
PHYSICAL REVIEW A 106, 012813 (2022)

Ab initio QED calculations in diatomic quasimolecules

A. N. Artemyev,1 A. Surzhykov ,2,3,4 and V. A. Yerokhin2

1Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
2Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany

3Institut für Mathematische Physik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
4Laboratory for Emerging Nanometrology Braunschweig, 38106 Braunschweig, Germany

(Received 1 June 2022; accepted 6 July 2022; published 18 July 2022)

We present a theoretical approach for ab initio calculations of the one-loop QED corrections to energy levels
of heavy diatomic quasimolecules. This approach is based on the partial-wave expansion of the molecular wave
and Green’s functions in the basis of monopole solutions, written in spherical coordinates. By using so-generated
molecular functions, we employ the existing atomic-physics techniques to evaluate the self-energy and vacuum-
polarization corrections. In order to illustrate the application of our method, we perform detailed calculations
of the Dirac energy and QED corrections for the 1σg ground state of homonuclear U2

183+ and heteronuclear
U-Pb173+ and Bi-Au161+ quasimolecules.
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I. INTRODUCTION

High-precision calculations of energy levels of atoms and
ions are impossible today without a proper account for the
quantum electrodynamics (QED) corrections. The theory that
describes QED effects for an electron bound in the Coulomb
field of a nucleus has been extensively studied for decades
[1,2]. With the help of the bound-state QED approach, de-
tailed calculations have been performed both for light atomic
systems and for medium- and even high-Z ions [3–5]. The re-
sults of these calculations were found to be in good agreement
with experimental data and provided valuable insight into the
physics of strong electromagnetic fields [6].

In contrast to atoms, less progress has been made so far
in developing an efficient QED theory to describe energies
of bound states of molecules and molecular ions. Accurate
calculations of QED effects were performed for the lightest
diatomic molecules (H2, HD, etc.) and molecular ions (H2

+,
HD+, etc.) (see Refs. [7–14]). These calculations were car-
ried out within the approach based on the expansion in the
parameter αZ , where α is the fine-structure constant and Z
is the nuclear charge number. The region of applicability of
this approach is restricted to light systems, for which αZ � 1
is a small parameter. In the recent years, however, consid-
erable interest has arisen in the exploration of QED effects
in medium- and high-Z molecular systems. In particular, a
further increase of accuracy of quantum chemistry calcula-
tions for heavy molecules requires the consideration of QED
corrections [15,16].

A deep theoretical understanding of QED effects is also
highly demanded for investigations of quasimolecules, i.e.,
short-lived dimers that are formed in slow collisions of
highly charged heavy ions with atomic (or ionic) targets.
The quasimolecules are considered today as a unique tool to
explore instability of the QED vacuum in extremely strong

electromagnetic fields, produced by colliding nuclei [17–20].
A series of experiments was performed at the GSI facility
in Darmstadt to observe the formation of quasimolecules in
Biq+-Au and Uq+-Au (ion-atom) collisions [21–23]. Even
more advanced studies, including ion-ion U91+-U92+ en-
counters, are planned at the Facility for Antiproton and Ion
Research. The guidance and analysis of these experiments will
require high-precision calculations of quasimolecular energy
levels and hence accounting for the QED corrections.

It is a challenging task to evaluate QED corrections for
(quasi)molecular systems that consist of two and even more
Coulomb centers and hence do not possess spherical sym-
metry. In our previous work [24] we dealt with this problem
and proposed a two-step ab initio approach in which (i)
molecular wave functions are generated first for the monopole
(spherically symmetric) case and (ii) later used as a basis
to construct eigensolutions of the two-center Dirac Hamilto-
nian. Being developed in spherical coordinates, this approach
allows one to use the well-elaborated atomic-physics tech-
niques to calculate QED corrections to molecular energy
levels to all orders in αZ . In order to illustrate the appli-
cation of the proposed theory, we have computed the QED
corrections to the energy of the ground state of the U91+-
U92+ (also denoted by U2

183+) quasimolecule [24]. Until now,
however, the theoretical analysis has been restricted to this
particular homonuclear case only. In the present work we
extend our approach to explore heteronuclear quasimolecules,
such as U-Pb173+ or Bi-Au161+, that are of particular interest
for experimental investigations of supercritical phenomena.
Moreover, we provide the detailed derivation of the formulas
omitted in Ref. [24] and introduce criteria to estimate the
accuracy of our predictions.

The paper is organized as follows. In Sec. II A we
briefly recall the approach to construct (two-center) molec-
ular wave and Green’s functions in terms of their monopole
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FIG. 1. Geometry of the dimer quasimolecule. Positions of the
electron and both nuclei are given by the vectors r, −R, and R, re-
spectively. The quantization (z) axis is chosen along the internuclear
axis and the coordinate origin is taken at the midpoint between the
nuclei.

counterparts. These functions, written in spherical coor-
dinates, are used in Sec. II B to evaluate the first-order
self-energy and vacuum-polarization QED corrections to the
energy levels. The details of numerical algorithms and of un-
certainty estimations, as well as the results of our calculations,
are presented in Sec. III. Here, in particular, we report results
for the zeroth-order (Dirac) energy and QED corrections for
the 1σg ground state of U2

183+, U-Pb173+, and Bi-Au161+

quasimolecules. Results of our calculations indicate that the
proposed approach allows a computation of QED corrections
with an accuracy varying from 0.1% for small internuclear
distances to about 10% for cases when nuclei are displaced
very far from each other. The summary of these results and a
short outlook are given in Sec. IV.

Relativistic units (h̄ = c = me = 1) are used throughout
the paper if not stated otherwise.

II. THEORETICAL BACKGROUND

A. Molecular wave and Green’s functions

Any theoretical analysis of the QED corrections to the
energy levels of diatomic quasimolecules requires the knowl-
edge of the wave functions of an electron, moving in the field
of two nuclei. We find these wave functions as solutions of a
single-particle Dirac Hamiltonian

Ĥ = α · p + V2c(r) + βme, (1)

with the electron-nuclei interaction potential

V2c(r) = − αZ1[1 + y1(|r − R|)]
|r − R|

− αZ2[1 + y2(|r + R|)]
|r + R| . (2)

Here we assumed that both nuclei are located on the z axis at
a distance R from the coordinate origin, chosen at the mid-
point between them. The nuclear coordinate vectors ±R =
(0, 0,±R) are directed in this case parallel (antiparallel) to
the z axis as shown in Fig. 1. In Eq. (2), moreover, y1 and
y2 are functions, induced by the nuclear charge distribution,
which describe the deviation of the nuclear potential from the
point-nucleus case.

By using the axial symmetry of the system of two nuclei
plus an electron, it is practical to expand the two-center po-

tential (2) in terms of Legendre polynomials

V2c(r) =
∞∑

l=0

Vl (r)Pl (cos θ ), (3)

where the expansion coefficients are

Vl (r) = 2l + 1

2

∫ π

0
sin θ dθ V2c(r, cos θ )Pl (cos θ ). (4)

Here θ is the polar angle of the electron with respect to the
internuclear axis (see Fig. 1) and V2c(r, cos θ ) ≡ V2c(r).

As seen from Eq. (3), the two-center potential V2c(r) can be
presented as a sum of (i) the spherically symmetric monopole
term with l = 0 and (ii) the higher-multipole contributions
that depend on θ . This decomposition of V2c(r) allows one
to apply the two-step procedure to generate eigenfunctions
of the Hamiltonian (1). Since the details of this procedure
have been presented in our previous work [24], here we just
briefly recall the basic ideas. At the first step we use the
dual-kinetically balanced B-spline approach. [25,26] to solve
the Dirac equation in the monopole approximation, i.e., for
V2c(r, cos θ ) = Vl=0(r). The quasicomplete set of eigenener-
gies and eigenfunctions {εn,κ,μ} and {φn,κ,μ(r)}, obtained from
the B-spline approach, are characterized by the principal and
Dirac quantum numbers n and κ , as well as by the projection
μ of the total angular momentum of electron j = |κ| − 1

2 onto
the quantization axis. Of course, for the spherically symmetric
(monopole) potential the solutions with the same n and κ

but with different μ will have equal radial parts and energies
εn,κ ≡ εn,κ,μ.

At the second step we expand the eigensolutions 
N,μ(r)
of the Dirac Hamiltonian (1) with the full two-center potential
V2c(r) in terms of the monopole solutions:


N,μ(r) =
K∑

n,κ=−K

AN,μ
n,κ φn,κ,μ(r). (5)

Here N is just the number of the solution, while μ is the
projection of the total angular momentum that is conserved
for the axial symmetry of diatomic (quasi)molecules. In order
to accelerate the numerical procedure, the sum in Eq. (5)
is restricted to the (monopole) states φn,κ,μ(r) with energies
|εn,κ,μ| < 100mc2 and with Dirac quantum number in the
range −K � κ � K . The latter restriction provides us also the
upper limit lmax = 2K for the multipole decomposition of the
two-center potential (3). Finally, the expansion coefficients
AN,μ

n,κ in Eq. (5) and the eigenenergies EN,μ of the full two-
center Hamiltonian (1) for each value of μ are obtained from
the diagonalization of the matrix

Hμ

(n,κ ),(n′,κ ′ ) = 〈φn,κ,μ|Ĥ |φn′,κ ′,μ〉
= εn,κδn,n′δκ,κ ′

+〈φn,κ,μ|
lmax∑
l=1

Vl (r)Pl (cos θ )|φn′,κ ′,μ〉. (6)

Here we expanded the two-center potential (3) into
monopole and higher-multipole terms and used the fact
that Ĥ0φn,κ,μ(r) = εn,κφn,κ,μ(r), with Ĥ0 being the monopole
Hamiltonian.
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FIG. 2. Feynman diagrams representing self-energy (left) and
vacuum-polarization (right) corrections to the energy levels.

For further theoretical analysis it will be convenient to
represent the eigensolutions (5) of the full two-center Hamil-
tonian as the sum of their partial-wave contributions


N,μ(r) =
∑

κ


κ
N,μ(r), (7)

where


κ
N,μ(r) =

∑
n

AN,μ
n,κ φn,κ,μ(r). (8)

These partial-wave contributions possess a well-defined sym-
metry and hence can be written in the standard form


κ
N,μ(r) =

(
gκ

N,μ(r)�κ,μ(θ, φ)
i f κ

N,μ(r)�−κ,μ(θ, φ)

)
, (9)

where g(r) and f (r) are the large and small radial components
and �±κ,μ(θ, φ) is the Dirac spinor.

Having derived the eigenfunctions and eigenenergies of the
two-center Dirac Hamiltonian (1), we are ready to generate
the corresponding Green’s function. This function is obtained
by the summation over all quasimolecular states |N, μ〉, which
are characterized by the number N and by the projection μ of
the total angular momentum,

G(x, y; ω) =
∑
N,μ


N,μ(x)
+
N,μ(y)

ω − EN,μ + i0(EN,μ + 1)
. (10)

One can note that the positions of the poles of the Green’s
function are changed in comparison with the conventional
definition ω − EN,μ(1 − i0). This is done to account for the
fact that one-electron states with the energy in the region
−1 < EN,μ < 0 are electronic (and not positronic) ones and
should be treated as the positive-energy states [27]. Since in
the present study we will not discuss the overcritical regime
in which bound molecular states can lie in the negative con-
tinuum, this definition of the poles is justified.

B. QED corrections to energy levels

In the preceding section we briefly discussed how to gener-
ate the wave and Green’s functions for an electron moving in
the field of two nuclei. Now we are ready to employ these
functions for the evaluation of the QED corrections to the
quasimolecular energy levels. To the first order in α these
corrections arise due to the self-energy (SE) and vacuum-
polarization (VP) effects, with the corresponding Feynman
diagrams displayed in Fig. 2. In what follows, we will derive

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ +

FIG. 3. Decomposition of self-energy diagram into zero-, first-,
and many-potential terms.

the SE and VP corrections to the energy Ea ≡ ENa,μa of a
particular molecular state state |a〉 = |Na, μa〉, characterized
by the angular momentum projection μa. For the sake of
brevity, we will use below the shorthand notation for the wave
function of this state 
a(r) ≡ 
Na,μa (r) and for its partial-
wave contributions 
κ

a (r) ≡ 
κ
Na,μa

(r).

Self-energy

We start the evaluation of the first-order QED corrections
from the self-energy term. Here we will follow the stan-
dard approach, discussed in detail in Refs. [28,29]. In this
approach, the internal electron propagator, displayed on the
left-hand side of Fig. 3 by the double line, is expanded in
powers of the interaction with the external (nuclear) field. The
first term of this expansion is known as the zero-potential one
and contains a free-electron propagator. In order to obtain
a finite result, this zeroth-order term has to be covariantly
regularized and evaluated together with the counterterm of the
mass renormalization. The second term in the external-field
expansion is known as the vertex or one-potential term. It
contains the free-electron vertex operator and must be reg-
ularized before the evaluation, as discussed in [29]. Finally,
the last term in Fig. 3 is known as the many-potential term
and does not require any regularization. In what follows, we
briefly discuss the evaluation of the energy corrections �E0

SE,
�E1

SE, and �Emany
SE that arise from these three terms.

The regularized zero- and one-potential terms are conve-
niently calculated in the momentum space. Using the notation
from Ref. [29], we can write the corresponding energy shifts
as

�E0
SE =

K∑
κ1,κ2=−K

∫
d3p

(2π )3

̄κ1

a (p)�(0)
R (p)
κ2

a (p), (11)

�E1
SE =

K∑
κ1,κ2=−K

∫
d3p1

(2π )3

∫
d3p2

(2π )3

̄κ1

a (p1)�0
R(p1, p2)

×V (|p1 − p2|)
κ2
a (p2), (12)

where �
(0)
R and �0

R are the operators arising from the per-
turbation expansion of the bound-electron Green’s function
in powers of the external potential. The explicit form of
these operators and further details can be found in Ref. [29].
The evaluation of the energy corrections �E0

SE and �E1
SE in

momentum space requires, moreover, the knowledge of the
Fourier transforms of the two-center potential

V (p) = exp(−ip · R)V1(p) + exp(ip · R)V2(p), (13)
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with Vi(p) = −αZi
∫ +∞
−∞ dr e−ip·r[1 + yi(r)]/r, and of the

quasimolecular wave function


κ
a (p) = i−l

(
g̃κ

a(p)�κ,μa (θp, φp)
f̃ κ
a (p)�−κ,μa (θp, φp)

)
. (14)

In the expression (14), g̃κ
a(p) ≡ g̃κ

Na,μa
(p) and f̃ κ

a (p) ≡
f̃ κ
Na,μa

(p) are the Fourier transforms of large and small com-
ponents of the partial wave function (9).

By inserting the wave function (14) into Eq. (11) and
performing angular integration, we obtain the zero-potential
correction

�E0
SE = α

4π

1

(2π )3

∑
κ

∫ ∞

0
p2d p

{
a(ρ)

(
g̃κ

ag̃κ
a − f̃ κ

a f̃ κ
a

)
+ b(ρ)

[
Ea(g̃κ

ag̃κ
a + f̃ κ

a f̃ κ
a ) + 2pg̃κ

a f̃ κ
a

]}
, (15)

which contains only diagonal terms κ1 = κ2 in the partial-
wave summation. Here, moreover, a(ρ) and b(ρ) are the
components of the free self-energy function whose explicit
form is given in Ref. [29].

The evaluation of the one-potential energy correction �E1
SE

is a bit more complicated and requires a multipole expansion
of the two-center potential V (p1 − p2). By using in Eq. (13)
the well-known decomposition of the exponential function

exp(ip · r) = 4π
∑
lm

il jl (pr)Y ∗
lm(θp, φp)Ylm(θr, φr ) (16)

and performing the angular integration in (12), one can obtain,
after some algebra,

�E1
SE = α

(2π )5

∑
κ,κ ′,l,l ′,L

∫ ∞

0
d p′

∫ ∞

0
d p p2 p′2[U l,l ′,L,κ ′,κ

1 (p, p′)Dl ′,l,L,κ ′,κ + U l,l ′,L,κ ′,κ
2 (p, p′)Dl ′,l,L,−κ ′,−κ

]
, (17)

where angular and radial functions read

Dl ′,l,L,κ ′,κ = ilκ′ −lκ+l ′−lClκ′ 0
l ′0;L0C

lκ 0
l0;L0

(2L + 1)(2l ′ + 1)(2l + 1)

4π
√

(2lκ ′ + 1)(2lκ + 1)

∑
M

[
C jκ′ 1/2

lκ′ M;1/2μa−MC jκ 1/2
lκ M;1/2μa−MClκ′ M

l ′0;LMClκ M
l0;LM

]
, (18)

U l,l ′,L,κ ′,κ
i (p, p′) =

∫ 1

−1
dξ Fκ ′κ

i (p, p′, ξ ) fll ′ (p, p′, ξ )PL(ξ ), (19)

fll ′ (p, p′, ξ ) = jl ′ (p′R) jl (pR)V1(p12) + (−1)(l+l ′ ) jl ′ (p′R) jl (pR)V2(p12). (20)

In the above expressions, p12 =
√

p2 + p′2 − 2pp′ξ is the ab-
solute value of the momenta difference, ξ = p · p′/pp′, jl is
the spherical Bessel function, and CJM

j1m1; j2m2
is the Clebsch-

Gordan coefficient. Finally, the functions Fκ ′κ
i represent the

components of the free vertex operator sandwiched between
the radial wave function components g̃ and f̃ , with the ex-

plicit formulas given in Appendix A of Ref. [30]. While
the diverging zero- and one-potential self-energy corrections
were evaluated in the momentum space, the remaining many-
potential term does not require renormalization and can be
calculated in coordinate representation. Its formal expression
is given by

�Emany
SE = 2iα

∫ ∞

−∞
dω

∫
d3r1

∫
d3r2

∫
d3r3

∫
d3r4

×
a(r1)+F (Ea − ω; r1, r2)V (r2)G(Ea − ω; r2, r3)V (r3)F (Ea − ω; r3, r4)I (ω, |r1 − r4|)
a(r4), (21)

where F is the one-electron Green’s function in the absence
of external field and the operator I (ω) is defined as

I (ω, |r1 − r2|) = (1 − α1 · α2)
exp(i|ω||r1 − r2|)

|r1 − r2| , (22)

with α the vector of Dirac matrices. By making use of
the spectral representation for the free-electron (F ) and
full-potential (G) Green’s functions and by introducing the
auxiliary function

ψ̃n,μ(ω) =
∑

k

〈uk|V |ψn,μ〉uk

Ea − ω − εk (1 − i0)
(23)

one can obtain the many-potential correction (21) in the form

�Emany
SE = 2iα

∫ ∞

−∞
dω

∑
n,μ

〈
aψ̃n,μ(ω)|I (ω)|ψ̃n,μ(ω)
a〉
Ea − ω − En,μ + i0(En,μ + 1)

.

(24)

Here uk and εk are the eigenvectors and eigen-numbers of
the free (without external potential) Dirac equation. In order
to evaluate �Emany

SE it is convenient to rotate the integration
contour over ω to the imaginary axis. In this case, the oscil-
latory behavior of I (ω) changes to the exponential damping,
which results in the fast convergence of the integral over ω.
Moreover, this rotation leads to the appearance of the pole
contributions arising when the integration contour crosses the
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FIG. 4. Diagram equation for the calculation of vacuum-
polarization correction to quasimolecular energy levels. The two
diagrams on the right-hand side represent Uehling and Wichmann-
Kroll contributions.

pole ω = Ea − En,μ + i0(En,μ + 1). The many-potential cor-
rection can therefore be written as a sum

�Emany
SE = �Epole + �Eint (25)

of the pole term

�Epole = 4πα
∑

Ea�En,μ>−1

(
1 − δEaEn,μ

2

)
〈
aψ̃n,μ(Ea − En,μ)

× |I (Ea − En,μ)|ψ̃n,μ(Ea − En,μ)
a〉 (26)

and of the integral term

�Eint = −4α Re
∫ ∞

0
dw

∑
n,μ

× 〈
aψ̃n,μ(iw)|Ĩ (w)|ψ̃n,μ(iw)
a〉
Ea − iw − En,μ

, (27)

where the operator (22) after the contour rotation is given by

Ĩ (w) = (1 − α1 · α2)
exp(−w|r1 − r2|)

|r1 − r2| . (28)

C. Vacuum polarization

Unlike the self-energy effect, the vacuum-polarization con-
tribution to a quasimolecular energy level

�EVP = 〈
a|UVP|
a〉 (29)

can be obtained as an expectation value of the local VP poten-
tial

UVP(r1) = α

2π i

∫
d3r2

∫ ∞

−∞
dω

Tr[G(ω; r2, r2)]

|r1 − r2| , (30)

where G(ω; r2, r2) denotes the one-electron Green’s func-
tion (10). For the evaluation of the VP correction �EVP is
usually separated into two parts, known as the Uehling and
Wichmann-Kroll contributions. The Feynman diagrams for
these two contributions are presented in Fig. 4. The leading,
Uehling, contribution [31] is divergent and requires charge
renormalization. The renormalized expression for the Uehling

potential is well known for a single nucleus

UUe(Z, r) = −8

3
α2Z

∫ ∞

0
dr′r′ρn(r′)

×
∫ ∞

1
dt

(
1 + 1

2t2

) √
t2 − 1

t2

× exp(−2|r − r′|t ) − exp[−2(r + r′)t]

4rt
,

(31)

with ρn(r′) the nuclear charge distribution. By making use of
this expression, one can calculate the Uehling correction to
the energy level |a〉 for the two-center potential as

�EUe = 〈
a|UUe(Z1, r1) + UUe(Z2, r2)|
a〉, (32)

where ri = |r − Ri|. The numerical evaluation of �EUe is
performed most conveniently if the potentials UUe(Z1, r1)
are expanded in terms of Legendre polynomials, similar to
Eq. (3). The remaining part of the VP potential, known as
the Wichmann-Kroll term [32], can be written as

UWK(r1) = α

2π i

∫
d3r2

|r1 − r2|

×
∫ ∞

−∞
dω Tr[G(2+)(ω; r1, r2)], (33)

G(2+)(ω; r1, r2) =
∫

d3x
∫

d3y F (ω; r1, x)V2c(x)

×G(ω; x, y)V2c(y)F (ω; y, r2), (34)

where V2c(x) is two-center potential (3). As seen from these
expressions, the evaluation of the Wichmann-Kroll correction
can be traced back to the Green’s functions of a free electron,
F , and of an electron moving in a two-center potential G.
For the latter, one can use again the spectral representation
[see Eq. (10)]. However, due to the strong cancellation be-
tween the contributions from positive- and negative-energy
states, this approach requires an enormously large number
of basis functions 
n,μ. In order to accelerate the numerical
procedure, we employ an algorithm, proposed in Ref. [1],
and compute G within the monopole approximation. Together
with the analytic representation of the free-electron func-
tion F in terms of spherical Bessel and Hankel functions
[33,34], this (monopole) approximation allows fast and accu-
rate computation of the charge density corresponding to the
Wichmann-Kroll potential

ρWK(r1) = α

2π i

∫
d3r2

∫ ∞

−∞
dω Tr[G(2+)(ω; r1, r2)]. (35)

The integral over the energy ω circulating in the electron
loop can be accurately evaluated upon the rotation of the
integration contour to the imaginary axis:

ρWK(r1) = α

π

∫
d3r2

∫ ∞

0
dw Tr[G(2+)(iw; r1, r2)]

−α
∑

−1<EN,μ�0

(
1 − δEN,μ,0

2

)
|
N,μ(r1)|2. (36)

Here the last term appears only in strong fields, where one or
more bound molecular states have negative energies EN,μ < 0.
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Such states provide the poles of the Green’s function (10)
with negative real and imaginary parts. These poles will be
crossed during the rotation of the contour in the complex
plane and their contribution must be compensated by the
corresponding pole term. The evaluation of the residual in
the point ω = Ea leads to the simple formula for the pole
contribution with the charge density of the bound state. The
monopole approximation for the evaluation of the Wichmann-
Kroll correction to quasimolecular levels is well justified for
small internuclear distances R, where V2c(r) ≈ V0(r). This is
not the case for large R, for which higher-multipole terms
in the two-center potential play an essential role. For large
distances R, however, the QED correction �EQED = �ESE +
�EVP approaches its value for a single atom, for which
the Wichmann-Kroll contribution to �EQED does not exceed
1–2 % [35,36]. This is much smaller than the numerical un-
certainty of our results for large R, which is estimated to be
10–15 %, as will be shown in the next section. We can there-
fore conclude that the truncation of a full multipole expansion
for the Wichmann-Kroll contribution to the single monopole
term is justified for all internuclear distances.

III. RESULTS AND DISCUSSION

The theoretical approach, outlined above, can be used
to calculate the QED corrections to energy levels for an
arbitrary diatomic quasimolecule. In the present study, we
discuss calculations for the ground state |a〉 = |1σg〉 of
the U2

183+, U-Pb173+, and Bi-Au161+ dimers. This choice
of quasimolecules allows us to investigate the QED cor-
rections for both homo- and heteronuclear cases. The
latter case attracts particular interest because of exper-
iments in which the formation of heteronuclear quasi-
molecules was observed in ion-atom collisions [21–23].
Even though thus-produced dimers contain many elec-
trons, our calculations may be relevant for these and
similar experiments, because the many-electron effects
are not so important for the low-lying molecular lev-
els.

Before we present the results of our calculations, let us
briefly recall the details of the numerical approach. In the first
step, we employed the basis of 70 radial B splines in order
to generate the eigensolutions φn,κ,μ of the monopole Dirac
Hamiltonian with the angular quantum number in the range
−25 � κ � 25. These monopole solutions form 50 − 2|μ| +
1 partial contributions to represent the wave functions 
N,μ(r)
of the full (two-center) Hamiltonian [see Eq. (5)]. The inves-
tigation of the convergence of the many-potential term for the
self-energy correction (24) demonstrated that inclusion of all
states with |μ| � 5 in the spectral representation (10) leads to
a relative accuracy better than 10−3. This is definitely less than
the uncertainty introduced by the truncation of the expansions
(3) and (5) at a large value lmax or K .

In comparison to the method described in our previous
paper [24], we have made a minor change in the present al-
gorithm, distributing the knots on the radial grid of B splines.
Namely, in Ref. [24] we used the predefined number of radial
knots in the inner (between two nuclei) and outer regions.
In the present approach we first find the radial knot distri-
bution which minimizes the ground-state energy and only

then perform the QED calculations. This explains the slight
difference between the present and previous predictions for
the homonuclear case U2

183+. This difference, however, does
not exceed 3% for all internuclear distances, thus confirming
the robustness of our calculations.

Another (technical) difference from the previous study [24]
is a different approach to estimate the uncertainty of our pre-
dictions. The main source of this uncertainty is the truncation
of the multipole expansions of molecular wave functions (5)
and potential (3), which is a generic problem of two-center
calculations, performed in spherical coordinates. In order to
assess errors introduced by this truncation, we compared
the (zeroth-order) ground-state energy Ea = E1σg and the VP
Uehling correction �EUe, obtained in the present work, with
the predictions based on the solution of the two-center Dirac
equation in Cassini coordinates. The Cassini coordinate ap-
proach to the description of quasimolecular structure was
discussed by us in Ref. [37] and has been shown to be free of
the truncation problem, providing closed expressions for the
potential and wave functions. In the past, we successfully em-
ployed this approach for the computation of the Ea and �EUe

for any internuclear distance and with a relative accuracy
below 10−6. However, due to the absence of efficient algo-
rithms for the evaluation of the many-dimensional integrals
and Fourier transforms, the method of Cassini coordinates has
not been implemented so far for the evaluation of SE and
Wichmann-Kroll VP corrections. In our study we therefore
use the known high-precision results for the Ea and �EUe

in Cassini coordinates to estimate their uncertainties in the
spherical basis.

Having briefly discussed the numerical details and un-
certainty analysis, we are ready to present the results of
our calculations. First, we revisit the homonuclear case of
the U2

183+ dimer, which was studied in our previous work
[24]. For the ground 1σg state of U2

183+, we present in Ta-
ble I(a) the zeroth-order energy Ea, the self-energy �ESE,
and vacuum-polarization �EVP corrections, as well as their
sum �EQED = �ESE + �EVP. The energies are given here
as a function of the internuclear distance R. We performed
calculations for distances ranging from R = 40 fm, for which
nuclei come very close to each other and molecular effects
become of paramount importance, up to R = 1000 fm, where
the energy spectrum starts to resemble that of a single U91+
ion. As seen from the table, both the zeroth-order energy
Ea and QED corrections vary significantly with R. At small
distances, for example, the energy Ea is nearing the value
of −mc2 ≈ −511 keV, thus indicating that the ground 1σg

state almost reaches the negative continuum threshold. The
sum of SE and VP contributions for this subcritical regime is
about 2 keV, which implies 0.4% QED correction to Ea. The
ground-state energy Ea increases with the internuclear dis-
tance and is about E0 ≈ 2 × 105 eV for R = 1000 fm. For this
(rather large) R, the sum of QED corrections reaches the value
of �EQED = 259 ± 40 eV and becomes comparable to the
atomic (single-center) result �EQED(U91+) = 266.45 eV [2].

When comparing predictions from Table I with those from
our previous study [24], one can note an approximately 1%
difference in results for the correction �EQED. As mentioned
above, this is due to the modified radial basis used in the
present work. This few-percent difference is much below the
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TABLE I. Zeroth-order energy Ea = E1σg and the first-order QED corrections for the 1σg ground state of the U2
183+ quasimolecule. The

units are in (a) eV and (b) the normalized relativistic units, defined by Eq. (37).

Distance (fm) Ea �ESE �EVP �EQED

(a)
40 −4.62554(96) × 105 6.755(98) × 103 −4.720(69) × 103 2.03(12) × 103

50 −3.8862(43) × 105 5.7285(33) × 103 −3.6830(21) × 103 2.0454(39) × 103

80 −2.5398(42) × 105 3.974(13) × 103 −2.0680(72) × 103 1.906(15) × 103

100 −1.985(14) × 105 3.317(36) × 103 −1.571(17) × 103 1.745(40) × 103

200 −4.90(17) × 104 1.821(36) × 103 −6.63(13) × 102 1.158(38) × 103

250 −6.11(18) × 103 1.480(18) × 103 −5.011(61) × 102 9.78(19) × 102

500 1.1620(80) × 105 7.36(31) × 102 −2.120(90) × 102 5.24(32) × 102

700 1.698(12) × 105 5.17(35) × 102 −1.434(99) × 102 3.73(37) × 102

1000 2.219(20) × 105 3.58(39) × 102 −9.9(10) × 101 2.59(40) × 102

(b)
40 −36.2078(75) 0.5297(77) −0.3694(54) 0.1592(94)
50 −38.026(42) 0.56052(31) −0.36048(20) 0.20014(37)
80 −39.762(66) 0.6221(21) −0.3247(11) 0.2984(24)
100 −38.84(38) 0.6491(71) −0.3086(33) 0.3425(79)
200 −19.20(79) 0.713(14) −0.2606(51) 0.453(14)
250 −2.990(89) 0.7240(88) −0.2451(29) 0.4798(93)
500 113.70(89) 0.720(30) −0.2074(87) 0.513(31)
700 232.7(17) 0.718(48) −0.206(13) 0.511(50)
1000 434.3(40) 0.702(76) −0.194(21) 0.517(79)

accuracy of our calculations, which allows us to state good
agreement with the previous results.

To better understand the behavior of the QED corrections
as the internuclear distance R changes, one can evaluate the
normalized energy quantities

Ẽ = E (eV) × R (fm) × α2

2 Ry
, (37)

where Ry is the Rydberg energy. In Table I(b) we present the
normalized zeroth-order energy as well as the QED correc-
tions. As one can see, both �̃ESE and �̃EVP are of the order of
unity and weakly depend on R. This implies that for the inter-
nuclear distances considered in our study the QED corrections
scale approximately as 1/R. This scaling, however, does not
hold for larger distances R � 1000 fm, where both �ESE and
�EVP reach their “atomic values” that are independent of R.

In order to investigate the application of our approach
to a heteronuclear case, we have performed calculations for
U-Pb173+ and Bi-Au161+ quasimolecules. In Tables II and
III the energy Ea of the ground 1σg state of these dimers
and the QED corrections are presented again as functions
of internuclear distance R. One can see that both Ea(R) and
�EQED(R) behave qualitatively similar to the prediction for
the U2

183+ case. That is, the electron is most strongly bound
for small internuclear distances, for which, however, Ea is still
rather far from the negative continuum threshold, as can be
expected for “lighter” dimers U-Pb173+ and Bi-Au161+. The
predictions for large R again resemble atomic calculations: In
the heteronuclear case both Ea and �EQED approach results
obtained for an isolated heaviest nucleus.

Tables I–III indicate that the relative accuracy of the QED
calculations for both hetero- and homonuclear dimers varies
from approximately 0.1% for the small distances to approx-

imately 10% for the large ones. This behavior can be well
understood from the fact that the convergence of multipole
expansion of molecular wave functions (5) deteriorates as the
distance between nuclei increases. Nevertheless, we argue that
even a rather moderate basis of 70 B splines and 50 different
κ’s, employed in this paper, provides good accuracy of the
QED predictions at rather large distances up to R ≈ 1000 fm.
This proves the applicability of the developed approach for
quantum chemistry purposes.

IV. SUMMARY AND OUTLOOK

In summary, we presented a theoretical approach for ab
initio calculations of QED corrections to (quasi)molecular
energy levels. In our approach, we generate molecular wave
functions in spherical coordinates in terms of an expansion
over the monopole solutions of the Dirac equation. Based
on such a representation of wave functions, we employ the
standard (for atomic physics) methods for the evaluation of the
first-order self-energy and vacuum-polarization corrections.
In order to illustrate the application of the proposed approach,
we computed the Dirac energy and QED corrections for the
1σg ground state of U2

183+, U-Pb173+, and Bi-Au161+ dimers.
Such quasimolecular systems can be produced in slow ion-ion
collisions and are used as a tool for studying QED effects
in the presence of (sub)critical electromagnetic fields. Our
calculations were performed for various internuclear distances
R, thus allowing us to explore QED corrections both in a
molecular and in a single-ion regime. The relative accuracy
of the calculations was attributed mainly to the truncation of
the partial-wave expansion of the molecular wave function
and was found not to exceed 10% even for the most prob-
lematic case of large internuclear distances. Based on these
findings, we argue that even a moderate basis set of partial
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TABLE II. Same as Table I but for the U-Pb173+ quasimolecule.

Distance (fm) Ea �ESE �EVP �EQED

(a)
25 −4.006(12) × 105 7.41(21) × 103 −6.00(17) × 103 1.40(27) × 103

50 −2.35761(91) × 105 4.724(71) × 103 −2.501(37) × 103 2.223(80) × 103

100 −1.000(10) × 105 2.819(60) × 103 −9.97(21) × 102 1.821(64) × 103

300 7.856(76) × 104 1.102(34) × 103 −3.28(10) × 102 7.73(36) × 102

500 1.5361(64) × 105 6.66(40) × 102 −1.76(10) × 102 4.89(42) × 102

700 2.001(10) × 105 4.72(40) × 102 −1.20(10) × 102 3.52(42) × 102

1000 2.459(17) × 105 3.37(46) × 102 −8.3(11) × 101 2.53(47) × 102

(b)
25 −19.602(61) 0.362(10) −0.2949(86) 0.168(13)
50 −23.0686(88) 0.4622(69) −0.2457(36) 0.2185(78)
100 −19.58(21) 0.551(11) −0.1952(42) 0.366(12)
300 46.12(55) 0.657(20) −0.1938(60) 0.454(21)
500 150.31(62) 0.651(39) −0.172(10) 0.489(41)
700 274.2(14) 0.657(56) −0.164(14) 0.482(57)
1000 481.3(33) 0.669(90) −0.163(22) 0.506(93)

wave functions can be used for accurate QED calculations of
(quasi)molecular systems in spherical coordinates.

In the present work we focused on the analysis of
QED corrections for dimer quasimolecules. However, the
developed approach can be extended to describe more com-
plex molecules, composed of many atoms and which usually
do not possess axial symmetry. To explore such multi-

center systems, one has to modify multipole expansions
of both the interaction potential and the molecular wave
function, by adding the summation over the angular mo-
mentum projections. Although making the calculations more
demanding, it will open a promising route for the appli-
cation of the developed approach for quantum chemistry
purposes.

TABLE III. Same as Table I but for the Bi-Au161+ quasimolecule.

Distance (fm) Ea �ESE �EVP �EQED

(a)
15 −2.378(10) × 105 6.955(25) × 103 −6.545(23) × 103 4.10(34) × 102

25 −1.730(27) × 105 5.3618(71) × 103 −3.6905(49) × 103 1.6713(86) × 103

50 −7.990(27) × 104 3.549(20) × 103 −1.726(10) × 103 1.822(23) × 103

100 6.31(94) × 103 2.229(43) × 103 −8.91(17) × 102 1.337(46) × 103

300 1.376(10) × 105 9.21(28) × 102 −2.549(80) × 102 6.66(30) × 102

500 1.9836(13) × 105 5.61(17) × 102 −1.374(43) × 102 4.24(18) × 102

700 2.3746(22) × 105 3.96(18) × 102 −9.23(44) × 101 3.04(19) × 102

1000 2.7695(48) × 105 2.75(23) × 102 −6.22(53) × 101 2.13(24) × 102

(b)
15 −6.983(30) 0.20428(73) −0.19213(69) 0.0120(10)
25 −8.47(13) 0.26232(34) −0.18065(23) 0.08277(42)
50 −7.818(26) 0.3472(20) −0.16893(98) 0.1783(22)
100 1.24(28) 0.4363(84) −0.1755(33) 0.2628(90)
300 80.81(62) 0.541(16) −0.1506(46) 0.391(17)
500 194.09(13) 0.559(17) −0.1355(41) 0.425(17)
700 325.29(30) 0.543(25) −0.1264(60) 0.426(26)
1000 541.99(05) 0.549(46) −0.121(10) 0.427(47)
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