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Nondipole effects and photoelectron momentum shifts in strong-field ionization by infrared light
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High-order above-threshold ionization is studied theoretically beyond the electric dipole approximation. A
hydrogen atom is assumed exposed to an ultrashort linearly polarized laser pulse with a central wavelength of
800 nm. The photoelectron momentum distribution from the corresponding nondipole multiphoton ionization
process is calculated by means of numerical simulations with the time-dependent Schrödinger equation. In
agreement with recent experiments as well as previous theoretical predictions, a forward-backward asymmetry
with respect to the light propagation direction is revealed in the resulting momentum spectrum. Investigating
separately the role of the linear and quadratic laser-matter interaction terms, i.e., the terms in the system
Hamiltonian that are linear and quadratic in the laser’s vector potential A, respectively, it is found that the
linear term introduces a shift of the electron momentum distribution in the laser propagation (forward) direction
whereas the quadratic term is responsible for a corresponding backward shift. Nevertheless, only their net
effect is observed in the final spectrum, and the quadratic contribution is shown to be responsible for the
experimentally observed backward shift of the distribution for small electron momenta. Furthermore, for higher
electron momenta it is found that the linear term takes over as the leading source of beyond-dipole ionization,
effectively shifting the distribution in the forward direction.

DOI: 10.1103/PhysRevA.106.013104

I. INTRODUCTION

The question of how the nondipole component of a laser
field alters the multiphoton ionization of atoms and molecules
has become an area of increasing interest [1–14]. Experi-
ments on strong-field ionization of atoms by laser pulses of
femtosecond duration in the near- and mid-infrared domain
(800–3400 nm) have reported on measurements of charac-
teristic non-dipole-induced photoelectron momentum shifts
along the laser propagation direction [15–21]. In the pioneer-
ing work of Smeenk et al. [15] on single ionization of noble
gas atoms by circularly polarized laser fields, a small and pos-
itive shift (forward shift) of the momentum distribution with
respect to the light propagation direction was observed. Later
applying linearly polarized laser pulses instead, Ludwig et al.
[16] and Maurer et al. [17] measured a corresponding negative
shift (backward shift) of the position of the peak in the pho-
toelectron momentum distribution. This non-dipole-induced
symmetry breaking in the electron’s momentum distribution
with respect to the beam propagation direction has since
been confirmed in various theoretical models and calculations
[22–29], and excellent agreement between experimental re-
sults and theoretical predictions has been reported [13,20].

In the present paper, developing an ab initio model for
solving the three-dimensional time-dependent Schrödinger
equation beyond the dipole approximation, we revisit the
problem of nondipole photoelectron momentum shifts in
strong-field ionization. The interaction between a hydro-
gen atom and an ultrashort linearly polarized Ti:sapphire

*morten.forre@uib.no

laser at 800 nm is considered, and the non-dipole-induced
forward-backward asymmetry in the photoelectron momen-
tum distribution along the laser’s propagation direction is
investigated in some detail. An analysis of the relative in-
fluence of the linear and quadratic laser-matter interactions
on the nondipole ionization reveals that they both contribute
equally. The linear and quadratic components are here repre-
sented by the A · p and A2 terms in the system Hamiltonian,
respectively, where A is the vector potential defining the laser
field. It is also found that the linear term is responsible for an
overall shift of the photoelectron momentum distribution in
the light propagation direction, whereas the quadratic term,
on the other hand, is causing a corresponding shift in the
complete opposite direction, i.e., they are both competing
against each other, and only their net effect is captured in the
final spectra. Furthermore, whereas the quadratic term turns
out to be responsible for the observed shift of the peak of
the photoelectron momentum spectrum opposite to the beam
propagation direction, it is here shown that it is the linear com-
ponent that gives rise to the net positive shift of the electron’s
average momentum in the forward direction.

Atomic units (a.u.) are used where stated explicitly.

II. THEORY

A laser field characterized by some angular frequency ω

and propagating in the direction given by the wave-vector
k = ω/c k̂ is conveniently modeled by the vector potential
A(ωt − k · r). Here k̂ is a unit vector pointing in the laser
propagation direction, c is the speed of light, and the Coulomb
gauge condition ∇ · A = 0 is assumed. The vector potential
generally depends on both space and time coordinates, but
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the spatial degree of freedom may be difficult to handle in
actual calculations as it most often leads to a rather involved
numerical task. Therefore, in order to simplify the theoreti-
cal analysis, the dipole approximation is often used. In this
approximation the spatial dependence of the field is not con-
sidered, i.e., the vector potential A is assumed to depend on
time only. The dipole approximation relies on the assump-
tion that the extension of the quantum system in question
is much smaller than the wavelength of the electromagnetic
wave hitting it as well as the assumption that the intensity of
the radiation is not so high that magnetic-field effects become
important.

To account for beyond-dipole (nondipole) effects in the
light-matter interaction, it is common to expand the vector
potential in terms of a Maclaurin series, i.e., writing

A(ωt − k · r) = A0 + k · r
ω

E0 − 1

2

(
k · r
ω

)2
∂E0

∂t
+ · · · , (1)

where the zeroth-order term A0 = A0(ωt ) here represents the
dipole field and E0 = − ∂

∂t A0 is the corresponding electric
field. Maintaining only this first term in the Maclaurin se-
ries, the magnetic-field B = ∇ × A cancels, meaning that the
magnetic-field component of the radiation is neglected in the
dipole approximation. The first- and higher-order terms in
expansion (1) account for nondipole corrections, i.e., spatial
variations in the electro-magnetic-field as well as magnetic-
field effects.

In the standard approach, the coupling between an electron
of charge q = −e and mass m confined in some potential V
and the electromagnetic field are introduced into the system
Hamiltonian by the minimal coupling prescription p → p +
eA. The Hamiltonian in the Coulomb gauge then takes the
form

H = p2

2m
+ V + e

m
A · p + e2

2m
A2. (2)

Here the cross term which is proportional to A · p is com-
monly referred to as the linear interaction term, whereas the
square term which is proportional to A2 is usually known as
the quadratic interaction. In order to distinguish between pure
dipole and beyond-dipole contributions to the laser-matter
interaction, respectively, the Hamiltonian (2) may be written
out on the following trivially extended form:

H = p2

2m
+ V + e

m
A0 · p
(I)

+ e

m
(A − A0) · p

(II)

+ e2

2m
A2

(III)

, (3)

where A0 = A0(ωt ) and A = A(ωt − k · r) are defined by
Eq. (1). Note here that in the dipole approximation limit A →
A0, term (II) vanishes and term (III) becomes a pure time-
dependent factor that can effectively be left out, i.e., it is only
the dipole term (I) that contributes to the light-matter interac-
tion in this limit—as it should. As such, any non-dipole-field
contributions are introduced via the k · r dependency in the
terms (II) and (III). In the following we will refer to terms
(II) and (III) as the nondipole linear and quadratic terms,
respectively.

The so-called propagation gauge formulation of the
laser-matter interaction has proven to be a particularly
advantageous alternative in treating strong-field ionization dy-

namics beyond the electric dipole approximation [30–35]. In
this formulation the Hamiltonian (3) is substituted by

H = p2

2m
+ V + e

m
A0 · p
(I)

+ e

m
(A − A0) · p

(II)

+ e2

4m2c
{A2, k̂ · p}
(III)

, (4)

where curly brackets denote the anticommutator defined by
{a, b} = ab + ba. The anticommutator originates from the
fact that A2 and k̂ · p are generally noncommuting operators.
For a derivation of Eq. (4) the reader is referred to Ref. [34].
In the same work [34], considering relativistic corrections
and imposing a unitary transformation to the system wave
function, it was shown that the Hamiltonian (4) can be further
transformed into

H = p2

2m
+ e

m
A0 · p
(I)

+V (r + α

(II)

) + e

2m2c
{k̂ · p, A · p}

(II)

+ e2

4m2c
{A2, k̂ · p}
(III)

, (5)

with

α = e

m

∫ t

−∞
(A − A0)dt ′. (6)

The Hamiltonian (5) now contains in total three terms that
are associated with the beyond-dipole component of the elec-
tromagnetic field, i.e., the propagation gauge term (III) from
Eq. (4) as well as two new terms which arise from the original
term (II) in Eqs. (3) and (4).

In this paper, we will only consider leading order nondipole
effects, i.e., corrections of order 1/c to the dipole field. To this
end, the modified confining potential V (r + α) is expanded in
powers of 1/c writing

V (r + α) = V (r) − e

mc
(k̂ · r)(∇V · A0) + · · · , (7)

and where only the first-order correction to the bare
(Coulomb) potential is kept in the sequel. Furthermore, the
space- and time-dependent vector potential A(ωt − k · r) in
the remaining two beyond-dipole interaction terms in (5) is
substituted by A0(ωt ). Then finally the Hamiltonian (5) attains
the simpler approximate form

H � p2

2m
+ V + e

m
A0 · p
(I)

+ e

m2c
(k̂ · p)(A0 · p)

(II)

− e

mc
(k̂ · r)(∇V · A0)

(II)

+ e2

2m2c
A2

0k̂ · p
(III)

, (8)

where V = V (r) now refers to the unshifted potential and
where all terms of order 1/c2 and higher have been left out.
Note that the anticommutation rules of Eq. (5) become unnec-
essary as A → A0 since the operators now commute, and they
have, therefore, been omitted in the final result. The relative
role of the nondipole terms (II) and (III) for multiphoton
ionization processes induced by intense xuv and x-ray laser
fields was investigated in Refs. [9,36], and it was concluded
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that the quadratic term (III) is by far the most important one.
In stark contrast to this conclusion for high-frequency fields,
in the present paper it will become evident that both terms (II)
and (III) are equally important when it comes to strong-field
ionization by low-frequency (infrared) light.

The Hamiltonian (8) is the base for the present theoretical
analysis of the hydrogen atom interacting with a near-infrared
800-nm laser pulse. The reason why this particular formula-
tion is chosen in the present paper is that this representation
of the light-matter interaction has proven to be very favorable
from the numerical point of view, in particular, in the limit
of very strong perturbations [34]. The atom is assumed being
exposed to a linearly (z) polarized laser field which is propa-
gating in the positive x direction, i.e., A0(t ) = A0(t )ẑ, k̂ · r = x
and k̂ · p = px in Eq. (8). Furthermore, the temporal evolution
A0(t ) of the field is given by

A0(t ) = E0

ω
f (t ) sin(ωt + φ), (9)

where E0 is the electric-field strength at peak intensity, φ is
the carrier-envelope phase (CEP) and where f (t ) defines the
temporal shape of the pulse,

f (t ) =
{

sin2
(

πt
T

)
, 0 < t < T,

0, otherwise,
(10)

T being the total duration. In this paper, the pulse duration is
fixed at three cycles, i.e., T = 3×2π/ω � 8.00 fs. For such
short pulses the value of the CEP may play some role in the
interaction, and, therefore, two different values for the CEP
φ = 0 and φ = π/2 are considered.

The evolution in time of the wave-function �(r, t ) for
the hydrogen electron interacting with the electromagnetic
field is governed by the time-dependent Schrödinger equa-
tion (TDSE),

ih̄
∂

∂t
� = H�. (11)

The TDSE is here discretized by expanding the solution
�(r, t ) on products of hydrogenic radial wave functions and
spherical harmonics. The radial wave functions are calcu-
lated numerically on a grid by solving the corresponding
eigenvalue problem for the field-free (static) atomic Hamil-
tonian in a B-spline basis [37]. The matrix elements of
the light-matter coupling matrix (8) are then computed, and
the resulting system of ordinary differential equations is
solved by a predictor-corrector method developed by Gor-
don and Shampine [38]. For laser intensities up to I0 =
5×1014 W/cm2, accurate numerical results were obtained
with a radial grid extending to r = |r| = 900 a.u. and with
the maximum allowable kinetic energy of the (field-free)
electron set to 15 a.u. Furthermore, the number of angu-
lar momentum pairs (l, m) included in the expansion of the
wave function was increased until satisfactory convergence
of the calculations was achieved. As it turned out, for the
azimuthal quantum number l the values l = 0, 1, 2, . . . , 60
were necessary, whereas for the magnetic quantum number
m the values of m = −2,−1, 0, 1, 2 were sufficed. For the
interested reader, more details on the numerical methods em-
ployed in the present paper in order to solve the TDSE and

FIG. 1. (Top panel) Converged (nondipole) kinetic-energy spec-
tra of the emitted photoelectron as obtained for a linearly polar-
ized three-cycle 800-nm laser pulse of intensities 1×1014 W/cm2

(green left line), 2×1014 W/cm2 (blue line second from left),
3×1014 W/cm2 (red line third from left), and 4×1014 W/cm2 (black
right line). The CEP in Eq. (9) is set to zero in all cases. The 10-Up

cutoff is in each case indicated with a dashed line in the figure, Up

being the ponderomotive energy. (Middle and bottom panels) Partial
contribution from the |m| = 0 (dipole), |m| = 1 (nondipole), and
|m| = 2 (nondipole) channels to the total energy spectrum for the
laser intensity 2×1014 W/cm2. Black lines in each panel represent
the reference (converged) data as obtained with the Hamiltonian (8)
and with the maximum allowable value of the angular momentum
quantum number l set to 60. Blue dotted and red dashed lines in
the middle panel depict the corresponding result obtained with the
Hamiltonian (12) setting the maximum value for l = 60 and 80,
respectively. Likewise, blue dotted and red dashed lines in the bottom
panel depict the result obtained with the Hamiltonian (14) setting the
maximum value for l = 100 and 150, respectively.

extract information on physical observables from the system
wave function are given in Refs. [9,32,34,36].

The upper panel in Fig. 1 shows converged photoelec-
tron energy distributions for four different values of the laser
intensity, i.e., from left to right 1–3 and 4×1014 W/cm2,
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respectively. Note that as far as the total photoelectron spec-
trum is concerned, both the dipole and the nondipole spectra
are virtually identical and could not be distinguished on the
axis scale of the figure. The solid black lines in the middle
and bottom panels depict the contributions from the m = 0,
|m| = 1, and |m| = 2 channels to the total energy spectrum
for the intensity 2×1014 W/cm2, again as obtained with the
Hamiltonian (8). Here, the |m| = 1 and 2 represent the leading
nondipole corrections to the total (m = 0) dipole spectrum.
Due to the logarithmic scale it becomes clear that nondipole
corrections are generally small as far as the total energy distri-
bution is concerned. However, as will be demonstrated in the
Results section, nondipole effects will nevertheless induce a
non-negligible shift of the photoelectron momentum distribu-
tion, a shift that has already been measured experimentally.

As an extra check of the validity of the calculations
as well as demonstrating the efficiency of the here chosen
light-matter interaction form (8), additional test calculations
using two alternative interaction forms were executed, i.e.,
a beyond-dipole generalization of the common length gauge
formulation as well as applying the minimal coupling Hamil-
tonian (2) directly in its present form but expanding the vector
potential as in Eq. (1) and keeping only terms up to (and
including) the 1/c beyond-dipole corrections. The minimal
coupling Hamiltonian then takes the approximate form

H � p2

2m
+ V + e

m
A0 · p + e

mc
(k̂ · r) E0 · p

(II)

+ e2

mc
(k̂ · r)A0 · E0

(III)

+ e2

2m
A2

0

(III)

. (12)

Note here that the last term is purely time dependent and may
be omitted in the numerical analysis. Furthermore, note that
there is a one-to-one correspondence between terms (II) and
(III) in the Hamiltonians (8) and (12), respectively, i.e., this
splitting into terms (II) and (III) is invariant to the unitary
transformation relating the two Hamiltonians. The nondipole
length gauge formulation of the interaction is obtained by
introducing the gauge (unitary) transformation,

A0 → A0 + ∇ f ,

V → V + e
∂ f

∂t
, (13)

� ′(r, t ) = e−ie f (r,t )/h̄�(r, t ),

and simply choosing f (r, t ) = −A0 · r. Then the Hamiltonian
(12) transforms into

H � p2

2m
+ V + eE0 · r + e

mc
(k̂ · r) E0 · p. (14)

The dashed red and dotted blue lines in the middle panel of
Fig. 1 show the energy distribution obtained when applying
the Hamiltonian (12) and setting the maximum allowable
l value in the wave-function expansion to 60 (dotted blue
line) and 80 (dashed red line), respectively. Likewise, the
bottom panel depicts the results obtained with the Hamil-
tonian (14) and choosing the maximum allowable l value
equal 100 (dotted blue line) and 150 (dashed red line), re-
spectively. In each case, the corresponding reference data

obtained with the Hamiltonian (8) and with the maximum
allowable l set to 60 are shown for comparison. (It is here
worth noting that choosing maximum l = 50 would suffice
in this case). Thus, as it turns out, both Hamiltonians (12)
and (14) require a higher number of basis functions in order
to produce converged results as compared to the formulation
(8), the nondipole length gauge formulation being the most
slowly converging representation. Note that this comparison
has been performed at a relatively moderate laser intensity of
2×1014 W/cm2 and that even greater differences in numerical
performances are expected at higher intensities. This behavior,
when it comes to the rate of convergence with respect to basis
size, is in concordance the previous studies outlined for higher
laser frequencies [30–35]. We may, therefore, conclude that
the laser-matter representation (8) is beneficial for modeling
strong-field nondipole ionization processes not only in the
high-frequency regime, but also for low-frequency fields.

III. RESULTS AND DISCUSSION

Figure 2 shows the transverse electron momentum distri-
bution, which describes the probability density for detecting
an ionized electron with a given value of the momentum along
the laser propagation direction, i.e., perpendicular to the polar-
ization plane of the laser field. The distribution is obtained for
a linearly polarized three-cycle 800-nm laser pulse of intensity
I = 4×1014 W/cm2 setting the carrier-envelope phase to zero
in Eq. (9). The light is assumed to propagate in the positive x
direction as indicated by the arrow in the figure. The resulting
spectrum has been integrated over all values of py and pz,
where pz is the momentum component along the electric-field
polarization axis, i.e., the longitudinal electron momentum.
The first (top) panel shows a comparison of the result obtained
with the full beyond-dipole Hamiltonian (8) (solid black line)
and the corresponding result using the dipole approxima-
tion (dashed red line). The left inset in the figure shows a
zoom of the spectrum around the peak value corresponding
to low transverse momentum values. Likewise the right inset
shows a zoom at higher transverse momentum values. The
figure reveals two characteristic features of the ionization:
First the peak of the distribution is shifted towards negative
values of the momentum, i.e., electrons characterized by very
low-momentum components along the laser’s propagation
(transverse) direction are likely to receive a net momentum
kick in the counterpropagating direction due to the nondipole
interaction with the laser field, and second the distribution
is shifted towards positive momentum transfers for electrons
with larger transverse momentum components. Both these two
findings are in concordance with previous studies, see, e.g.,
Refs. [13,20,22,25] and references therein.

The second panel in Fig. 2 again shows a comparison of the
dipole approximation calculation and the full nondipole calcu-
lation as obtained for a limited range of transverse momentum
values around the peak. Albeit still small relative to the chosen
scale of the figure, both the shift of the peak position and the
overall positive shift of the distribution at larger momentum
transfers may yet be identified in the figure. The third panel
in Fig. 2 shows the corresponding result obtained when only
the nondipole linear term (II) is taken into account in the
calculation (solid black line), i.e., when term (III) is excluded
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FIG. 2. Transverse electron momentum distribution along the
laser propagation axis (i.e., the x axis) as obtained by integrating
over both py and pz, respectively. The atom is assumed irradiated
by a linearly polarized three-cycle 800-nm laser pulse of intensity
I = 4×1014 W/cm2 choosing the CEP φ = 0 in Eq. (9). (Two upper
panels) The full nondipole result as obtained with the Hamiltonian
(8) including both the beyond-dipole linear (II) and the quadratic
(III) contributions (solid black line). (Third panel) The corresponding
result obtained with the nondipole linear term (II) solely (solid black
line). (Bottom panel) The corresponding result obtained with the
nondipole quadratic term (III) solely (solid black line). In all panels
dashed red lines are the corresponding dipole approximation result.
In the full nondipole calculation including both terms (II) and (III),
the central peak is shifted by −0.0006 a.u. with respect to the dipole
approximation result, whereas the corresponding shifts are +0.0003
and −0.0009 a.u. when only term (II) or (III) is taken into account,
respectively.

from the Hamiltonian (8). Again the dipole approximation
result is shown as a dashed red line. Likewise the bottom
panel shows a comparison between the dipole result (dashed
red line) and the result obtained with only the nondipole
quadratic term (III) included (solid black line). In this last
case the nondipole linear term (II) has been omitted in the
calculation. From these comparisons it becomes evident that
the nondipole linear term generally induces an overall positive
(forward) shift of the photoelectron momentum distribution in
the beam propagation direction, whereas the quadratic term
is responsible for a corresponding shift in the negative (back-
ward) direction. Furthermore, the two shifts are of comparable
size, merely illustrating that both nondipole contributions are
important and cannot be neglected in the theoretical analysis.
Computing the algebraic mean of the two distributions the
positive and negative shifts tend to cancel each other out.
Notwithstanding the comparison between the full spectrum
and its dipole counterpart in the two upper panels in Fig. 2
clearly reveals that the cancellation is not exact, i.e., a negative
shift of the peak position of the distribution by −0.0006 a.u.
as well as an overall positive shift of the momentum at higher
momentum transfers are ultimately manifested in the total
spectrum. Based on the present findings we may now conclude
that it is the quadratic term that is responsible for the backward
shift of the position of the peak, but it is the linear term that
generally causes the overall positive shift of the distribution at
higher electron momenta.

The dependence of the photoelectron momentum shifts on
the laser intensity is investigated further in Fig. 3. Two differ-
ent values for the carrier-envelope phase φ = 0 and φ = π/2
are considered. The top panel in the figure shows the expec-
tation value of the electron momentum 〈px〉 along the laser
propagation axis as a function of the intensity of the applied
laser field. The bottom panel depicts the corresponding shift
of the peak in the photoelectron momentum distribution. As
seen in the figure, the mean value of the electron’s momentum
along the laser beam direction is found to be a positive and
monotonically increasing function over the whole intensity
region considered. Furthermore, the (negative) shift of the
peak position is found to become more and more prominent
with increasing laser intensity. As it turns out, the value of
the CEP does not appear to affect the results any significantly
despite the relatively short pulse considered.

In order to disentangle the relative importance of the linear
(II) and quadratic (III) nondipole terms on the shifting of the
spectra for different laser intensities, Fig. 4 shows a com-
parison between the linear and the quadratic contributions,
respectively, and the full nondipole result. From these results
it becomes even more evident that it is the quadratic term
(III) that is the main contributor to the observed negative
shift of the position of the peak. As a matter fact if the
quadratic term would have been left out from the simulation,
the remaining linear term (II) would have predicted a false
positive result for the peak shift for all the laser intensities
considered. Likewise if the linear nondipole term in turn is left
out, then the remaining quadratic term would have suggested
a corresponding erroneous negative result for the average mo-
mentum of the emitted photoelectron. Thus, it is of substantial
importance to consider both the interactions (II) and (III) in
the Hamiltonian (8) in a proper theoretical treatment of the
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FIG. 3. Top panel: Expectation value of the electron momentum
〈px〉 along the laser propagation axis (i.e., the x axis) as a function of
the intensity of the applied laser field. Bottom panel: Shift in the
position of the peak (cusp) in the transverse electron momentum
distribution along the laser propagation axis (cf. Fig. 2) as a function
of the intensity of the laser field. Black lines with diamonds and red
lines with circles are results obtained with φ = 0 and φ = π/2 in
Eq. (9), respectively.

beyond-dipole strong-field ionization by infrared light. This
conclusion stands in stark contrast to the results of the studies
of nondipole multiphoton ionization conducted in the xuv and
x-ray regimes [9,36] where it was explicitly demonstrated that
the quadratic term (III) is by far the dominating one at intense
fields.

IV. CONCLUSION

In conclusion, developing an ab initio numerical model
we have studied theoretically the photoelectron momentum
distributions accompanying the strong-field ionization by lin-
early polarized 800-nm laser pulses. Focus has been set
on the role of the nondipole component of the laser field
and its impact on the electron’s momentum in the final
state. A non-dipole-induced forward-backward asymmetry is
identified in the corresponding transverse electron momen-
tum distributions along the laser-beam propagation direction.

FIG. 4. Top panel: Expectation value of the electron momentum
〈px〉 along the laser propagation axis (i.e., the x axis) as a function of
the intensity of the applied laser field. Bottom panel: Shift in the
position of the peak (cusp) in the transverse electron momentum
distribution along the laser propagation axis (cf. Fig. 2) as a function
of the intensity of the laser field. (Black lines with diamonds) The full
nondipole result as obtained with the Hamiltonian (8) including both
the beyond-dipole linear (II) and the quadratic (III) terms. (Red lines
with circles) The corresponding result obtained with the nondipole
linear term (II) solely. (Green lines with squares) The corresponding
result obtained with the nondipole quadratic term (III) solely. All
results are obtained setting φ = 0 in Eq. (9).

Investigating separately the role of the linear and quadratic
terms on the observed nondipole asymmetries as represented
by the A · p and A2 operators in the initial Hamiltonian (2),
respectively, it is found that they are both important for a
correct description of the beyond-dipole ionization dynamics.
It is also shown that the linear term is generally responsible
for a positive non-dipole-induced shift of the photoelectron
momentum distribution in the light propagation direction,
whereas the quadratic term, on the other hand, is responsible
for a corresponding negative shift. Ultimately only their net
effect is unveiled in the total spectrum, which exhibits a nega-
tive shift at low values of the electron’s transverse momentum
(due to the quadratic term) and a positive shift at higher values
of the momentum (due to the linear term).
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As a final remark we would like to add that a very similar
negative bias in the corresponding emission spectrum of low-
momentum photoelectrons was previously identified also in
the xuv nondipole ionization regime at very intense laser fields

[5,9,10]. Furthermore, also in that case the quadratic term
was found to be responsible for the ionization in the direction
opposite to the laser propagation direction, and a mechanism
for the observed features was suggested [5].
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