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Quantum friction between metals in the hydrodynamic regime
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In this work, we study the phenomenon of quantum friction in a system consisting on an atom moving at a
constant speed parallel to a metallic plate. We use a hydrodynamic model to describe the degrees of freedom of
a clean metal without internal dissipation. We model the polarizable atom as a two-level system with a unique
(I = 0) ground state and a threefold degenerate (I = 1) excited state. We show that a quantum frictional force is
present even in the absence of intrinsic damping in the metal, but that there is a threshold in the relative velocity
that gives rise to such a force. In particular, we find that for friction to occur, the atom must move at a velocity
larger than the effective speed of sound in the material, a condition that can be reached near empty or filled
bands, where the Fermi velocity (which is proportional to the sound speed) becomes low. We provide analytical
arguments to show that this result holds at all orders in perturbation theory.
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I. INTRODUCTION

Quantum friction, also known as Casimir friction or van
der Waals friction, was one of the most debated consequences
of the fluctuations of the electromagnetic (EM) vacuum field
[1,2]. This phenomenon is a nonequilibrium counterpart of the
static Casimir effect [3,4], and describes a force against the
direction of motion if two neutral objects move relative to each
other at a finite speed. The standard setup for the study of this
force consists of two objects moving parallel to each other at
a constant velocity [5-8], but it was also studied in cases with
acceleration [9,10] and nonparallel motion [11,12]. In contrast
to the dynamical Casimir effect [13], no acceleration is needed
to produce the force, and no real photons are excited out of the
vacuum. Instead, the origin of the quantum friction force can
be traced back to virtual Doppler-shifted photons exchanged
between the two objects, thus exciting their internal degrees
of freedom and leading to dissipation. In the quantum friction
problem, one considers the force between neutral, polariz-
able objects, which differs from problems such as Coulomb
drag, where moving, charged particles interact with a neutral
medium [14-16].

The quantum friction force, however, is extremely small
and short ranged, and has thus been eluding experimental de-
tection. To address this problem, many theoretical works were
dedicated to its study in the past years. Research has mainly
progressed in two different directions. On the one hand, dif-
ferent theoretical methods have been explored for the study
of this effect. Since the system is in a nonequilibrium state,
methods that work reliably with common fluctuation problems
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cannot be applied to quantum friction. Among the theoretical
approaches that have been employed, we can name functional
methods based on path integrals [17], time-dependent per-
turbation theory [6], macroscopic quantum electrodynamics
[18], and generalized fluctuation theorems [19,20].

On the other hand, different systems have been proposed
with the goal of obtaining an enhancement of the frictional
force. The interplay between quantum friction and decoher-
ence [21,22] and its influence on the Berry phase [23] have
been explored as a way of indirectly detecting traces of the
phenomenon without actually measuring the force. Different
materials, such as graphene [14,24,25] and topological mate-
rials [26], which have already been shown to enhance vacuum
fluctuation forces such as Casimir forces [27,28], have been
proposed as possible platforms in which the quantum friction
force might be enhanced.

In this paper, we will consider a system consisting of
an atom moving at constant speed above a planar metallic
slab. We will study the interaction between the atom’s elec-
tric dipole moment and the fluctuating electromagnetic field,
which is in turn modified by the presence of the material.
The metal will be modeled from a microscopic point of view
using the hydrodynamic (HD) model, following the review by
Barton [29]. The HD model has the advantage of account-
ing exactly for the nonlocal Coulomb interactions inside the
metal without excessive complexity. It applies to clean met-
als at intermediate temperature, where the scattering length
due to (momentum-conserving) electron-electron collisions is
smaller than that of electron-impurity and electron-phonon
interactions [30]. Indeed, the spatial dispersion becomes rele-
vant at small distances from the surface and when the charge
carriers in the material cover distances larger than the inter-
atomic separation, and it has been proven particularly relevant
for quantum friction [31]. Another characteristic of the HD
model is that it does not include an explicit phenomenological
damping, unlike, for instance, the impurity scattering, which
is the basis of the Drude model. This makes it possible to
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study the mechanisms giving rise to friction even without
accounting for dissipation in the metal.

In this work, we will combine the HD model for the mate-
rial with an approach for quantum friction based on a dipole
interaction with the atom and time-dependent perturbation
theory [6]. This approach allows a relatively simple analytical
treatment, which starts from the equations of motion of the
fields and the microscopic degrees of freedom of the material,
and will shed some light onto the microscopic mechanisms
behind this contactless dissipation.

The paper is organized as follows. In Sec. II we will briefly
review the HD model and obtain expressions for the dressed
electromagnetic field in the vicinity of a semi-infinite metallic
plate, following the calculations in Ref. [29]. In Sec. III we
will introduce the system under study and the Hamiltonian
of the composite system, which is formed by the particle, the
plate and the EM field. In Sec. IV, we will use time-dependent
perturbation theory to find the state of the system as a func-
tion of time. We will then find the frictional force from this
quantum state in Secs. V and VI. Lastly, we will present our
conclusions in Sec. VII.

II. HYDRODYNAMIC MODEL

A. Differential equations of the model

In the HD model, electrons in a material are modeled in
analogy with a fluid, retaining the long-range interactions of
an electron gas, but not the particle aspects. In a material with
electron number density # and electron mass m, a displace-
ment field & of the electrons from their equilibrium positions
will result in a deviation of the density An = —nV - & as well
as in a pressure AP. If we consider elastic collisions between
electrons, the pressure will obey the adiabatic polytropic equa-
tion PVT = const., where T is the ratio of specific heats. This
polytropic equation can be cast in the form P o< p'' = (mn)",
which allows us to write

dP
AP — (n)
dn

= —nmp>V - &. (D)

P 2
An = (F—)An =mpB~An
n

Here, we have identified the speed of sound or compressional
wave speed B, defined for classical electrohydrodynamical
waves as 82 = I'P/(mn) [32]. It can be understood as how
fast the electrons can affect their neighbors, and its magnitude
is of the order of the Fermi velocity [6].

A deviation An in the electron density will generate an
electric field, which in the nonretarded limit (where the speed
of light c — ©00), is given by Gauss’s law,

V.E =4neAn = —4nne V - . 2)

In general, the displacement vector filed & can be decom-
posed into an irrotational part, which can be expressed as
the gradient of a scalar potential, VW, as well as a rotational
part V x A. However, a rotational contribution in & does not
affect the Coulomb interactions, so its effect can be neglected
[29]. As a consequence, we can use § = —VW. Hence, the
previous equation can be rewritten as follows in terms of the
conventional electrostatic potential ®, related to the electric

internal state of the atom

[12)

[n2) Imy)

—lg)

metallic plate

FIG. 1. Schematic representation of the system under study. An
atom at a distance z over a metallic plate moves at constant speed
v parallel to the surface. The quantum frictional force opposes the
motion of the atom. Inset: the internal state of the atom is a two-level
system for which the excited state is threefold degenerate, in analogy
with the 1s and 2p levels of the hydrogen atom.

field via E = —V @, and the displacement potential W,
VIO = —4nneViW. 3)

Furthermore, we use tlle equation of motion for the electronic
displacement field nmé = neE — V(AP). Combining it with
the previously introduced potentials and using an oscillatory
time dependence of the form &(¢) oc e, corresponding to a
single mode with frequency €2, we obtain

®= —g(s? + BAVA)W. )

Combining this equation with Gauss’s law, we arrive at a
differential equation for the displacement potential

V(@ — o) + V)W =0, ()

where ) = 47ne® /m is the plasma frequency.

We are interested in the study of a system in which a metal
described by the HD model fills the half-space z < 0 (see
Fig. 1) while vacuum fills the rest of the space. Inside the
material (z < 0), the behavior of the fields is governed by the
equations introduced in the previous paragraphs, in particular
Eq. (5). Outside it (z > 0), there are no free charges, so the
Laplace equation dictates that V>® = 0.

At the interface (z = 0), we need to match the solutions
of these equations using the proper boundary conditions.
The electrostatic potential and the normal component of the
electric field must be continuous at the interface, resulting
in ®|,—g = P|,—, and 9,P|,—9 = 9,P|,—o,. For the dis-
placement field, we impose the condition that no electron can
escape the plate, which means that &,|,_g. = —9,¥|,—o_ = 0.

The vacuum modes of the EM field do not cause quantum
friction. Rather, it is dominated by the near-field effects at
the interface. Therefore, we can concentrate on evanescent
waves, which vanish at large distances from the interface, and
therefore demand that ®(z — F00) = W(z - —o0) = 0.

Moreover, due to the rotational symmetry in the x-y
plane, we can make the ansatz W(z < 0) = e®Py(z) and
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& = &% Py(z), with p = (x, y) and k = (k,, k). With this we
can rewrite Eq. (5) for the fields inside the plate as

2
<k2 32>Gf—«) - B+ B )w@)=0,m)

where k? = k2 + k%, On the other hand, in the vacuum out-
side the materlal the normalizable solutions of the Laplace

equation are evanescent waves and have the form

P2 =¢r=0)e™ (20, (7)

where the constant term ¢(z = 0,) is fixed by the continuity
of potentials at the interface, once the solution inside the
material has been determined.

B. Surface modes and bulk modes

To solve Eq. (6), we make an exponential ansatz propor-
tional to e”* with Re p > 0 to ensure convergence inside the
material. This leads to nontrivial solutions that must fulfill

PP = ﬁlz (—Q* + 0, + B°K7). (®)
The solutions with p determined by Eq. (8) give rise to two
different types of modes: surface modes and bulk modes. The
surface modes exist when 92 < a)[% + B%k2, because this re-
sults in a real-valued p and thus a decaying function inside the
material, while bulk modes are present when Q* > w; 4 %k*
such that p becomes purely imaginary. Physically, we can thus
think of v@? + %k* as an effective plasma frequency in the
HD model. We define the frequencies €2, and €2;, of the surface
modes and the bulk modes, respectively, as

Bp;. )
Q) =) + Bk + Bp; (10)

with real p; and p,. After imposing the boundary conditions,
the respective solutions for surface and bulk modes have the
form

Q= w) + B —

— keP?), an

¥i(z < 0) = Ne(pse®

k .
Yp(z < 0) = Mk{COS(PbZ) + C[ekZ o SlH(PbZ):| }, (12)
b
where N, and M, are normalization constants and C is another
constant to be determined.
Since our goal is to obtain the electric potential, we can
insert the solution v, for surface modes into Eq. (3) to find

¢s(z2<0) = —TN/( (Qf‘psekz a)ike”‘z). (13)
e
By imposing the boundary conditions, we arrive at
6z > 0) = —ZN(@py —2K)e ™, (14)
v :

1 20)12,
Ps=5 —k + k2+F . (15)

Therefore, the dispersion relation for surface modes reads

Quk) = 3 (/203 + B2k + k). (16)

With these results we have determined the classical electro-
static potential generated by the surface modes outside the
material up to a normalization constant. Since quantum fric-
tion is a low-frequency phenomenon, these modes will play
an important role in the upcoming calculations.

For the bulk modes, the electrostatic potential outside the
plate becomes, after applying the boundary conditions,

m Qz — (1)2

b -
0 = ——M 2 —P e kZ. 1;
(ZS;,(Z > ) kwp(zQi — a)2> ( )

This is the electrostatic potential generated by bulk modes
with frequencies larger than vw? + B2k*. Every bulk mode
will be determined by the two independent variables k and
p. The classical solution for the electrostatic potential field
outside the material would be given by the sum of Egs. (13)
and (17).

The HD model results, as expected, on a dispersive dielec-
tric function [29], given by eyp(w, k) =1 — a)ﬁ/(a)2 — B2ik?).
When o — 0, the Thomas-Fermi wave vectors is given as
krr = w,/B, which determines the characteristic screening
length is 27 8/ w),.

The hydrodynamic theory for the metal neglects the pos-
sibility of particle-hole excitations. At a phenomenological
level, those can be taken into account by adding a term
I2V*W /4me on the right-hand side in Eq. (4) [16]. One can
show that when ha)p/mﬁ2 &« 1, the surface mode frequency
Q; is corrected by a factor [1 + hzwf,g(k)/mzﬂ“], where g(k)
grows proportional to (kB/w,)*. Since the evanescent modes
decay as e, this correction can be neglected for gaps z X
B/wp, which is fulfilled for the parameters we consider below.

C. Quantization

The classical solution for the field outside the material
can be written using Egs. (14) and (17). Then, by means of
canonical quantization, we arrive at the following expression
for the quantum field:

N,
_ /dk ek (Q2py — 7K)
e
mM ik-p—k 2 Q — wf,
= dic | dpe* g0 20
e / / pe Akp@p 2Q7 — w?
fHec, (18)

Pz > 0)=

where N, and M, are the normalization constants of the
surface and bulk modes, respectively, and the creation and
annihilation operators fulfill the conventional bosonic com-
mutation rules:

lak, a1 = 8(K' — k), (19)

laxp, dy 1 = 8(K" —K)3(p' — p). (20)

The classical energy of the system can be written as the
sum of the kinetic energy, the hydrodynamical compressional
energy, and the electrostatic energy of the classical fields [29].
By using the quantized fields, we can obtain the normalization
constants Ny and M so that the quantized Hamiltonian has the
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form of a quantum harmonic oscillator:

N . 1 1
After normalizing, the quantized field o outside the material reads
b(z>0)=— / N \/ : = / &%k / dpe™* 0 +He
. = - p L.
14 4-7'[](93((1)%7 + 29?) ﬂ\/Qb[(ZQI% _ 0)12,)2 _ 4[32]{29}2)]
(22)

These operators create or annihilate a composite excitation
of both the electron fluid and the EM field, which one can
think of as either a dressed photon or a plasmon polariton. It
is common in the literature to find the excitation of the field
referred to plainly as photons, but it is important to remember
that these are not free photons. These are joint excitations of
both the vacuum EM field and the internal degrees of freedom
of the material.

Since quantum friction is a low-frequency phenomenon
(i.e., the contribution to the lowest order in the velocity can
be obtained from the zero-frequency response of both the
material and the atom [19]), and we are in the nonretarded
and near-field regimes, small frequencies will have a dominant
effect and hence only surface modes will be relevant to our
work. In the interaction picture, the quantized vacuum field
becomes

&, 1) =— / d*k e® P EWIk g, (g +Hee.,  (23)

where ¢,f = a);‘, / [471k§2s(w[27 + 29? )] encodes the information
regarding the internal degrees of freedom of the material, and
has units of velocity.

III. INTERACTION WITH THE ATOM

We study an atom that moves at constant speed v in front
of a metallic plate. We assume that during the time the atom
interacts with the metal, its distance z to the plate can be
approximated as constant. A schematic picture of the setup
is shown in Fig. 1. Without loss of generality, we will assume
that the velocity of the atom is along the % direction. We will
assume z to be on the order of nanometers to micrometers
and v much smaller than the speed of light, to ensure that we
remain in the near-field and nonretarded regimes.

The unique ground state of the atom corresponds to an
unpolarized state, say the 1s orbital of a hydrogenlike atom.
The lowest excited state, which can be reached by an optical
transition, say the 2p orbital, is threefold degenerate and has
an energy wp. These lowest energy levels can be modeled
as the ground state and first excited state, respectively, of a
three-dimensional harmonic oscillator [6]. The polarization of
the atom is then determined by the linear combination of 2p
states into which the system is excited, and the polarization
state |5) of the atom can be uniquely labeled by a normalized
three-dimensional polarization vector 5. The unit vectors »
have components that fulfill the identity Zﬂ nin; = 8;;, where
the sum is over the three vectors of a chosen orthonormal basis
le.g..[m) = (1,0,0), |15) = (0, 1,0), [n3) = (0,0, 1)], and

(

i, j = x,y, z are any two components of such vectors. This sit-
uation is depicted as well in the inset of Fig. 1. The advantage
of this model, compared to a single excited state, is that there
is no need to externally fix the direction of the polarization of
the atom, as was the case in Ref. [33].

‘We consider the Hamiltonian,

H = Hyom + Hup + V (1), (24)

where Hyom = wp |7)(n|, and use the interaction picture with
respect to the unperturbed Hamiltonian Hy = Haom + Hup.
The atom will interact with the EM field through its dipole
moment D. This operator has vanishing expectation values on
all eigenstates of the atom, but presents nonvanishing transi-
tion amplitudes,

(gDl n) =nde ™', (n|D|g)=nde™™" , (25

where d denotes the strength of the dipolar coupling. In the
dipolar approximation, the effect of an external electric po-
tential can be described by adding the following interaction
term to the (free) Hamiltonian Hy of the atom and the field:

V()= —-D - (=Vd@)), (26)

where ® is the quantized electric potential in the vacuum at
the position of the atom, given by Eq. (23). The frictional force
acting on the particle will then be given by

F(t) = (WO E@) [y (1)), 27

where | (1)) is the state of the system at time 7, and £, (t) =
—a"’—xV(t) is the force operator in the direction of motion,
which is given by

o) 2
Fo(t) = —/ dk/ do (D@) - k)k* cos(6)
0 0

% eik.p(t)—iﬂﬁf—kzg)&k(t)¢k + H.c., (28)

where k = (k,, ky) = (kcos 0, ksinf). In our case, the tra-
jectory of the particle will be given by p(r) = vt X, z(t) = z,
with z a constant. The fact that the particle is moving breaks
time-reversal symmetry, resulting in a dissipative force:

00 27
E.(t) = —/ dk/ do (D) - K)k* cos(0)
0 0

x eikCOS(Q)Ut_iQ"[_kZak(T)(i)k +Hec. (29)

To calculate the expectation value of the friction force, we
need to compute the state of the system at a given time . We
will do so in the next section.
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IV. TIME-EVOLUTION OF THE SYSTEM STATE

Our complete system consists of two parts, the atom and
the field, which interact via the dipolar potential V(r) de-
fined in Eq. (26). This interaction potential will act as a
time-dependent perturbation to the system. This allows us to
write the state of the system at a time ¢ by means of time-
dependent perturbation theory (with perturbative constant d)
as

W) = (1+c5 @) Ig, 0)

+Z/d2k(ci”(z)+c§3)(t)) 7. k)
n

+ % dkdky (1) g kik) 4+ ...,  (30)
where we are using a basis for the atom-photon state in which
the atom can either be in its ground or excited state, and
which contains a certain number of (dressed) photons with
momenta Kj, ko, .. .. In particular, the states appearing in the
previous expression are: the atom in its ground state and no
photons ( |g, 0)), the atom in an excited state and one photon
with momentum k (|5, k)), and the atom in the ground state
plus two photons, one with momentum k; and one with k;
(lg, kikz)). It can be shown that all other coefficients up to
order d* will vanish. Due to the dispersion relation (16), the
state of the dressed photons is determined solely by their wave
number.

Next, we will present the perturbative coefficients in
Eq. (30), that we will use later to calculate the frictional force.
The first one is given by

. 7\ * ,—kz
id(n - k)" (¢r)%e et

)
C ) =
(0 wp + o) — ik

(€1}
where A is a positive infinitesimal constant, which is added to
make the time integral converge at t = —oo, and

wp, = (k) — kv cos(9) (32)

is the Doppler-shifted frequency.
The coefficient c(()z)(t), which corrects the contribution to
the ground state, can be approximated as [19]

Oy m i 2 In KPIg e
1)~ id d°k 33
G (O~ Xn:/ o+ 900 —keos@u —in )

vt

= —idwgt — (34)
where dw, is the frequency shift and y, is the decay rate of the
ground state, which can be obtained from Fermi’s golden rule.

Ve = Z/dzk [Voi ()I*8(wp, + w}), (35)
n

where Vo, = (1, k|V|g, 0) is the transition amplitude from a
state with the atom in its ground state and no dressed photons,
to a state with the atom in its excited state and one photon with
momentum k.

For cgz)(t), which involves processes with two photons, we
have
Py = — d? (ko - ki )* (¢, ¢, )Fe M1
2 o) + ) — i
1 : / /
X | ———— + {k; < ky} )@t (36
(wb+w/1—i)» Ky 2}) (36)
where

o, = Q(k;) — kjv cos(8;), i=1,2. (37)

The last necessary coefficient is found two have two main
contributions C?)(Z‘) = cﬁ)‘ + c%, with

» 13 1% —kz
3 id°¢fe
) =

iwpt +iwyt
/ . e
wp + W), — IA

y / g2 @R R g Pen
w, + o), — iA

0 = oo+ T (39)
i) =6 “ t o wp+ o, — ik '

The expectation value of quantum frictional force can now
be evaluated from the expressions for the force operator (29)
and the state of the system at time ¢ (30), with the help of the
perturbative coefficients introduced above. The result is,

(F) = (W) E|W(1) (40)

~ 2Re{ Z/dk (g, O|Fx|n, k)
n

x [)7@) + @) eV (1) + V0]

1 L
3 2 [ diadis (n.kiA g kik)el 0 0
n

(41)

The previous expression is valid up to order d*. From this
expression we can extract second- and fourth-order contribu-
tions, which will be calculated in the following sections.

V. SECOND-ORDER FRICTIONAL FORCE

We can identify from Eq. (41) the contribution to order d2,
which is given by

) =2ke Y [k g 0K 0. @)
n

By explicitly writing out the coefficient cﬁl) (31) and the force
operator for the HD model (29), we can take the limit A — 0
and obtain the following expression in polar coordinates:
00 4
(F)® =d? / dk [k3e—2’<z “r
0 Qs(k)(wf, + 252%(1{))

2
X / df cos(0)s(wp + Q2(k) — kcos(@)v):|.
0
43)
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The integral over 6 can be solved by noting, first, that the §
function will enforce that cos(f) = %ﬁf(k), which is posi-
tive. So we can restrict the integral over 6 to an interval in
which cos(f) > 0. Moreover, since the integrand is even as a
function of 6, we can write the integral as twice the integral
between 0 and 7 /2. Then the integral over 6 is performed by
making the substitution y = cos(8), leading to the appearance
of a Heaviside step function ®(—wj, — 2, + kv), due to the
fact that cos(6) < 1.
Thereby, our second-order force turns into

(F)® = 2d2/ dk O[—wy, — (k) + kv]
0

ka;l)e—Zkz wp + Qy(k)

Q[+ 220)] 0/ker — g + B OL
(44)

With the dispersion relation (16), we can perform a change of
variables in the remaining integral by replacing k by €2,

2Q7 — ), 297 + o),
k= ——, dk=——=-dQ, (45)
2B 2B
By also defining the following dimensionless variables,
Q
MEB, G)E&, Zsﬂ w=— (46)
B wp B wp

we can rewrite the second-order expectation value of the force
operator as

@ = L% /Oodw Ol — u(
Y@ — by — Qs(w) + k(w) v]
2upt -
—(2w-1)z 2142 ~
8 e Qw 1) (1 + dow) @
w4\/(2w2 — DX2a? — 4wl + aw)?

The Heaviside function in Eq. (47) modifies the limits of
the integration over w. In the Appendix we show an analysis
of the restrictions imposed by ®(—w;, — 2 + kv), and find
that they are different in the cases u < 1 and u > 1. We will
start by considering the case of small velocities.

For velocities of the particle smaller than the sound speed
inside the material (v < 8 and hence u < 1), we find that the
conditions required by the Heaviside function can never be
fulfilled, and hence the integral vanishes. This results in an
exactly vanishing frictional force for small velocities:

(F)® =0 <. (48)

To this order in perturbation theory, only one (virtual) photon
can be excited out of the (dressed) vacuum by the interaction
with the moving atom. For small enough velocities of the
atom, the energy provided by the external source that keeps
the particle moving at constant speed is not enough to excite
the material, and hence no friction is produced. A similar
threshold was encountered in the case of graphene [24], where
for relative velocities between the plates smaller than the
Fermi velocity of graphene, no fermion could be excited in the
material and hence the frictional force vanished at the lowest
perturbative order.

TABLE I. Range of magnitudes considered for the different pa-
rameters of the model.

Model parameter Range
Plasma Frequency (w,) 10-10' s~
Sound Speed (B) 10°-107 ms™!
Gap Distance (z) 10-100 nm
Bohr Transition Frequency(w;) 1015-10' s~!
Dimensionless parameter Range
u(v/B) 1-20

o (wp/wp) 0.5-10

Z (zwp/B) 10-1000

In the perspective of the HD model, we can attempt a
simple pictorial interpretation of this result. If the atom is
moving, the electrons in the plate will rearrange so that its
reflection (formed by image charges) can catch up with the
motion of atom. How fast the electrons can rearrange and
propagate in the material is limited by the sound speed. For the
case of v < B, the atom’s reflection will move as fast as the
atom. Thus, the force between the dipole and its reflection will
point always on the perpendicular axis, and the frictional force
will vanish. In the view of energy conservation, the § function
in Eq. (43) gives a resonant condition. With the dispersion
relation (16), the resonance requires

wp + 3 (/202 + B2k — k) + (B —vcosO)k = 0. (49)

The first two terms are positive, so the third term must be
negative, which implies that v > 8 is a necessary condition
to achieve resonance.

If the atom velocity exceeds the sound speed (1 > 1), the
restrictions imposed by the Heaviside function can be fulfilled
in the integration region, and we find a nonvanishing second-
order frictional force. We can normalize such a frictional
force by defining (f,)® = (F,)®/Fcp, where Fep = — 5225
is the static Casimir-Polder force between a perfect conductor
and an atom with polarizability o = 2d? /wy, [34]. Then, the
normalized second-order frictional force becomes

JTZS,B 00

(fo® = =— dw ~@r=i:
6udc )y,
2w? —1)(1 +a
(2w ) (1 +aow) (50)
w4\/ Quw? — 1)’u2@? — 4w(l + aw)?
where the lower limit wo = [1+

V1 +2&%u(u—1)]/20(m — 1) is a consequence of the
Heaviside function, as shown in the Appendix.

The integral in Eq. (50) is convergent and can be solved
numerically. To do so, we will consider the parameters for the
model shown in Table I, where we have considered typical
values for metals and experimental setups that are well within
the limits in which we are working, namely, nonretarded and
near-field limits.

In Fig. 2 we show the normalized frictional force as a func-
tion of the dimensionless velocity of the atom. The expected
behavior of growing with the velocity and decreasing with the
gap distance is observed. We have already shown analytically
the presence of a threshold that results in a nonvanishing
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FIG. 2. Frictional force as a function of the relative velocity
between the atom and the plate. The force is normalized by the
static Casimir-Polder force between a perfectly conducting plate and
an atom, and the velocity is normalized as u = v/f, where g is
the sound speed in the material. In the inset, we show the ratio
of the frictional force in the dispersive and nondispersive regimes
[o; defined in Eq. (53)] as a function of u. We have considered
parameters such that @ = w,/w, = 1,5 and Z = zw,/B = 10, 100.
We have taken the sound speed as 8 = 10° m/s.

force only for v > B. However, from the plots shown in the
figure we can see that the force can be exponentially vanishing
even for larger velocities. This effective threshold grows with
the gap distance, and decreases with the plasma frequency w,.
As mentioned earlier, the sound speed has magnitude around
10% m/s, which is approximately 1% of the light speed in
vacuum. To find out whether quantum friction can also be
present at lower speeds, in the next section we will have a
look at the fourth-order force in perturbation theory.

Finally, we would like to briefly discuss the nondispersive
limit. In the limit 8 — O, the dispersion relation (16) results in
a momentum-independent surface-plasmon frequency 2, =
wp/~/2. We can recalculate the second-order force accord-
ingly, beginning with Eq. (44), and arrive at the result

@ _ V2 o,0pky

(fdpzo = e KQ2zko), (51

where K(x) = K>(x) — K1 (x)/x, K,(z) are the modified
Bessel functions of the second kind, and vky = wp, + @,/ V2.
Hence, within the HD model one obtains a finite frictional
force even in the nondispersive limit. To understand the rela-
tive weight of the spatial dispersion on the frictional force, we
will compare the nondispersive force (51) with the normalized
force of Eq. (50). To isolate the sound speed in Eq. (50), we
define two additional dimensionless variables:

e
S0 = (52)
u v C()p

Z

so that the sound speed is contained only in the speed ratio u,
and u — oo when 8 — 0. After some algebra, one finds that

(fu)® W /w 1y 20— 1y’
= e = w —_—
(e 2V21 K2z ko) Jug w?
(1 +5)w)€7(2w71/w)u2

X .
VCw? — 12022 — 4w2(1 + dw)?
(53)

We show the ratio o as a function of the relative velocity
on the inset in Fig. 2. There we see that, indeed, oy — 1 for
u — oo. This means that taking into consideration the spacial
dispersion results in a decrease in the frictional force, but
only for small velocities. At larger velocities, compared to
the material’s sound speed, neglecting spacial dispersion will
not affect the results. We can conclude then that, for materials
without a high sound speed, taking the nondispersive limit will
not have a high impact on the results for the frictional force.

of =

VI. FOURTH-ORDER FRICTIONAL FORCE

From Eq. (41), we can extract the terms of order d*, and
split the force into two contributions: one arising from pro-

cesses involving a transition through vacuum (Fx)(4) and one

0 ]
from processes involving the creation of two photons (Fx)(24)

[91: (F)® = (F)§” + (F.)5", with
(Fo)y) =2Re ) / dk (g, 0 Fxln, k) (c§ (1) ¢ (0) + 1)),
n
(54)
(F® =2Re{ > [ dk .0 m et
n

1 A «
Y / dkydks (1, kIE g, Kika) " (1) <@ ) L
n

(55)

The fourth-order frictional force can be cast in the following
form, as was shown in Ref. [9]:

0
(F)® ~ — yt (F)® — o Ve + (E)SP, (56)
where

E) = —xa* 3 [ @k e - i P
n

x e 2hi2R3g (o 4 wh) [ky cos()) + ky cos(6)]
|: 2w, + 0] + ) ]2
(wp + ) (wp + @) |

(57

and y, is defined as in Eq. (35). This general expression is
valid for any model describing the material.

In the case of HD model, when the atom’s velocity is
slower than the sound speed (v < B), the first term in Eq. (56)
vanishes due to the fact that the second-order force does. The
Dirac § function in the definition of y, Eq. (35) enforces the
second term to vanish as well (in the same way it does so for
the second-order force, as was shown in Sec. V).
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The only term that might survive in the case v < 8 is
(Fx)gl), which contains a different § function, namely, §(w] +
w}). This & function enforces processes in which two photons
are created, with momenta k; and k;. Such processes have
been shown in other materials to occur at low speeds, since
there are more versatile in views of energy and momentum
conservation, thus leading to dissipation at low velocities.

However, in this case we find that the peak of the é func-
tion, (k) + w) (k) = 0, is located outside the integration
region. By explicitly using the dispersion relation (16), we can
write the condition imposed by the § function as

2 — 1/w?
Z Qs(ki)<1 — —’ucos(@,)) =0. (58)

2
i=1,2

From the dispersion relation, we know that the frequency of
the surface mode €2,(k;) must satisfy Q(k;) > w,/ V2. Thus,
if the above Eq. (58) vanishes, it must be as a consequence of
the factors between parentheses. However, for a slow-moving
atom (u < 1) and recalling that w; > 1/+/2, we see that

2 — 1/w?

> ucos(9;) <1, 59)

which means that Eq. (58) cannot be satisfied. As a conse-
quence, for v < B the fourth perturbative order frictional force
in the HD model also vanishes.

Since the § functions are determined by conservation laws,
we can conclude that, when going to higher perturbative or-
ders, we will find the same type of § functions imposing
analogous energy conservation. As a consequence, the fric-
tional force will vanish at all orders for velocities smaller than
the sound speed v < B.

This result is in contrast to what is obtained in other models
for metals as the Drude model. The presence of intrinsic
dissipation in the material results in a frictional force at any
velocity. Even though the second-order frictional force is
found to be vanishingly small for small velocities in the local
models considered in the literature, no threshold is encoun-
tered. The addition of an intrinsic dissipation in the model
is not a condition for the existence of friction for higher
velocities in the case of nonlocal models, but its absence does
impose a threshold on the velocities, as was observed already
in the case of graphene [24].

Here for the HD model we find that this threshold is still
present at fourth order in perturbation theory. In contrast to
the result for models containing intrinsic dissipation, where
a cubic dependence with the velocity was found, we find a
vanishing force for small velocities even at higher orders in
perturbation theory.

VII. CONCLUSIONS

In this work, we have calculated the quantum frictional
force acting on an atom that moves at constant speed in front
of a metallic plate. To model the material that forms the plate,
we have used the hydrodynamic model, a simple nonlocal
model that does not include damping but accounts for the
Coulomb interactions. The use of a relatively simple model
has allowed us to present detailed analytical calculations that

helped to show explicitly the conditions in which the quantum
frictional force is suppressed or enhanced.

Indeed, we have found that the quantum frictional force
vanishes identically for velocities smaller than the sound
speed B. This is not surprising, since in our model we do not
include any internal source of damping, so that an arbitrarily
small amount of energy that is injected into the system cannot
be dissipated if it is not sufficient to excite the internal degrees
of freedom of the material. An analogous result was found in
the case of graphene [24] for the force up to second order in
the coupling constant. However, in our case we have explicitly
shown that this result remains true for both the second- and
the fourth-order force. Moreover, we were able to explicitly
identify the mathematical structure, which gives rise to such
threshold, which allows us to infer that this result will indeed
hold true for any order in perturbation theory.

Physically, the origin of this threshold in the HD model can
be interpreted as a consequence of the image charges that form
in the material due to the changes in the boundary conditions
imposed by the presence of the atom. Since the sound speed
B determines the velocity with which the electrons in the
material can rearrange, the reflection can always catch up with
the atom when it moves a slower speeds, resulting in a static
Casimir-Polder force pointing vertically, which is generated
by the interaction of the two fluctuating dipoles (the atom’s
and its image’s). It is consistent with this picture that when the
threshold velocity vanishes (8 — 0), i.e., in the nondispersive
limit, the quantum frictional force remains nonzero in the
second perturbative order.

For velocities above the threshold we find a nonvanishing
force even in the absence of intrinsic damping. We expect
that in clean metals at low temperatures, where impurities
and phonon contributions to damping can be neglected, the
results for quantum friction we presented will be the leading
contribution.
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APPENDIX: ANALYSIS OF THE LIMITS
OF THE INTEGRAL IN THE SECOND-ORDER
FRICTIONAL FORCE

To solve the integral, we need to discuss how the Heav-
iside function effects its limits. First, the dispersion relation
[Eq. (16)] modifies kv > wp, + 2 as

2(B — v)Q; + 2wy + o < 0. (A1)

By extracting a coefficient ,Ba)%, and using the dimensionless
variables defined in Eq. (46), we can rewrite this equation as

1
2(1 —ww? +2—w + &*u < 0. (A2)
w

We denote the left-hand side of Eq. (A2) as a quadratic poly-
nomial A(w).
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FIG. 3. These are possible plots of the quadratic function A(w)
[Eq. (A2)] with u < 1 (left) and u > 1 (right). The solid red line rep-
resents for the interval of w giving #(w) < 0. Alternatively speaking,
the Heaviside function does not vanish in these w intervals marked
by solid red lines. In the case of u < 1, it is possible that 2(w) has
no roots, which means h(w) is always positive. However, this case
is not what we are interested in. The other case of u > 1 always has
real roots with opposite signs.

Therefore, we need to find its roots, which will determine
the interval of w for which the Heaviside function does not
vanish. They are

-1+ /1 +20%u(u—1)

201 — u)

For the quadratic function h(w) [Eq. (A2)] the sign of the
quadratic term’s coefficient is critical to determine whether
h(w) < 0. When it is not negative or u < 1, both roots are
either negative or complex, and complex roots mean h(w)
is always positive. If the coefficient is negative or u > 1,
there will be one positive and one negative root in Eq. (A3).
Besides, this case has no complex roots. We can quickly plot
these two cases based on their roots’ information.

In Fig. 3, the red solid curve is where the Heaviside func-
tion does not vanish. However, in the case of u < 1 (the left

(A3)

Wroot =

diagram), the range of w corresponding to the red solid curve
requests negative surface-mode frequencies (£2; < 0). This
case gives rise to the integral in Eq. (47) vanishes with a
positive range of €2;. Thus, the average of the second-order
force vanishes when u < 1.

In the other case, when u > 1, we find that 4(w) has one
positive and one negative root. However, w is the ratio of the
surface-mode and plasma frequencies and cannot be negative.
So, there is only one interval that would render the Heaviside
function as nonvanishing:

(1+
w e

To calculate the second-order force (F,)®, we need to inte-
grate over the interval (1/ /2, 00). This means that we have to
compare both lower limits (the one on the integration interval
and the one imposed by the Heaviside function), and take the
lager one or their overlapping region.

1+ 260%u(u—1) ) o Ad

2d(u — 1)

1+ V1 = 20% + 20°u?
wo = 2au—1)

1+14+20%@wm—1)
V2&(u—1)

/(1+

1 n u
*wu—12% u-1

. VT +202u(u — 1)>%.

2w — 1)

(A5)

(A6)

14 2&%u(u — 1))>?
202 (1 — 1)

(AT)

G- 6= sl-

(A8)

In the square root of the above formula, there are three terms,
which are positive, and more importantly, the second term
is larger than unity due to u > 1. It shows that w > wy is a
subset of w > 1/ V2. Thus, the lower limit in the expression
for (F;)® is replaced by wy from the Heaviside function.
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