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Long-range parity-nonconserving electron-nucleon interaction
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As known, electron vacuum polarization by nuclear Coulomb field produces a Uehling potential with the range
h̄/2mec. Similarly, neutrino vacuum polarization by Z boson field produces long-range potential ∼G2/r5 with
the large range h̄/2mνc. Attempts to measure the parity-conserving part of this potential produced only limits on
this potential which are several orders of magnitude higher than the standard model predictions. We show that
the parity nonconserving (PNC) part of the neutrino exchange potential WL (r) gives a significant fraction of the
observed PNC effects. Mixed Z − γ electron vacuum polarization produces a PNC potential with range h̄/2mec,
which exceeds the range of the weak interaction by five orders of magnitude. We calculate the contribution of the
long-range PNC potentials to the nuclear spin-independent and nuclear spin-dependent PNC effects. The cases
of the single-isotope PNC effects and the ratio of PNC effects in different isotopes are considered for Ca, Cs,
Ba, Sm, Dy, Yb, Hg, Tl, Pb, Bi, Fr, Ra atoms and ions. Contributions of the long-range PNC potentials (∼1%)
significantly exceed the experimental error (0.35%) for PNC effect in Cs. The difference between potentials
produced by Dirac neutrino and Majorana neutrino may, in principle, help to determine what kind of neutrino is
realized in nature.
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I. INTRODUCTION

As noted by Feynman [1] and calculated in Refs. [2–4],
exchange by two neutrinos [see, e.g., the diagram in Fig. 1(a)]
produces long-range potential ∼G2/r5, where G is Fermi
constant. However, effects of the parity-conserving part of
this potential are many orders of magnitude smaller than the
sensitivity of experiments in Refs. [5–10].

In Ref. [11], it was noted that the neutrino exchange po-
tential has a parity nonconserving (PNC) part. Earlier it was
demonstrated that mixed Z − γ electron vacuum polariza-
tion produces a PNC potential with the range h̄/2mec [see
Fig. 1(b)], which exceeds the range of the weak interaction
by five orders of magnitude [12]. In the present paper, we
show that the contributions of the long-range PNC potentials
to PNC effects in atoms is ∼1% and this significantly exceeds
the error 0.35% of the PNC measurement in the Cs atom [13]
and the error <0.5% in the many-body atomic calculations
of the Z-boson contribution [14–21]. Work is in progress
to improve both experimental [22–24] and theoretical [25]
accuracy.

The error in atomic calculations cancels out in the ratio of
the PNC amplitudes in different isotopes of the same atom
[26–28]. Work is in progress for such measurements too, in
particular, for the chain of isotopes of a Yb atom [29]. The
study of the PNC in atoms plays an important role in testing
the standard model and searching for new physics beyond it
[30,31].

Radiative corrections to the PNC amplitudes of the order
α ≈ 1/137 have been presented as the radiative corrections
to proton and neutron weak charges and exceed 1% [32].
Weak charge itself is the constant of the electron-nucleon

weak interaction due to the Z-boson exchange, which has
interaction range rZ = h̄/MZ c = 0.002 fm. On the nuclear and
atomic scales, this may be considered a Fermi-type contact
interaction. However, radiative corrections actually generate
PNC interaction of a much longer range. Neutrino vacuum
polarization by the nuclear weak Z boson field [see Fig. 1(a)]
produces PNC potential WL(r) ∝ 1/r5, which has exponential
cutoff on the distance rν = h̄/2mνc exceeding atomic size by
many orders of magnitude. Mixed Z − γ electron vacuum
polarization [see Fig. 1(b)] induces PNC interaction ∝1/r3 of
the range re = h̄/2mec = 193 fm [12], similar to the range of
the Uehling potential due to electron vacuum polarization by
the nuclear Coulomb field.

The deviation from the contact limit for this long-range
PNC interaction may be significant since in heavy atoms
relativistic Dirac electron wave functions rapidly increase to-
ward the nucleus (ψs1/2ψp1/2 ∝ 1/r2−2γ , where Z is the nuclear
charge, γ = √

1 − Z2α2, so 2 − 2γ ≈ Z2α2). This rapid vari-
ation of the electron wave function between re = h̄/2mec and
the nucleus requires proper treatment of the long-range PNC
potential WL. Contrary to the contact PNC interaction WQ,
potential WL gives a direct contribution to the matrix elements
between electron orbitals with angular momentum higher than
l = 0 and l = 1. Note that in Yb, the PNC mixing between
dominating configurations is given by the 〈p|W |d〉 matrix
element. Therefore, this qualitative feature of the long-range
PNC interaction also should be investigated.

Note that deviation of the contribution of the long-range
potential WL from its contact interaction limit is roughly pro-
portional to α(Zα)2. Indeed, in the nonrelativistic limit (Zα �
1), an s-wave function and gradient of a p -wave function are
approximately constant near the nucleus and the PNC matrix
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FIG. 1. (a) Vacuum polarization by the nuclear weak Z-boson
field which produces long-range parity violating potential WL (r) ∝
1/r5. In the case of neutrino loop the range is rν = h̄/2mνc.
(b) Mixed Z − γ vacuum polarization which produces long-range
parity violating potential WL (r) ∝ 1/r3. In the case of electron loop,
the range is re = h̄/2mec.

element 〈s|WL|p〉 is not sensitive to the range of the potential
as soon it is much smaller than aB/Z . Other contributions of
the order α(Zα) may be found in Ref. [18] and references
therein.

Note that the electron-positron loop may be replaced by the
particle-hole pair corresponding to the excitation of electron
from the atomic core. However, this is a correction which has
already been included in the many-body calculations of the
PNC effects. A different mechanism of the long-range PNC
interaction between an atom and charged particle (via PNC
vector polarizability) has been discussed in Ref. [33].

In the present paper, we consider corrections due to long-
range PNC interaction to the PNC amplitudes in many atoms
of experimental interest. We consider the cases of single iso-
tope measurements and the ratio of the PNC amplitudes for a
chain of isotopes. We perform calculations of the nuclear spin
independent (NSI) interaction and the nuclear spin dependent
(NSD) interaction. We also discuss the difference between the
potentials produced by Dirac and Majorana neutrinos.

II. LONG-RANGE PNC POTENTIAL DUE TO THE MIXED
PHOTON: Z VACUUM POLARIZATION

It was suggested in Ref. [12] that photon-Z-boson mix-
ing via electron loop [see Fig. 1(b)] leads to the long-range
PNC potential. In Ref. [12], this potential was obtained for
a pointlike nucleus and contact Fermi-type interaction. The
latter leads to a singular potential WL ∝ 1/r3 and logarithmic
divergency of the matrix elements for the interaction between
electron and quark at r → 0. To allow for a more accurate
numerical calculations, we present this potential for the finite
size R of the nucleus and cutoff for large momenta (small dis-
tances r) produced by the Z-boson propagator (1/(q2 + M2

Z )
instead of 1/M2

Z ). The full PNC operator has the form

W (r) = G

2
√

2
γ5

[
− QW ρ(r), (1)

+
∫

d3r′ρ(r′)
2Zαqm2c2

3π2h̄2

I (|r − r′|)
|r − r′|

]
, (2)

≡ WQ(r) + WL(r). (3)

Here the first line presents contact PNC interaction WQ(r)
and the second line is the long-range PNC interaction
WL(r), QW ≈ −0.9884N + 0.07096Z [34] is the weak nu-
clear charge, ρ(r) is the nuclear density normalised by
condition

∫
ρ(r)dV = 1, α is the fine structure constant, and

m is the mass of the fermion in the loop. In Eq. (2), the factor
q = (1 − 4 sin2 θW ) for electron and other charged leptons (μ,
τ ) of mass m. Quarks also contribute to the potential. For the
u, c, t quarks, we have factor 3q = 2(1 − 8

3 sin2 θW ); for the
d, s, b quarks, the factor is 3q = (1 − 4

3 sin2 θW ). These fac-
tors are the products of the electric and weak quark charges.
They also include a factor of 3 for three possible quark col-
ors. To reproduce proton weak charge qp = (1 − 4 sin2 θW ) =
0.07096, including radiative corrections, we use a value of the
Weinberg angle near the Z pole, sin2 θW ≈ 0.232 (formally at
zero momentum transfer sin2 θW ≈ 0.239) [34]. Function I (r)
in Eq. (2) is given by

I (r) =
∫ ∞

1
exp(−2xmcr/h̄)

(
1 + 1

2x2

)√
x2 − 1z2dx

x2 + z2
,

(4)

where z = MZ/2m. Note that this result takes into account
that there is no Z − γ mixing for zero momentum transfer.
Function I (r)/r gives us dependence of interaction between
electron and quark on distance r between them. For large
r, the function I (r)/r ∝ exp(−2mcr/h̄)/r5/2, for h̄/MZc �
r � h̄/mc, we obtain I (r)/r ≈ h̄2/(4m2c2r3) and this be-
havior gives logarithmic divergency of the matrix elements
integrated with d3r. Natural cutoff happens on r � h̄/MZc,
where I (r)/r ∝ (ln r)/r and has no divergency integrated with
d3r. The interval h̄/MZ c < r < h̄/mc gives the dominating
contribution to the matrix element since it is enhanced by the
large parameter ln [MZ/m].

PNC amplitudes are proportional to the matrix elements
〈s1/2|WQ + WL|p1/2〉. Let us start from the approximate ana-
lytical calculation of the ratio of the matrix elements of WL

and WQ. Due to the singular behavior of I (|r − r′|)/|r − r′| at
small distance |r − r′| between electron and quark inside the
nucleus, we can replace I (r)/r by its contact limit, I (r)/r →
Cδ(r), where C = ∫

(I (r)/r)d3r. After this substitution, oper-
ators WL and WQ are proportional to each other and we obtain
the following result:

〈ns1/2|WL|np1/2〉
〈ns1/2|WQ|np1/2〉 ≈ WL

WQ
≈ − 2αZS

3πQW
, (5)

where

S =
∑

i

qiLi

Li =
(

1 − 1

2z2
i

)(
1 + 1

z2
i

)1/2

ln
[
zi + (

1 + z2
i

)1/2]

−5

6
+ 1

2z2
i

≈ ln [MZ/mi] − 5

6
,

where zi = MZ/2mi  1. Note that corrections to the last
equality are very small, ∼1/z2

i . The result has a relatively
weak logarithmic sensitivity to masses mi. To have correct
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exponential cutoff of the potential WL(r) at large distance,
we should select quark mass which provides correct minimal
hadron energy for the system containing quark -antiquark pair.
In the case of u and d quarks, this is a pair of pions. There-
fore, we select 2mu = 2md = 2mπ = 280 MeV, the minimal
mass of hadrons in the loop in the diagram in Fig. 1(b).
Similarly, we choose 2ms = 2mK= 987 MeV (note that in the
calculations of the radiative corrections to the weak charge,
Ref. [32] used 2mu = 2md = 2ms ≈ 200 MeV). For heavy
quark masses, we use their bare values mc = 1270 MeV, mb =
4500 MeV.

Ratio QW /Z = −0.9884N/Z + 0.07096 is approximately
the same for all heavy atoms. Numerical estimate of expres-
sion Eq. (5) gives a correction to PNC amplitude of about 2%.
If we consider the electron loop contribution only, we obtain
the correction to PNC amplitude of 0.1%.

We have tested an analytical result in Eq. (5), obtained in
the contact interaction approximation, by the accurate numer-
ical calculations of the ratio of the matrix elements of WQ and
WL. Our special interest is in deviation of the accurate result
from the contact limit in Eq. (5). Zero approximation has been
calculated using Hatree-Fock-Dirac relativistic electron wave
functions. We perform the calculation of the core polariza-
tion effect using the random phase approximation. Correlation
corrections have been included using the correlation potential
method [35].

The effect of WQ is proportional to the 〈s1/2|WQ|p1/2〉 ma-
trix elements. Other matrix elements are negligible in the
Hartree-Fock approximation and gain significant values only
due to the core polarization corrections, which are due to
the 〈s1/2|WQ|p1/2〉 weak matrix elements between the core
and excited states. Contrary to the contact PNC interaction
WQ, the long-range interaction WL gives a direct contribution
to the matrix elements between electron orbitals with angu-
lar momentum higher than l = 0 and l = 1. However, the
core polarization contribution still strongly dominates in such
matrix elements. For example, in 〈6p3/2|WL|5d3/2〉 matrix el-
ement in the Cs atom, the core polarization contribution is
1000 times bigger than the direct contribution. For Ra+, it
is 470 times bigger. Therefore, the ratio of the WL and WQ

contributions to the PNC effects is very close to the ratio of
s1/2 − p1/2 weak matrix elements. Note also that it is sufficient
to calculate the ratio 〈ns1/2|WL|np1/2〉/〈ns1/2|WQ|np1/2〉 for
any principal quantum number n. This is because the values
of these matrix elements come from short distances where the
wave functions for different n differ by normalization only.
The normalization cancels out in the ratio. We use lowest
valence states in the calculations. The ratio is also the same
for atoms and singly charged ions of these atoms.

The results of calculations for atoms and ions of ex-
perimental interest are presented in Table I in a form of
the ratio of the (1) and (2) parts of the PNC operator,
〈ns|WL|np〉/〈ns|WQ|np〉. We consider two cases, A and B. In
case A, only the electron loop contribution to the long-range
PNC potential Eq. (2) is included. In case B, contributions
from all leptons (e μ, τ ) and u, d, s, c, b quarks (except
for t) are included. The reason for separating the electron
contribution comes from the fact that this is the only true
long-range contribution. The distances which give significant
contributions to the matrix elements are much larger than

TABLE I. Ratios of PNC matrix elements 〈ns|WL|np〉/
〈ns|WQ|np〉 for atoms and singly charged ions of these atoms cal-
culated in the contact approximation Eq. (5) and using accurate
relativistic many-body theory. Numbers in square brackets mean
powers of 10.

Atom Aa Ac
b (A-Ac )/A Bc

40Ca 1.33[–3] 1.37[–3] –3.17% 2.84[–2]
85Rb 9.69[–4] 1.04[–3] –6.93% 2.15[–2]
133Cs 8.42[–4] 9.43[–4] –11.99% 1.96[–2]
135Ba 8.46[–4] 9.49[–4] –12.17% 1.97[–2]
149Sm 8.37[–4] 9.54[–4] –14.02% 1.98[–2]
163Dy 7.88[–4] 9.09[–4] –15.25% 1.88[–2]
171Yb 7.96[–4] 9.26[–4] –16.32% 1.92[–2]
199Hg 7.54[–4] 8.97[–4] –19.01% 1.86[–2]
203Tl 7.42[–4] 8.85[–4] –19.37% 1.84[–2]
207Pb 7.31[–4] 8.74[–4] –19.59% 1.81[–2]
209Bi 7.33[–4] 8.78[–4] –19.87% 1.82[–2]
213Fr 7.62[–4] 9.23[–4] –21.09% 1.92[–2]
223Ra 7.16[–4] 8.69[–4] –21.28% 1.80[–2]

aElectron loop contribution only.
bContact approximation for A.
cSum of the contributions from e, μ, τ, u, d, s, c, b. The numerical
calculation results are very close to that given by formula Eq. (5).

the nuclear radius. The ranges of other contributions are still
much bigger than the range of the weak interaction equal to
the Z-boson Compton wavelength. However, their range is
smaller than the nuclear radius and numerically the contribu-
tions of μ, τ, u, d, s, c, b may be described very accurately
by the contact interaction.

III. RATIO OF PNC EFFECTS IN DIFFERENT ISOTOPES

It was suggested in Ref. [26] to measure the ratio of PNC
amplitudes in different isotopes of the same atom. It was
argued that electronic structure factor cancels out in the ra-
tio and interpretation of the measurements does not require
very difficult atomic calculations which have poor accuracy
in atoms with more than one electron in open shells. In fact,
the cancellation is not exact and corrections due to the change
of the nuclear shape were considered in Refs. [27,28]. These
include the change of the nuclear charge radius and neutron
skin corrections. Here we consider one more correction to
the ratio which comes from the long-range PNC potential.
We have for the ratio of the PNC amplitudes in isotopes 1
and 2

APNC1

APNC2
= 〈ns1/2|W |np1/2〉1

〈ns1/2|W |np1/2〉2
, (6)

i.e., it is sufficient to study the ratio of the weak matrix el-
ements. Let us introduce short notations, 〈ns1/2|W |np1/2〉 =
QW K + KL = QW K (1 + KLK/QW ). Here K is the electronic
structure factor for the first term in Eq. (3), KL is the matrix
element of the long-range PNC potential, KLK = KL/K . Thus,
the relative correction to the single isotope matrix element,
presented in Eq. (5), here is denoted by KLK/QW . Then the
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ratio (6) becomes

APNC1

APNC2
= QW 1K1 + KL,1

QW 2K2 + KL,2
= K1

K2

QW 1 + KLK,1

QW 2 + KLK,2
. (7)

It is important that KLK = KL/K practically does not depend
on the isotope, while QW is approximately proportional to the
number of neutrons N , so dependence of QW on the isotope is
significant. The relative difference of the PNC amplitudes for
different isotopes may be approximately presented as

�A

A
≈

(
�A

A

)
0

(1 − KLK/QW ), (8)

where A ≡ APNC, �A = A1 − A2, index 0 indicates the rel-
ative difference of the PNC amplitudes without long-range
PNC interaction. Thus, the correction is equal to −KLK/QW ,
so it has an sign to the single isotope correction KLK/QW

presented in Eq. (5) and Table I.

IV. LONG-RANGE NUCLEAR SPIN DEPENDENT
PNC POTENTIAL

If we swap Z and γ in Fig. 1(b), we obtain a long-range
PNC potential which depends on nuclear spin. Sum of the
NSD PNC interaction mediated by the Z exchange [36] and
NSD long-range PNC potential may be presented in the fol-
lowing form:

W (r) = G

2
√

2
γ0(�γ )

[
(1 − 4 sin2 θW )ρ(r) (9)

−
∫

d3r′ρ(r′)
2αqm2c2

3π2h̄2

I (|r − r′|)
|r − r′|

]
, (10)

where � = 1.27〈∑n σn − ∑
p σp〉. The result for the ratio

of the long-range contribution to the Z-boson contribution
differs from NSI PNC by the numerical factor −QW /[Z (1 −
4 sin2 θW )]. This factor is approximately the same for all heavy
atoms. For Cs, this factor is 18.5 and using Table I we obtain
the electron loop contribution 1.55%. In the contact interac-
tion limit, it is 13% bigger (for Fr and Ra+ it is 21% bigger).
Sum of the contributions from e, μ, τ, u, d, s, c, b loops
increases the Z-boson contribution to the NSD PNC effects
by 36%. Here the difference with the contact limit is small.

Note that we do not consider here NSD PNC inter-
action produced by the nuclear anapole moment [37,38]
and the combination of the weak charge and hyperfine
interaction [39].

V. LONG-RANGE PARITY NONCONSERVING
POTENTIAL DUE TO EXCHANGE BY TWO NEUTRINOS

Exchange by two (nearly) massless neutrinos gives a long-
range potential proportional to 1/r5. The parity-conserving
part of this potential has been calculated in Refs. [2–4]. In
addition to the diagram in Fig. 1(a), the electron neutrino
contribution contains diagrams involving a W boson. Using
their approach, we have found the PNC part of this 1/r5

potential (h̄ = c = 1):

W PNC
ν (r) = − G2

16π3r5
QW (2 − Neff )γ5 , (11)

where Neff is the effective number of the particles with the
Compton wavelength larger than r. For the molecular scale,
this is the number of neutrinos, Neff = 3. However, the matrix
element of this interaction in atoms converges at very small
distances where ν, e, μ, τ, u, d, s, c, b contribute, giving
Neff = 14.6 (for the parity conserving part of the potential
calculation of Neff has been done in Ref. [10]). The poten-
tial Eq. (11) is very singular at small r and gives divergent
matrix elements. To extend this potential to small distances,
we present it for the finite size R of the nucleus and cutoff for
large momenta (small distances r) produced by the Z-boson
propagator (1/(q2 + M2

Z ) instead of 1/M2
Z ). The full PNC

operator has the form (h̄ = c = 1):

W (r) = − G

2
√

2
QW γ5

[
ρ(r) + (2 − Neff )

×
√

2Gm4

3π3

∫
d3r′ρ(r′)

I2(|r − r′|)
|r − r′|

]
, (12)

≡ WQ(r) + W PNC
ν (r). (13)

For zero nuclear size and h̄/MZc � r � h̄/mc, Eq. (12) re-
produces Eq. (11) if

I2(r) =
∫ ∞

1
exp(−2xmcr/h̄)

(
x2 − 1

4

)√
x2 − 1z4dx

(x2 + z2)2
, (14)

where z = MZ/2m. Function I2(r)/r gives us dependence of
interaction between electron and quark on distance r between
them. For large r, the function I2(r)/r ∝ exp(−2mcr/h̄)/r5/2,
for h̄/MZc � r � h̄/mc we obtain I2(r)/r ∝ 1/r5 and this
behavior gives divergency 1/r2

c of the matrix elements in-
tegrated with d3r. However, in the area r � rc = h̄/MZ c
function I2(r)/r ∝ (ln r)/r and has no divergency integrated
with d3r.

Note that the behavior of the neutrino exchange potential
at small distance has been investigated in Ref. [40]. However,
they do not study this potential in the standard model. They
replaced the Z boson by some new scalar particle and studied
the parity conserving potential only.

Convergence of the integral in the matrix elements
〈s1/2|W PNC

ν |p1/2〉 on the distance r ∼ rc = h̄/MZ c indicates
that this interaction in atoms may be treated as a contact in-
teraction. Due to the singular behavior of WL at small distance
|r − r′| between electron and quark inside the nucleus, we can
replace I2(r)/r by its contact limit, I2(r)/r → Cδ(r), where
C = ∫

(I2(r)/r)d3r. After calculation of the contact limit of
I2(r)/r, we obtain potential W PNC

ν (r), which is proportional
to the weak interaction mediated by the Z boson in Eq. (1).
Therefore, we may present the result for the relative correction
to the PNC amplitude as

W PNC
ν (r)

WQ(r)
= − GM2

Z

12
√

2π2
(Neff − 2) = −0.72% , (15)

This estimate of the W PNC
ν (r) contribution significantly ex-

ceeds the experimental error of 0.35% for the Cs PNC
amplitude. However, we may assume that a greater part of
this correction has already been included among radiative
corrections to the weak charge QW .

In Ref. [41], the parity-conserving potential has been ob-
tained for a Majorana neutrino loop instead of a Dirac neutrino
loop. Based on this result we conclude that PNC potential for
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Majorana neutrinos contains

I (M )
2 (r) =

∫ ∞

1
exp(−2xmcr/h̄)

(x2 − 1)3/2z4dx

(x2 + z2)2
. (16)

Replacement of the Dirac neutrino by a Majorana neu-
trino does not change the potential at small distance;
the difference is proportional to (mνcr/h̄)2 and is very
small, the correction in the contact interaction limit is
∼(mν/MZ )2. However, asymptotic expression at large dis-
tance changes, I (M )

2 (r)/r ∝ exp(−2mcr/h̄)/r7/2 [instead of
I2(r)/r ∝ exp(−2mcr/h̄)/r5/2 for the Dirac neutrino], so
the ratio of the Dirac potential to the Majorana potential
∼mνcr/h̄ [41].

Calculation of the hadron loop contributions in Figs. 1(a)
and 1(b) could, in principle, be refined using dispersive anal-
ysis of e+e− annihilation data. One can find examples of such
an approach in calculations of radiative corrections to muon
and electron magnetic moments and energy shifts in simple
systems like muonium, positronium, and hydrogen—see, e.g.,
Ref. [42] and references therein. However, our case looks
significantly different. The photon interacts with the vector
fermion current while the Z boson interacts with both vector
and axial currents, therefore, the result for the diagram in
Fig. 1(a) can not be directly expressed in terms of exper-
imental data for e+e− annihilation to hadrons, which goes
mainly via intermediate photon. Reference [42] calculates
numbers (corrections to magnetic moments and energy shifts)
while, to recover the difference with the contact limit, we
need to calculate functions WL(r). Reference [42] deals with
simple systems while we perform calculations in heavy many-
electron atoms with extended nucleus. Therefore, important
aspects of the problem include relativistic many-body atomic
theory. Finally, we do not aim here for ∼1% accuracy in the
calculation of the hadron contribution, which is needed in
the problem of the disagreement between theory and mea-
surement of muon magnetic moment. Since the contribution
of u and d quarks to the matrix elements of the potentials
WL(r) does not exceed 50% and sensitivity to the input masses
of these quarks is very weak, the dispersive analysis should
not dramatically change our results. We leave this possible
improvement for future study.

VI. DISCUSSION AND CONCLUSIONS

We calculated the long-range PNC potentials described by
the diagram in Figs. 1(a) (∝1/r5) and 1(b) (∝1/r3). These po-
tentials contribute to the PNC effects in atoms and molecules.
Contrary to the contact weak interaction, these potentials may
mix opposite parity orbitals with orbital angular momentum
higher than l = 0 and l = 1, but s1/2-p1/2 mixing still gives
a dominating contribution. Contribution of the 1/r3 potential
in Fig. 1(b) to the NSI PNC effects is 2%, the contribution to
the NSD effects is 40% of the Z-boson contribution. However,
similar Feynman diagrams have already been included as the
radiative corrections to the weak charge QW which is the
source of the contact PNC interaction in atoms and molecules.
Therefore, we may assume that only deviation from the
contact approximation is an additional contribution to PNC
effects. The diagram in Fig. 1(b) with the electron loop gives
the PNC interaction range which exceeds the weak interaction

range due to Z-boson exchange MZ/2me = 105 times. How-
ever, the electron loop contribution is only 0.1% of the weak
charge QW contribution. For NSD PNC interaction, the elec-
tron loop contribution is 2% of the Z-boson contribution.
Contributions of other charged fermions to the PNC matrix
elements are very close to the contact limit since the range of
corresponding interactions is smaller than the nuclear size.

Integrals in the matrix elements of the 1/r5 potentials are
dominated by very small r and the corresponding interaction
is accurately presented by its contact limit. Therefore, its
effects may be treated as the radiative corrections to the weak
charge QW and κ2, which are the strength constants of the
contact NSI and NSD weak interactions.

In Ref. [10], the parity-conserving part of the potential 1/r5

has been considered and compared with experimental data on
muonium, positronium, hydrogen, and deuterium spectra and
isotope shifts in hydrogen and calcium isotopes. The results
have been expressed as limits on the interaction constant de-
noted as Geff (this means that in the standard model formulas
for energy shifts, the Fermi constant G has been replaced
by Geff). These limits on Geff are several orders of magni-
tude weaker than the tandard model predictions (including
ν, e, μ, τ, u, d, s, c, b particles in the loop in the diagram in
Fig. 1(a), from G2

eff/G2 < 4.0 · 1011 to G2
e f f /G2 < 1.9 × 102.

The latter limit is 18 orders of magnitude better than the limits
obtained from macroscopic experiments in Refs. [5–10].

The situation with the PNC parts of the long-range po-
tentials considered in the present paper is more optimistic.
If following Ref. [10], we treat the interaction constant as
a phenomenological parameter; then, from the Cs PNC ex-
periment, we obtain G2

eff < 0.3G2 for the 1/r3 potential and
G2

eff < G2 for the 1/r5 potential (theoretical and experimental
errors have been added in quadrature).

Note that the potentials are different for Dirac and Ma-
jorana neutrinos. In principle, such a difference in PNC
potentials affects PNC effects in atoms and may be used
to determine what the nature is of neutrinos. However, this
difference is significant at r � h̄/mνc. At small distance,
where the PNC potential gives a dominating contribution to
the matrix elements, the difference is negligible. Instead, one
may think about some larger distance macroscopic effects
produced by the neutrino PNC potential. Such experiments
have been done for the parity-conserving potentials—see
Refs. [5–9]. Recently, the measurement was done for a PNC
potential due to a hypothetical Z ′ boson with the interaction
range from 3 mm to 0.1 km [43]. We may reinterpret the
results for the Eq. (11) potential. However, rapid decay ∼1/r5

indicates that the corresponding PNC effect due to neutrino
potential Eq. (11) will be very small at such a distance. The
corresponding limit on the effective interaction constant is
very weak, G2

eff/G2 � 1033. A measurement at a much smaller
distance is needed.
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