactly correspond to R = lλ/2 (l is a
positive integer), i.e., R = λ and 1.5λ, when a = 130 nm in
Fig. 3(a). It means that the dimer’s center is unstable even
though the two particles have a stable separation at the po-
sitions. The black solid arrow shows the stable equilibrium
position of Fdriv where the two particles attract each other but
their common center is stable. In particular, the positive Fdriv

pushes the dimer along the y axis while the two particles are
attractive. On the contrary, the negative Fdriv push the dimer
along the −y axis while the two particles are either attractive
or repulsive.

Figure 4 shows Fdriv on a polystyrene dimer as well as
its stable (back lines) and unstable (white lines) equilibrium
positions and their dependence of the particle radius (a) and

separation (R). The reason for choosing the range of particle
radius from 100 to 172 nm is the particle exhibits strong
electric and magnetic dipolar responses. It corresponds to the
electric and magnetic dipolar model in this paper. On the con-
trary, the symmetric forward and backward scattering of the
Rayleigh particle (a < 100 nm) with only ED does not cause
net Fdriv. On the other hand, larger particles (a > 172 nm)
with higher multiple moments are beyond our model range
[see Fig. 8(a) in Appendix A]. The unstable equilibrium po-
sitions are located at R = lλ/2, i.e., λ, 1.5λ, and 2λ, when
a < 163 nm. It is the result of sin(2kR) = 1 − cos(2kR) = 0
in Eqs. (10) and (11). Further, the stable equilibrium positions
are decreasing and getting closer and closer to the unstable
ones with increase of the radius of particle. Interestingly, for
a = 163 nm, the stable and unstable equilibrium positions are
merged into one nonequilibrium zero-force position because
Fdriv is nonpositive as shown in Fig. 3(b). It means that the two
particles always move together along the −y axis regardless
of their separation and relative stability. Unexpectedly, the
stable and unstable equilibrium positions exchange when the
radius goes beyond 163 nm, as also shown by the black dashed
arrows in Fig. 3(a) and the black solid arrows in Fig. 3(c). The
radius 163 nm corresponds to the magnetic dipolar resonance
of a single particle [see Fig. 8(a) in Appendix A].

On the other hand, the green and magenta curves represent
individually the stable and unstable equilibrium separations
of the two particles caused by the LOBFs. The two kinds
of separations do not vary with the particle radius. This is
different than those of the reciprocal FRay whose unstable
equilibrium positions gradually approach the fixed stable ones
with increase of the particle size [see Fig. 9(a) in Appendix
B]. In terms of dynamics, the positive Fdriv pushes the dimer
along the y axis (thick blue arrow) while the two particles
attract each other (thin red arrows) in area I. However, the
two attractive particles (thin red arrows) move along the −y
axis (thick blue arrow) in area II. On the contrary, the two
particles repel each other in areas III and IV. But the whole
dimer moves individually along the y and −y axes in the two
regions. Moreover, the intensity of the negative Fdriv largely
exceeds that of the positive one for wide separation and radius
ranges, especially for large particles (a > 130 nm). It means
that the large dimer favors the movement along the –y axis.
Finally, the directions of the motions in region 1.5λ < R < 2λ

repeat those in region λ < R < 1.5λ because the LOBF and
Fdriv are periodic at λ/2. The phenomena are similar for silica
particles with lower np = 1.45, which are commonly used in
optical binding experiments [37]. The difference is only that
the intersections of the stable and the unstable equilibrium
positions of Fdriv move to a = 198 nm.

B. Silicon homodimer

Higher-refractive-index particles, e.g., silicon (np = 3.5),
have also been previously harnessed in optical microma-
nipulation [38,39]. The reason is that their strong electric
and magnetic responses [40,41] greatly enhance the optical
force [30,42] compared to polystyrene particles. Figure 5
exhibits the much richer dynamics of the silicon homodimer
and the two constituents, compared to the lower-refractive-
index polystyrene particles in Fig. 4. The choice of the range

013108-5



DUAN, BRUCE, LI, AND DHOLAKIA PHYSICAL REVIEW A 106, 013108 (2022)

FIG. 5. Dependence of the driving force (Fdriv) on the center of
two silicon (np = 3.5) particles vs radius (a) and separation (R). The
meanings of the black, white, green, and magenta curves as well as
the areas I–IV are same as the counterparts in Fig. 4.

(60–102 nm) of the particle size is also based on the same
reasoning as in Fig. 4 [see Fig. 8(b) in Appendix A]. First, the
comparable intensities of the positive and negative maximum
values of Fdriv means that the silicon homodimer can be forced
to move along either the y or –y axes. For example, two par-
ticles with a = 72 nm in Fig. 6(b) move together along the –y
axis while the collective movement of two 99-nm particles in
Fig. 6 (d) move along the y axis regardless of their separation.
Second, what is even more interesting than the polystyrene
particles (Fig. 4) are that the stable (black curves) and unstable
(white curves) equilibrium positions of Fdriv exchange multi-
ply at positions a = 72 and 99 nm. The two radii correspond
respectively to the electric and magnetic dipolar resonances of
a single particle [see Fig. 8(b) in Appendix A]. For instance,

FIG. 6. LOBFs F A (red dashed curve) and F B (blue short dashed
curve) on two silicon particles with radius a = 65 nm (a), 72 nm (b),
85 nm (c), and 99 nm (d) as well as the driving force Fdivi (black
solid curve) on the center of the dimer as a function of the separation
(R). The black solid (dashed) arrows denote the stable (unstable)
equilibrium positions of Fdriv while the green solid (dashed) arrows
denote the stable (unstable) separations between the two particles.

the unstable equilibrium positions (black dashed arrows) of
Fdriv for 65-nm particles in Fig. 6(a) transform into the stable
ones (black solid arrows) for 85-nm particles in Fig. 6(c).

On the other hand, the stable (green curves) and unsta-
ble (magenta curves) equilibrium separations between the
two particles remain unchanged and change very little, re-
spectively, when a < 67 nm. They are consistent with the
counterparts of the FRay [see Fig. 9(b) in Appendix B] because
the ED dominates over the MD [see Fig. 8(b) in Appendix
A] in this region. Interestingly, in the range a > 67 nm, the
former fluctuate slightly on the left of the positions R = lλ/2,
i.e., λ, 1.5λ, and 2λ, with particle size while the unstable ones
fluctuate greatly around 1.2λ and 1.7λ. They are also shown
by the green solid and dashed arrows for different particle
size in Fig. 6. In this range, both ED and MD resonances
arise [see Fig. 8(b) in Appendix A]. The two kinds of po-
sitions are different than the counterparts of the polystyrene
particles in Fig. 4, which are independent of the particle size.
Moreover, they are also distinct from those of FRay, where
the unstable equilibrium positions move gradually towards
the fixed stable ones with increase of the particle size [see
Fig. 9(b) in Appendix B]. In particular, the two particles attract
each other in the region between the green (left side of λ)
and magenta (around 1.2λ) curves while they are repulsive
in the neighboring region between the magenta (around 1.2λ)
and green (left side of 1.5λ) curves. In addition, the direction
of the motion of the dimer varies with the particle size and
separation. In detail, the two particles attract each other in
areas I and II. But the center of the dimer moves along the
y axis in area I since Fdriv is positive, while it moves along the
–y axis in area II due to the negative Fdriv. On the other hand,
the two particles repel each other in areas III and IV. But the
center of the dimer moves along the y axis in area III while it
moves along the –y axis in area IV. Moreover, the directions
of the two kinds of movements are periodic in the two regions
between λ and 1.5λ and between 1.5λ and 2λ.

IV. DISCUSSION

The two ED moments and two MD moments distribu-
tions in a polystyrene homodimer with fixed R = 1.2 λ are
presented in Fig. 7 as functions of a and np. The color and
line type of the curves are the same as the counterparts in
Fig. 1(b). Figure 7(a) shows that the ED pair is symmetric in
the range a < 80 nm (Rayleigh region) because of the negligi-
ble magnetic dipolar response. Moreover, when 80 nm < a <

110 nm, the ED pair and MD pair are still symmetric because
of the weak electromagnetic hybridization and coupling of
the homodimer due to the small MD moments. As a result,
LOBF is reciprocal for low-refractive index and small parti-
cles (a < 110 nm), i.e., the typical parameters for widely used
silica and polystyrene particles. The nonreciprocal dynamics
are hidden and the behavior is well described by the Rayleigh
approximation. This is also true for subwavelength metallic
particles with only electric dipolar response. However, the
asymmetric ED and MD pairs arise in the range a > 110 nm
where the remarkable hybridization and coupling due to the
strong electric and magnetic dipolar responses are large. Thus,
these result in a nonreciprocal LOBF.
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FIG. 7. The real parts of the dimensionless pA, pB, mA, and mB

in a dielectric homodimer as function of radius a (a) and refractive
index np (b). The separation is fixed at R = 1.2 λ and the parameters
of the incident wave are the same as those in Fig. 2 while np = 1.59
(a) and a = 100 nm (b).

On the other hand, Fig. 7(b) shows the four dipole moments
in dielectric particles with a = 100 nm as a function of np. It
is clear that not only the ED pair but also the MD pair are
symmetric when np < 1.8 can be due to either the negligible
magnetic dipolar response of the particles or the weak hy-
bridization and coupling. Therefore, the nonreciprocal LOBF
is hard to detect for particles with np < 1.8 and a = 100 nm.
On the contrary, the nonreciprocal LOBFs arise when np > 2,
i.e., silicon, because of the obviously asymmetric ED pair and
MD pair. Note that the shapes of the four curves in Fig. 7(a)
are basically the same as the shapes of the counterparts in
Fig. 7(b) in the range 1 < np < 2.5. The reason is that the
excitations of the ED and MD are determined by the size pa-
rameter x = nska, which depends on the refractive index and
radius of particle when the incident wavelength is fixed [43].
Therefore, the similar x intervals from 1.1 to 3.4 in Fig. 7(a)
and from 1.2 to 3.0 where 1 < np < 2.5 in Fig. 7(b) result in
the similar shapes of the curves. It means that the manipula-
tions of the dipolar response of the particle can be realized by
the variation of either np or a. In other words, the realization
of the nonreciprocal LOBF of dielectric homodimer can be
implemented by choosing either large or high-refractive-index
particles (termed Mie particle).

As expected, the electric and magnetic multipole moments,
i.e., quadrupole, octupole, and so on, will be induced with
increase of the particle size. Therefore, the anisotropic radi-
ation fields of the multipolar moments with different phases
may also contribute to the nonreciprocal LOBF as discussed
in Appendix C and Fig. 10. However, the corresponding ana-
lytical study is beyond the scope of this paper. In addition, for
micron-scale particles (a � λ), optical binding is treated with
geometrical optics [44]. Therefore, the LOBF at this scale is
still reciprocal because of the reflection symmetry between the

two identical particles. In summary, LOBF is nonreciprocal
for a submicron polystyrene homodimer with a > 120 nm, or
100 nm dielectric particles with np > 2.

V. CONCLUSIONS

In summary, we have presented the analytical expressions
of the LOBF between two identical electric and magnetic
dipolar dielectric particles. It is composed of the electric dipo-
lar, magnetic dipolar, and electric-magnetic dipolar coupling
interactions. Our results show that not only has the LOBF
been obviously underestimated but also the stable and unsta-
ble equilibrium positions of the force cannot be accurately
predicted in Rayleigh approximation in the circumstances
where the particle size or refractive index are large, e.g.,
for polystyrene particles when the radius of the particles is
above 130 nm. The reasons are that the contributions of the
magnetic and coupling interactions on the force are ignored
in the Rayleigh limit. Surprisingly, the LOBF is asymmetric
for the case of two identical particles. This is a result of
the symmetry breaking of the forward and backward scat-
tering of the particles due to the electric-magnetic dipolar
coupling interaction. Such a difference could be visualized
experimentally in optical binding experiments using ultrashort
pulsed lasers [45]. In addition, the resulting driving force on
the center of the homodimer is harmonic and decays with
the interparticle distance to the first power. Remarkably, the
stable and unstable equilibrium positions of the driving force
exchange depending on the particle size and interparticle dis-
tance. They are contrary to those of the LOBF. Therefore, both
the driving force and asymmetric LOBF lead to rich nonequi-
librium dynamics of the dimer and of the two constituents.
Finally, we have presented the refractive index and size ranges
of dielectric particle required for the asymmetric LOBF.

Although the asymmetric binding force has been previ-
ously demonstrated to exist between mismatched particles
[18,24], the reason for the effect here is completely different
than that described in that study. Moreover, the asymmetric
LOBF requires no additional phase gradient which causes the
asymmetric TOBF for two identical particles in an optical
ring trap [22]. Our results provide insight into nonrecipro-
cal optical binding and open perspectives for nonequilib-
rium dynamics of light-driven nanomotors and multiparticle
self-assembly.
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APPENDIX A: ELECTRIC AND MAGNETIC MULTIPOLAR
COMPONENTS OF SCATTERING COEFFICIENTS

The LOBF and driving force come from the light scat-
tering from the particles. Therefore, the proportions of the
electric and magnetic multipolar components in the scattering
coefficient (Qsca) represent the weights of the electric and
magnetic multipolar interactions in LOBF and driving force.
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FIG. 8. The scattering coefficients Qsca (green dash-dotted curve)
including its electric and magnetic multipolar components of single
polystyrene (a) and silicon (b) particles as a function of the particle
radius (a). The thick black solid (dashed) curve denotes the elec-
tric (magnetic) dipolar component. The red solid (dashed) denotes
the electric (magnetic) quadrupolar component. The thin blue solid
(dashed) denotes the electric (magnetic) octupolar component.

In this section, the contributions of the electric and magnetic
multipole moments on Qsca are discussed. Qsca is defined as
the ratio of the scattering cross section to the cross section
area of the particle [43]. Figure 8 shows the Qsca including its
electric and magnetic dipolar (ED and MD), quadrupolar (MQ
and MQ), and octupolar (EO and MO) components of single
polystyrene (a) and silicon (b) particles. For the polystyrene
particle in Fig. 8(a), the Qsca (green dash-dotted curve) is
dominated by the ED (black solid curve) when a < 100 nm.
Thus, the particle can be regarded as a Rayleigh particle in the
size range. However, the ED and MD (black dashed curve)
are effectively excited and determine together the Qsca in the
range from 100 to 172 nm. Particularly, the MD resonance
arises at a = 163 nm while the ED is nonresonant. Further-
more, the EQ (red solid curve) and MQ (red dashed curve)
are effectively excited in the region 172 nm < a < 250 nm
while the excitations of the EO (blue solid curve) and MO
(blue dashed curve) are inconspicuous. Hence, the particles in
this size region go beyond our electric and magnetic dipolar
model. On the other hand, for the silicon particle in Fig. 8(b),
the ED almost determines Qsca when a < 67 nm. Further-
more, the ED and MD together dominate Qsca in the range
67 nm < a < 102 nm within our electric and magnetic dipolar
model region. However, the particles with a > 102 nm have
strong MQ resonance and are out of our model range.

APPENDIX B: FRay AND ITS STABLE AND UNSTABLE
EQUILIBRIUM POSITIONS

For Rayleigh particles, e.g., polystyrene (50 nm
< a < 130 nm) and silicon (30 nm < a < 65 nm) spheres,
the classical LOBF FRay are respectively shown in Figs. 9(a)
and 9(b). The color represents the intensity of the force. The
green and magenta curves show individually the stable and
unstable equilibrium positions of FRay. It can be seen that
the stable equilibrium positions remain unchanged while the
unstable ones approach slowly the stable ones with increase
of the particle radius. However, the two kinds of the positions
do not intersect each other in our parameter ranges.

FIG. 9. Dependence of FRay between two polystyrene particles
(a) and two silicon particles (b) vs radius (a) and separation (R). The
color denotes the magnitude of the force. The green and magenta
curves represent respectively the stable and unstable equilibrium
positions of FRay.

APPENDIX C: EFFECTS OF THE MULTIPOLES IN
PARTICLES ON THE ASYMMETRIC BINDING FORCE

In this section, we show the effects of the electric and
magnetic quadrupoles on the asymmetric LOBF. For instance,
the far-field scattering pattern of two polystyrene particles
with a = 225 nm and R = 1.2 λ is presented in Fig. 10(a).
The forward scattering dominating the backward scattering
means that the dimer experiences a net optical driving force
directing in the –y axis. Meanwhile, this demonstrates an
asymmetric LOBF between the two particles. The asymmetry
of the binding force has contributions due to the asymmetric

FIG. 10. The far-field scattering patterns of a polystyrene ho-
modimer with a = 225 nm and R = 1.2 λ including the electric and
magnetic quadrupoles (a) and a silicon homodimer with a = 105 nm
and R = 1.2 λ including a dominant magnetic quadrupole (b) in x-y
(blue solid curves) and y-z (red dashed curves) planes.
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radiation coming from not only the dipoles but also the non-
negligible electric and magnetic quadrupoles [see Fig. 8(a)].
The analogous phenomenon occurs for two silicon parti-
cles with a = 105 nm and R = 1.2 λ in Fig. 10(b) where the
particles have dominant magnetic quadrupole resonance as

shown in Fig. 8(b). Therefore, the appearances of the electric
and magnetic quadrupoles also contribute to the asymmetric
LOBF. In these regimes, an even richer physics is expected,
but the analytical investigation of this is beyond the scope of
this present study.
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