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An accurate determination of various parameters of Ar13+ is presented in this work. The wave functions and
energy levels of the low-lying states within the configurations of 2s22p and 2s2p2 are calculated using the fully
relativistic multiconfiguration Dirac-Hartree-Fock method, while the wave functions of higher excited states
with the configurations 2s2nl (n � 3, l = s, p, d ) are obtained using the relativistic configuration interaction
plus core polarization method. Then, the absorption oscillator strengths, transition probabilities, polarizabilities,
and g factors are determined. The contributions of electron correlation effects, Breit interaction, and quantum
electrodynamics effects are also investigated. The present results agree well with the available theoretical and
experimental results. The g factors of the 2s22p 2P1/2,3/2 states agree with the experimental measurements on a
level of 10−6.
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I. INTRODUCTION

The atomic data for highly charged ions (HCIs) are of
immense interest in many areas of physics, such as diagnos-
ing fusion and astrophysical plasma [1,2], testing quantum
electrodynamics (QED) effects [3–6], the determination of the
fine-structure constant α [7,8], and electron mass [9,10]. Due
to their more compact size, HCIs are less sensitive to external
perturbations than neutral atoms or singly charged ions. A
number of theoretical studies have demonstrated that some
narrow optical transitions in HCIs are good candidates for
ultrahigh-precision HCI clocks with uncertainty at the level
of 10−19 [11–20]. However, unlike neutral atoms which can
be cooled to 10−6 K, HCIs are difficult to cool to a very
low temperature. In 2015, a new breakthrough was made in
terms of the resolution of this difficulty by Schmöger et al.
[21], who achieved the sympathetic cooling of Ar13+ ions to
a level of 10 mK using a laser-cooled Be+ Coulomb crystal in
a cryogenic Paul trap. This experiment heralded the start of a
new era in the exploration of HCIs.

The ground state of Ar13+ is 2s22p1/2
2P1/2, and 2s22p3/2

2P3/2 is a long-lived metastable state with a lifetime of about
9.57 ms [22,23]. The transition wavelength between these two
states, which lies in the optical range with a natural linewidth
of about 17 Hz [19], has been measured to remarkable pre-
cision by the Max-Planck-Institut für Kernphysik group in
Heidelberg [24–27]. The quality factor, the ratio of transition
frequency to natural linewidth, of this line is about 4×1013

[19]. Accordingly, Ar13+ is a good candidate for developing
a high-precision HCI optical clock, and detailed information,
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such as the electric-dipole (E1) matrix elements, polarizabili-
ties, and g factors, is thus of great importance to experiments.
However, there are very limited studies of these atomic param-
eters that can be found in the literature. For instance, as far as
we know, there is only one calculation of polarizabilities [19],
obtained using the relativistic coupled-cluster (RCC) method,
although they are crucial parameters for evaluating blackbody
shifts.

Recently, Arapoglou et al. measured the g factor of the
ground state of Ar13+ ions in the double-Penning-trap setup
with an accuracy of 10−11, i.e., 0.66364845532(93) [28]. In
addition, Micke et al. measured the g factor of the (2s22p3/2)
2P3/2 state using quantum-logic spectroscopy with a preci-
sion of 10−7, i.e., 1.3322895(13)(56)(stat)(syst) where the
first set of parentheses indicates statistical uncertainty and
the second set indicates systematic uncertainty [29]. The ac-
curacy of these two experiments is eight and four orders
higher, respectively, than the previous measurements using
the electron-beam ion-trap technique [30]. Therefore, they
provide a superb opportunity to test the accuracy of theo-
retical methods. As for the theoretical calculations, various
theoretical methods have been used [31–38]. However, due to
the different treatments of electron correlations, the accuracy
of these results is different [36,38]. It should be noted that
two multiconfiguration Dirac-Hartree-Fock (MCDHF) results
[37,38] which were calculated using MCDHFGME [39] and
GRASP2K [40] agree with the experiments [28,29] by only
three significant digits. In order to explain these big differ-
ences, more detailed theoretical studies are needed.

In the present work, the wave functions and energy levels
of the low-lying states of Ar13+ ions are calculated using the
MCDHF method [41,42] and the GRASP2018 package [43].
The wave functions of higher single-electron excited states
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FIG. 1. Diagram of the energy-level structure of Ar13+ ions. It is
not proportional to the energy levels.

with configurations of 2s2nl (n � 3; l = s, p, d ) are calcu-
lated using the relativistic configuration interaction plus core
polarization (RCICP) method [44]. Both methods have been
verified to be capable of generating high-precision atomic
parameters for many atoms and ions [42,44]. Then, the
absorption oscillator strengths, transition probabilities, polar-
izabilities, and g factors are obtained. A detailed investigation
of the contributions of electron correlation effects and Breit
interaction (BI) to these atomic parameters is also presented.
The present results are in good agreement with some available
theoretical and experimental results.

II. THEORETICAL METHODS

In this work, the MCDHF and RCICP methods are applied
in the calculation of the wave functions and energy levels of
Ar13+ ions. The lowest excited configurations are 2s2p2 and
2p3, as illustrated in Fig. 1, formed by one or two inner-shell
electron (2s) excitations. Thus, the electron correlation effects
of these states are very strong. The wave functions of 2p3 were

calculated in Ref. [45]. Here, we are more concerned with
2s22p and 2s2p2. The wave functions of these states are calcu-
lated using the MCDHF method, which can accurately include
the correlation effects but is more time-consuming. The higher
excited states with configurations 2s2nl (n � 3; l = s, p, d )
are calculated using the RCICP method more efficiently. De-
tailed descriptions of the MCDHF method were given in
Refs. [41,42]; here, we just present a brief introduction.

The atomic-state wave function (ASF) is written as a lin-
ear combination of the symmetry-adapted configuration-state
wave function (CSF), i.e.,

�(γ PJ ) =
NCSFs∑
j=1

c j�(γ jPJ ). (1)

Here, � is the ASF; � is the CSF, which is a linear combi-
nation of Slater determinants of one-electron Dirac orbitals;
c j is the mixing coefficient, which can be obtained by diag-
onalizing the Hamiltonian matrix in configuration space; J is
the total angular momenta; P is parity; and γ represents other
quantum numbers of corresponding states. The radial part of
the Dirac orbitals is optimized by a relativistic self-consistent
procedure.

In order to investigate the contribution of the electron
correlation effect, the active-set approach [46] is used in
the present calculations. We select 2s22p, 2p3, 2s2p3d , and
2p3d2 as the reference configurations for odd-parity states
and 2s2p2, 2p23d , 2s23d , and 2s3d2 for even-parity states.
Then, the calculation is separated into three steps. The first
step is the calculation of the core-valence (CV) correlation. In
this step, the 1s orbital is frozen, and the active set is gener-
ated by single and double (SD) excitations to virtual orbitals
from occupied orbitals in the reference configurations. The
virtual orbital set is restricted to principal quantum numbers
nmax = 3, 4, 5, . . . , 11 and orbital quantum numbers l = 0–4
(i.e., angular symmetries s, p, d, f , g).

The second step is the core-core (CC) correlation calcu-
lation. The 1s orbital is set as an active orbital as well, and
the CSFs are generated by SD excitations from all occupied
orbitals to virtual orbitals. Naturally, this would result in a
rapid increase in the number of CSFs in the active set, as
shown in Table I.

TABLE I. The number of configurations for the JP = 1/2−, J = 3/2−, J = 1/2+, J = 3/2+, and J = 5/2+ states of Ar13+ ions. nmax

represents the highest principal quantum number of the virtual orbital. The superscripts + and − represent even and odd parity, respectively.
CV and CC represent core-valence correlation and core-core correlation, respectively.

Active space
JP = 1/2− JP = 3/2− JP = 1/2+ JP = 3/2+ JP = 5/2+

nmax CV CC CV CC CV CC CV CC CV CC

3 52 884 78 1410 53 826 75 1289 66 1299
4 247 5919 396 10000 251 5257 394 8787 406 9834
5 675 18428 1136 32148 678 16050 1128 27809 1268 32952
6 1333 38389 2282 67704 1337 33181 2272 58203 2630 70288
7 2221 65802 3834 116668 2228 56650 3826 99969 4492 121842
8 3339 100667 5792 179040 3351 86457 5790 153107 6854 187614
9 4687 142984 8156 254802 4706 122602 8164 217617 9716 267604
10 6265 192753 10926 344008 6293 165085 10948 293499 13078 361812
11 8073 249974 14102 446604 8112 213906 14142 380753 16940 470238
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TABLE II. The convergence of eigenenergy (cm−1) of the
ground state 2s22p 2P1/2 of Ar13+ ions.

nmax CV CC

3 −89358631 −89367916
4 −89361262 −89372671
5 −89361966 −89373696
6 −89362344 −89374354
7 −89362375 −89374942
8 −89362400 −89375229
9 −89362406 −89375458
10 −89362409 −89375488
11 −89362409 −89375496

A check of the convergence with the active set is shown in
Table II, where the eigenenergies of the ground state 2s22p
2P1/2 generated in expanding the active set are listed. It is
reasonable for the CV calculation to achieve convergence
rapidly, while it is relatively slow for the CC calculation. As a
further check, we also calculated the triple excitation based
on the nmax = 11 CC calculation, which is not shown for
simplicity. The contribution is found to be only 3 cm−1 for
the ground state. We also list the energy levels of the excited
states relative to the ground state in Table III. We can find
that the contributions of the CC correlation are approximately
from 102 to 103 cm−1. All calculations are well converged
when nmax is increased to 11. The extrapolated values are
obtained from exponential extrapolation using the results of

nmax = 8, 9, 10, and 11 CC calculations. The third step is the
calculation of the Breit interaction, QED effects, and nuclear
recoil corrections. In this step, we reperformed the configura-
tion interaction calculation, in which these effects are added
to the Hamiltonian [42] and the Hamiltonian matrix is redi-
agonalized. The N-electron Breit interaction can be written as
[47]

HBreit = −
N∑

i< j

[
αi · α j

cos(ωi j ri j/c)

ri j

+ (αi · �i )(α j ·� j )
cos(ωi j ri j/c) − 1

ω2
i j ri j/c2

]
, (2)

where ri j = |ri − r j | is the distance between two electrons.
ωi j is the photon energy exchanged between two electrons. αi

is the Dirac matrix, and c is the speed of light. Since the Breit
interaction is included in the Hamiltonian, its contribution is
reflected in the variation of mixing coefficients and energy
levels.

The QED corrections are separated into two classes,
namely, self-energy (SE) and vacuum polarization (VP). The
total SE contribution is given as the sum of one-electron
corrections weighted by the fractional occupation number of
the one-electron orbital in the total wave functions [48–50],
i.e.,

HSE =
∑

i

qiE
SE
i . (3)

TABLE III. The convergence of the energy levels (cm−1) of some low-lying excited states of Ar13+ ions. The extrapolated values are
exponential extrapolations using the results of nmax = 8, 9, 10, and 11 core-core correlation calculations. The numbers in the parentheses
represent uncertainties.

Active space
2s22p 2s2p2

nmax
2P3/2

4P1/2
4P3/2

4P5/2
2D3/2

2D5/2
2S1/2

2P1/2
2P3/2

CV
3 23682 229166 238123 250846 415264 416536 521081 552457 562613
4 23688 229795 238562 251276 414619 415913 519677 551160 561368
5 23692 229971 238948 251656 412737 414037 516401 548679 559157
6 23693 230153 239132 251839 412557 413860 516018 548383 558890
7 23693 230187 239167 251874 412487 413790 515879 548275 558791
8 23694 230213 239193 251902 412402 413784 515869 548264 558779
9 23692 230225 239206 251917 412399 413780 515864 548246 558767
10 23692 230229 239210 251922 412392 413778 515863 548242 558762
11 23692 230230 239211 251924 412390 413777 515863 548240 558760

CC
3 23784 227398 234779 246514 413702 414978 516827 549910 561146
4 23752 228999 235688 248418 413524 414123 515515 548992 559738
5 23747 229356 236950 249677 413133 413882 515345 548132 558813
6 23744 229788 237138 251292 412636 413455 515293 547502 558083
7 23742 230402 238418 251951 412396 413194 515199 546968 557298
8 23740 230430 239228 252121 411944 413122 515152 546595 556792
9 23740 230443 239655 252153 411864 413097 515114 546496 556566
10 23740 230458 239659 252186 411842 413059 515057 546463 556493
11 23740 230461 239662 252190 411834 413047 515041 546441 556466
Extrapolated 23741(1) 230476(15) 239671(9) 252212(22) 411831(3) 412957(90) 514929(112) 546432(9) 556454(12)
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TABLE IV. The first three dominant mixing coefficients for the 2s22p 2P1/2 and 2P3/2 states. “CI+Breit+SE+VP+Nuclear recoil” indicates
the Breit interaction, self-energy, vacuum polarization, and nuclear recoil corrections are included in the configuration interaction calculations.

2s22p 2P1/2

Configuration (1s22s2)02p1/2 (1s22p2
3/2)02p1/2 [(1s 22s1/2 2p1/2)13d3/2]1/2 Eigenenergy (cm−1)

CI 0.985227 0.166976 −0.022176 −89375496
CI+Breit 0.985340 0.166703 −0.021843 −89355118
CI+Breit+SE 0.985279 0.166817 −0.021850 −89334392
CI+Breit+SE+VP 0.985282 0.166795 −0.021847 −89335856
CI+Breit+SE+VP+Nuclear recoil 0.985279 0.166801 −0.021849 −89334668

2s22p 2P3/2

Configuration (1s22s2)02p3/2 (1s22p2
1/2)02p3/2 (1s2)02p3

3/2 Eigenenergy (cm−1)

CI 0.984354 0.124963 0.117541 −89351756
CI+Breit 0.984474 0.124272 0.117401 −89332507
CI+Breit+SE 0.984405 0.124563 0.117632 −89311733
CI+Breit+SE+VP 0.984409 0.124544 0.117612 −89313198
CI+Breit+SE+VP+Nuclear recoil 0.984406 0.124563 0.117622 −89312011

Here, qi is the occupation number of orbital i. ESE
i is expressed

as [48–50]

ESE
i = Z4

πc3n3
i

Fi(Z/c), (4)

where ni is the principal quantum number, Z is the nuclear
charge, and Fi(Z/c) is a slowly varying function of Z/c that
was tabulated by Mohr [51] and Klarsfeld and Maquet [52]. In
our calculation, this SE correction is included in the diagonal
elements of the Hamiltonian matrix. Therefore, the changes
in mixing coefficients and eigenvalues represent the SE con-
tribution.

To the lowest order, the VP correction is a short-range
modification of the nuclear field due to screening by virtual
electron-positron pairs [53,54]. It is written as [54]

HVP =
∑

i

qi

∫ ∞

0
V VP(r)[P2

i (r) + Q2
i (r)]dr, (5)

where Pi(r) and Qi(r) are the large and small components of
radial wave functions, respectively. V VP is the VP potential
[53].

In the present calculation, the nuclear recoil is expressed
in the lowest-order nuclear motional corrections [42], namely,
normal mass shift (NMS),

HNMS = 1

M

N∑
i=1

[cαi · pi + c2(βi − 1)], (6)

and specific mass shift (SMS),

HSMS = 1

M

N∑
j>i=1

pi p j, (7)

where M is the nuclear mass in atomic units and pi is the
electron momentum operator.

Since the energy levels of the single-electron excited
states 2s2nl (n � 3; l = s, p, d ) are much higher than those
of 2s2p2, the wave functions and energy levels of 2s2nl
(n � 3; l = s, p, d ) states are calculated by using a relativistic
semiempirical method: the RCICP method [44]. The basic

strategy of RCICP is to partition the electrons into a 1s22s2

core plus a valence electron. The core orbitals are calculated
using the Dirac-Fock method, and the core-valence correlation
is calculated by adding an effective polarization potential to
the Hamiltonian. The polarization potential Vp(r) is treated
semiempirically as follows:

Vp(r) = −
2∑

k=1

α(k)
core

2r2(k+1)

∑

,J

g2

,J (r)|
J〉〈
J|. (8)

α(k)
core is the kth-order static polarizabilities of the core elec-

trons, where α(1)
core = 9.0(1)×10−5 a.u. and α(2)

core = 1.0×10−6

a.u. are calculated using the two-valence-electron RCICP
method. g2


,J (r) = 1 − exp(−r2(k+2)/ρ
2(k+2)

,J ), and the cutoff

parameters ρ
,J are tuned to reproduce the binding energies of
the ground state and some single-electron excited states. The
adopted parameters are ρs1/2 = 1.313, ρp1/2 = 0.905, ρp3/2 =
0.898, ρd3/2 = 0.798, and ρd5/2 = 0.788 a.u. The effective
Hamiltonian of the valence electron is diagonalized within
a large S-spinor and L-spinor basis [55,56] which can be
regarded as a relativistic generalization of the Slater-type and
Laguerre-type orbitals.

III. RESULTS AND DISCUSSION

A. Energy levels

As we have stated, the wave functions and energy levels of
Ar13+ ions are calculated using the method described above.
Table IV lists the first three dominant mixing coefficients for
the 2s22p 2P1/2 and 2P3/2 states. The dominant configurations
are (1s22s2)02p1/2 and (1s22p2

3/2)02p1/2 for the ground state
2P1/2, while the dominant configurations are (1s22s2)02p3/2,
(1s22p2

1/2)02p3/2, and (1s2)02p3
3/2 for the 2P3/2 state.

Table V lists the generated energy levels of the low-lying
states and the contributions of the Breit interaction, QED
effects, and nuclear recoil correction, along with a comparison
with some available theoretical results [24,45,57–60] as well
as the National Institute of Science and Technology (NIST)
tabulations [61]. For the 2s22p 2P3/2 state, the contribution of
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TABLE V. Comparison of the energy levels (cm−1) and the contributions of Breit interaction, SE, VP and nuclear recoil for the low-lying
excited states of Ar13+ ions with some available theoretical results [24,45,57–60] and experimental results of the NIST tabulation [61]. The
energy levels are given relative to the ground state.

2s22p 2P3/2 2s2p2 4P1/2 2s2p2 4P3/2

Model This work Other studies This work Ref. [57] This work Ref. [57]

CI 23741(1) 23737 [45] 230476(15) 224126 239671(9) 233070
23921 [57]

Breit −1129(7) −1131 [45] 628(193) 479 −85(35) 45
−1136 [57]

VP −1(1) −3 [45] 64(43) 64(43)
SE 48(3) 51 [45] −945(59) −923(58)
QED (VP+SE) 47(3) 47 [45] −881(73) −1301 −859(72) −1292

49.5(70) [24]
10 [57]

51.2(2.0) [58]
44 [59]

Nuclear recoil −1(1) −0.6 [58] −56(37) −114(76)
Total 22658(8) 22653 [45] 230167(210) 223304 238613(111) 231823

22795 [57]
22662(14) [24]

22656.1(3.6) [58]
22659 [59]
22657 [60]

NIST [61] 22656 230296 238954

2s2p2 4P5/2 2s2p2 2D3/2 2s2p2 2D5/2

Model This work Ref. [57] This work Ref. [57] This work Ref. [57]

CI 252212(22) 245812 411831(3) 418209 412957(90) 419451
Breit −1122(291) −1235 −439(114) −489 −793(206) −844
VP 64(43) 69(46) 66(44)
SE −897(56) −917(57) −908(57)
QED (VP+SE) −833(70) −1280 −848(73) −1375 −842(72) −1371
Nuclear recoil −56(37) −58(39) −59(39)
Total 250201(302) 243297 410486(141) 416345 411263(239) 417236
NIST [61] 250423 410254 411205

2s2p2 2S1/2 2s2p2 2P1/2 2s2p2 2P3/2

Model This work Ref. [57] This work Ref. [57] This work Ref. [57]

CI 514929(112) 521271 546432(9) 557941 556454(12) 569207
Breit 546(142) 581 −146(67) −76 −864(224) −889
VP 66(44) 68(45) 69(46)
SE −934(58) −908(57) −899(56)
QED (VP+SE) −868(73) −1401 −840(73) −1525 −830(73) −1546
Nuclear recoil −57(38) −60(40) −50(33)
Total 514550(199) 520451 545386(107) 556340 554710(238) 566772
NIST [61] 514401 545244 554678

the Breit interaction is significant, and the present result is in
good agreement with the calculations from Refs. [45,57]; the
difference is less than 0.6%. In Refs. [58,59], the values
of the one-electron Dirac energy and electron-correlation
effects within the Breit approximation are given in detail.
The summations of these values are 22605.5(3.0) cm−1 [58]
(the average value of the four different potential calculations)
and 22616 cm−1 [59]. The sum of our configuration interac-
tion (CI) value and the contribution of the Breit interaction,
22612 cm−1, is in excellent agreement with these results.
The differences are less than 0.03%. The present calcula-

tions of QED effects also agree very well with the rigorous
bound-state QED results for the first-order [24] and second-
order [58,59] diagrams. In Table V, the result of Ref. [58] is
51.2(2.0) cm−1, which is the average value of four different
types of the screening-potential calculations, including first,
second, third, and higher order, as well as two-loop QED. The
contribution of nuclear recoil is very small and is about −1
cm−1, which indicates that the contribution of nuclear recoil
to 2P3/2 is almost the same as that to the ground state. The
present result agrees well with the calculation in Ref. [58].
The present energy level labeled “Total” shows excellent
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TABLE VI. Comparison of energy levels (cm−1) of the single-
electron excited states 2s2nl (n = 3, 4; l = s, p, d ) of Ar13+ ions
with theoretical results of the many-body perturbation theory
(MBPT) [62] and the MCDHF method [63] and experimental results
of the NIST tabulation [61]. The energy levels are given relative to
the ground state.

States RCICP MBPT [62] MCDHF [63] NIST [61]

2s23s 2S1/2 3417243 3417865 3410207
2s23p 2P1/2 3533681 3530600 3524071 3533890
2s23p 2P3/2 3534598 3536817 3530293 3534840
2s23d 2D3/2 3640469 3641742 3636442 3640470
2s23d 2D5/2 3641775 3643496 3638165 3641780
2s24s 2S1/2 4629027 4628983
2s24p 2P1/2 4681863 4675083
2s24p 2P3/2 4684168 4677640
2s24d 2D5/2 4724201 4715620 4722050
2s24d 2D3/2 4727900 4716323 4724300

agreement with the NIST result [61] and the calculations from
Refs. [24,45,58–60], with a difference of no more than 0.02%.

As for the states of 2s2p2, the presently calculated contri-
butions of the Breit interaction agree well with the results of
Ref. [57]. In contrast, our results for the QED effects, which
are dominated by SE, are smaller than those of Ref. [57] by
about 35%. The contribution of nuclear recoil to the states of
2s2p2 is about 50–60 cm−1, except for the 4P3/2 state, which is
about −114 cm−1. The present total energy levels agree very
well with the NIST tabulation [61], and the differences are
less than 0.1%.

The energy levels of the single-electron excited states 2s2nl
(n � 3; l = s, p, d ) are listed in Table VI and are compared
with the NIST tabulation [61] and theoretical results of the
many-body perturbation theory [62] and the MCDHF method
[63]. The present RCICP results show good agreement with
the measurements [61], and the difference is no more than
0.3%. Excellent agreement of the present energy levels with

existing theoretical and experimental results indicates a high
accuracy level of the wave functions.

B. Absorption oscillator strength and transition probability

The transition probability An→i (in s−1) and the absorption
oscillator strength fi→n for the electric dipole (E1) transition
n → i are related by the following expression [63]:

An→i = 8e2π2gi fi→n

mcλ2
n→ign

, (9)

where, m and e are the electron mass and charge, respectively.
λn→i (in Å) is the transition wavelength, and gi and gn are the
statistical weights of the lower i and upper n states. The E1
absorption oscillator strength fi→n is written as [64]

fi→n = 2|〈�(γnPnJn)‖O‖�(γiPiJi )〉|2�En→i

3(2Ji + 1)
, (10)

where O is the E1 transition operator and �En→i = En − Ei

is the transition energy.
Table VII lists the presently calculated absorption os-

cillator strengths f in Babushkin gauge (length form) and
transition probabilities between the fine-structure levels of
the 2s22p and 2s2p2 configuration as well as the theoretical
results of Rynkun et al. [65]. The subscript CC represents the
results of the nmax = 11 core-core correlation calculation, and
BI and QED represent the Breit interaction and QED effects.
It can be seen from Table VII that the contributions of Breit
interactions are about 10% to the 2s2p2 4P1/2,

4P3/2 → 2s22p
2P1/2 and 2s2p2 4P3/2,

2S1/2 → 2s22p 2P3/2 transitions. The
contribution of QED effects to most transitions is less than
1%, except for the 2s2p2 4P3/2 → 2s22p 2P3/2 transition, for
which the contribution is close to 2%.

The present results agree well with the results of Ref. [65].
Since the QED effects are included in the Hamiltonian, the
contributions are reflected in the change in mixing coefficients
and energy levels. We find that the contribution of QED ef-
fects to the transition probabilities and absorption oscillator

TABLE VII. Absorption oscillator strengths f in Babushkin gauge (length form) and transition probabilities A (s−1) between the fine-
structure levels of 2s22p and 2s2p2 of Ar13+ ions. The subscript CC represents the results of the nmax = 11 core-core correlation calculation,
and BI and QED indicate the Breit interaction and QED effects are considered. The notation a[b] represents a×10b. The uncertainties are given
in parentheses.

Transition fCC ACC ABI ABI+QED Ref. [65]

2s2p2 4P1/2 → 2s22p 2P1/2 9.173[−5] 3.261[6] 2.979[6] 2.957(34)[6] 2.922[6]
2s2p2 4P3/2 → 2s22p 2P1/2 4.028[−6] 7.710[4] 7.018[4] 7.056(82)[4] 7.025[4]
2s2p2 2D3/2 → 2s22p 2P1/2 6.167[−2] 3.487[9] 3.460[9] 3.437(85)[9] 3.384[9]
2s2p2 2S1/2 → 2s22p 2P1/2 8.753[−2] 1.556[10] 1.534[10] 1.529(18)[10] 1.503[10]
2s2p2 2P1/2 → 2s22p 2P1/2 3.661[−2] 7.309[9] 7.609[9] 7.548(87)[9] 7.539[9]
2s2p2 2P3/2 → 2s22p 2P1/2 3.849[−2] 3.974[9] 3.977[9] 3.955(46)[9] 3.903[9]
2s2p2 4P1/2 → 2s22p 2P3/2 2.940[−5] 1.699[6] 1.607[6] 1.594(18)[6] 1.579[6]
2s2p2 4P3/2 → 2s22p 2P3/2 1.837[−5] 5.762[5] 5.195[5] 5.133(98)[5] 5.276[5]
2s2p2 4P5/2 → 2s22p 2P3/2 1.090[−4] 2.524[6] 2.381[6] 2.360(27)[6] 2.385[6]
2s2p2 2D3/2 → 2s22p 2P3/2 2.684[−3] 2.709[8] 2.782[8] 2.757(32)[8] 2.745[8]
2s2p2 2D5/2 → 2s22p 2P3/2 4.799[−2] 3.244[9] 3.251[9] 3.227(80)[9] 3.050[9]
2s2p2 2S1/2 → 2s22p 2P3/2 5.958[−3] 1.935[9] 2.096[9] 2.081(24)[9] 2.037[9]
2s2p2 2P1/2 → 2s22p 2P3/2 4.174[−2] 1.531[10] 1.522[10] 1.515(18)[10] 1.510[10]
2s2p2 2P3/2 → 2s22p 2P3/2 1.187[−1] 2.256[10] 2.259[10] 2.247(56)[10] 2.131[10]
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TABLE VIII. Absorption oscillator strengths between the fine-
structure levels of 2s22p and 2s2nl (n = 3, 4; l = s, d ) of Ar13+

ions. SST represents the results calculated using SUPERSTRUCTURE

[66].The notation a[b] indicates a×10b. The uncertainties are given
in parentheses.

Transition RCICP SST [66]

2s22p 2P1/2 → 2s23s 2S1/2 2.302(750)[−2] 3.013[−2]
2s22p 2P1/2 → 2s23d 2D3/2 6.091(188)[−1] 6.235[−1]
2s22p 2P1/2 → 2s24s 2S1/2 4.781(148)[−3]
2s22p 2P1/2 → 2s24d 2D3/2 1.239(38)[−1]
2s22p 2P3/2 → 2s23s 2S1/2 2.389(777)[−2] 1.712[−2]
2s22p 2P3/2 → 2s23d 2D3/2 6.137(189)[−2] 6.358[−2]
2s22p 2P3/2 → 2s23d 2D5/2 5.529(171)[−1] 5.720[−1]
2s22p 2P3/2 → 2s24s 2S1/2 4.931(152)[−3]
2s22p 2P3/2 → 2s24d 2D3/2 1.237(38)[−2]
2s22p 2P3/2 → 2s24d 2D5/2 1.117(34)[−1]

strengths is mainly caused by the change in transition energy.
However, the change in mixing coefficients has little effect on
the transition probabilities. In addition, the contributions of
nuclear recoil to the transition probabilities are one or two
orders of magnitude smaller than that of the QED effects.
Therefore, the contribution of nuclear recoil is not given in
Table VII.

Table VIII lists some of the absorption oscillator strengths
between the fine-structure levels of 2s22p and 2s2nl (n =
3, 4; l = s, d ) calculated using the RCICP method. The
present results agree well with the calculation using the SU-
PERSTRUCTURE (SST) code [66].

C. The static E1 polarizabilities

If an atom is placed in an electrostatic field, the lowest-
order energy shift due to the Stark effect can be written as

�EStark ≈ − 1
2αF 2, (11)

where F is the strength of the electrostatic field. α is static E1
polarizability. The E1 polarizability for a state with angular
momentum Ji = 1/2 is independent of the magnetic projec-
tion Mi, while for Ji > 1/2 it depends on Mi, i.e., via scalar
(αS) and tensor (αT ) components:

α = αS + 3M2
i − Ji(Ji + 1)

Ji(2Ji − 1)
αT . (12)

The scalar and tensor polarizabilities are usually defined in
terms of a sum over all possible intermediate states, excluding
the initial state while including the continuum,

αS =
∑

n

fi→n

�E2
n→i

(13)

and

αT = 6

√
5Ji(2Ji − 1)(2Ji + 1)

6(Ji + 1)(2Ji + 3)

×
∑

n

(−1)Jn+Ji

{
1 1 2

Ji Ji Jn

}
fi→n

�E2
n→i

. (14)

TABLE IX. Static E1 scalar αS and tensor αT polarizabilities (in
a.u.) of the 2s22p 2P1/2,3/2 states and the breakdown of the contribu-
tions of individual transitions for Ar13+ ions. “Remains” represents
the contributions from highly excited bound and continuum states of
the valence electrons. “Core” denotes the contributions of the core
(1s2) electrons. The uncertainties are given in parentheses.

2s22p 2P1/2 2s22p 2P3/2

Up levels αS αS αT

2s2p2 4P1/2 0.00008(1) 0.00003(0) −0.00003(0)
2s2p2 4P3/2 0.00000(0) 0.00002(0) 0.00001(0)
2s2p2 4P5/2 0.00009(1) −0.00002(1)
2s2p2 2D3/2 0.01738(43) 0.00087(1) 0.00070(1)
2s2p2 2D5/2 0.01522(38) −0.00304(38)
2s2p2 2S1/2 0.01564(18) 0.00127(2) −0.00127(2)
2s2p2 2P1/2 0.00612(7) 0.00728(9) −0.00728(9)
2s2p2 2P3/2 0.00600(7) 0.02012(50) 0.01610(50)
2s23s 2S1/2 0.00009(3) 0.00010(3) −0.00010(3)
2s23d 2D3/2 0.00221(7) 0.00023(2) 0.00018(2)
2s23d 2D5/2 0.00203(7) −0.00041(7)
2s24s 2S1/2 0.00001(1) 0.00001(0) −0.00001(0)
2s24d 2D3/2 0.00027(3) 0.00003(0) 0.00002(0)
2s24d 2D5/2 0.00024(2) −0.00005(2)
Remains 0.00038(3) 0.00042(3) 0.00011(1)
Core (1s2) 0.00009(1) 0.00009(1)
Total 0.04827(48) 0.04807(64) 0.00491(64)
Ref. [19] 0.0484(1) 0.0482(1)

As illustrated in Fig. 1, the main contributions to the polar-
izabilities of the 2s22p 2P1/2, 3/2 states are the transitions of
the 2s2p2 and 2s2nl (n = 3, 4; l = s, d ) states. Table IX lists
the static E1 polarizabilities of the 2s22p 2P1/2, 3/2 states and
the breakdown of the contributions of individual transitions.
We can find that the polarizability of the 2P1/2 state is dom-
inated by 2s2p2 2D3/2 → 2s22p 2P1/2 and 2s2p2 2S1/2 →
2s22p 2P1/2 transitions, while for the 2P3/2 state it is dom-
inated by the 2s2p2 2D5/2 → 2s22p 2P3/2 and 2s2p2 2P3/2

→ 2s22p 2P3/2 transitions. “Remains” in Table IX represents
the contributions from highly excited bound and continuum
states of the valence electrons, which are calculated using the
RCICP method. “Core” denotes the contributions of the core
(1s2) electrons, which are determined by the calculation of
the polarizability of He-like Ar16+ ions. We can see that the
present total scalar polarizabilities αS are in good agreement
with the results of the RCC method [19]. The difference is
no more than 0.5%. The tensor polarizability αT of the 2s22p
2P3/2 state is 0.00491(64) a.u., which is one order smaller than
αS . There are no other results for αT available for comparison.

D. Landé g factor

The first-order Zeeman energy shift of an atomic state,
which is dependent on the magnetic projections M, can be
written as

�EZeeman = gμBBM, (15)

where B is the strength of the magnetic field and μB is the
Bohr magneton. g is the Landé g factor of the electronic state.
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TABLE X. The convergence of the g factor for the 2s22p 2P1/2,3/2 states of Ar13+ ions, which are calculated under the core-core correlation
model. �gPS = g − gD represents only the contribution of positive-energy states.

Active space
2s22p 2P1/2 2s22p 2P3/2

nmax g �gPS = g − gD g �gPS = g − gD

Single configuration 0.664505776 0.000730329 1.331575281 0.000544892
3 0.664501682 0.000726235 1.331574903 0.000544514
4 0.664496449 0.000721002 1.331574163 0.000543774
5 0.664494773 0.000719326 1.331573776 0.000543387
6 0.664493971 0.000718524 1.331573674 0.000543285
7 0.664493622 0.000718175 1.331573611 0.000543222
8 0.664493416 0.000717969 1.331573585 0.000543196
9 0.664493371 0.000717924 1.331573576 0.000543187
10 0.664493323 0.000717876 1.331573573 0.000543184
11 0.664493322 0.000717875 1.331573572 0.000543183

If the electron-electron interactions are neglected, the lead-
ing contribution to the g factor can be evaluated analytically
by using analytic Dirac wave functions corresponding to a
pointlike nucleus, namely [67],

gD = κ

2J (J + 1)
(2κεnκ − 1), (16)

where κ is the relativistic quantum number and εnκ is the
Dirac energy of the reference state. For the 2s22p 2P1/2 and
2s22p 2P3/2 states of Ar13+ ions, gD are 0.663775447 and
1.331030389, respectively.

Using the projection theorem [68], the Landé g factor can
be expressed as [69]

g = 1

2μB

〈�(γ PJ )〉||N (1)||�(γ PJ )〉√
J (J + 1)(2J + 1)

, (17)

where N (1) = ∑
q=0,±1 N (1)

q and N (1)
q = −∑

j i
√

8π
3 r jα j ·

Y (0)
1q (r̂ j ) is an operator of the same tensorial form as the

magnetic dipole hyperfine operator [69]. i = √−1 is the
imaginary unit, r j is the coordinate of electron j, α j denotes
the Dirac matrices, and Y (0)

1q represents the vector spherical
harmonic [70].

Table X lists the presently calculated CC-model g values
of 2P1/2 and 2P3/2 states, in which only positive-energy states
are included. It shows a very good convergence. Table X also
lists the difference (�gPS) between the calculated g and the
analytic Dirac value gD. These �gPS values represent the con-
tribution of the electron correlations of positive-energy states,
and they converge to 0.00071787(1) and 0.00054318(1) for
the 2P1/2 and 2P3/2 states, respectively.

Besides the positive-energy states, the negative-energy
states (NSs) and Breit interaction also play an important role.
Here, the contribution of negative-energy states is also cal-
culated. In our calculation, the negative-energy orbitals are
generated based on the RCICP method. Then, we performed
the CI calculations, in which the positive-energy orbitals of
n � 6 are replaced by the negative-energy orbitals and the
orbitals of n � 5 remain unchanged. In addition, the Breit
interaction is also included. Table XI lists the presently cal-
culated g factors. Since the n � 6 orbitals are replaced with
the negative-energy orbitals, the difference between these
results and 5 CC results represents the contribution of the
negative-energy states (�gNS = g − g5CC). It can be seen that
the contribution of NSs converges to −0.00006669 with the
increase of the negative-energy orbitals, but the convergence
speed is very slow.

TABLE XI. The g factor of the 2s22p 2P1/2,3/2 states and the contributions of negative-energy states. In the calculations, the Breit interaction
is included, and the orbitals with n � 6 are replaced by the negative-energy orbitals. NCSF represents the number of configurations of negative-
energy states. �gNS represents the contribution of the negative-energy states and Breit interaction to g factors.

Active space
2s22p 2P1/2 2s22p 2P3/2

nmax NCSF g �gNS = g − g5CC NCSF g �gNS = g − g5CC

6 3468 0.664435383 −0.000059390 6029 1.331518352 −0.000055424
7 8118 0.664433766 −0.000061007 14142 1.331517415 −0.000056361
8 13950 0.664432283 −0.000062490 24339 1.331516492 −0.000057284
9 20965 0.664431062 −0.000063711 36621 1.331515589 −0.000058187
10 29161 0.664430058 −0.000064715 50986 1.331514789 −0.000058987
11 38539 0.664429247 −0.000065526 67435 1.331513989 −0.000059787
12 43492 0.664428451 −0.000066322 76067 1.331513336 −0.000060440
13 49000 0.664427944 −0.000066829 85670 1.331513027 −0.000060749
14 55062 0.664427837 −0.000066936 96243 1.331513015 −0.000060761
15 61678 0.664427834 −0.000066939 107786 1.331513011 −0.000060765
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TABLE XII. The contributions of SE, VP, and nuclear recoil,
which are included in the Hamiltonian, to g factors for the 2s22p
2P1/2,3/2 states of Ar13+ ions.

Contribution 2s22p 2P1/2 2s22p 2P3/2

�gSE 4.0×10−9 4.4×10−8

�gVP 3.0×10−9 1.0×10−9

�gNuclear recoil 2.2×10−8 1.3×10−8

The contributions of QED effects to the g factors are very
important as well. In our calculations, they can be divided
into two parts. In the first part, as we have discussed above,
the QED effects are included in the Hamiltonian. In this case,
they affect the wave functions and then the g factor. However,
we found that these effects are only at a level of 10−8, as
shown in Table XII. The second part is the corrections to the
magnetic-field interaction operator, which can be written as
(see Refs. [69,70] for details)

�gQED=(gs − 2)

2

〈�(γ PJ )〉||�N (1)||�(γ PJ )〉√
J (J + 1)(2J + 1)

, (18)

where gs= 2.0023193 [71] is the correction value of the free-
electron g factor and the spherical components of the operator

�N (1) are defined by

�N (1)
q =

∑
j

β j�q j, (19)

where �q j is the relativistic spin matrix and β j denotes the
Dirac matrices. For a given configuration, Eq. (18) is related
to only quantum numbers. The present calculated results are
−0.0007733(49) and 0.0007733(42) for the 2P1/2 and 2P3/2

states, respectively. The present results are in good agreement
with the calculations of Verdebout et al. [37], Marques et al.
[38], and Maison et al. [36], who used the same corrections
as ours. In addition, the present results are still different from
the results of Refs. [28,31–35]. The main reason for this dis-
crepancy is that the binding and screening effects [28,31–35]
are not included in our calculations.

Nuclear recoil also has an effect on the g factors
[31–35,72–76]. The presently calculated contributions of the
nuclear recoil which are included in the Hamiltonian are
2.2×10−8 and 1.3×10−9 for the 2P1/2 and 2P3/2 states, respec-
tively, as shown in Table XII. These results are several orders
smaller than the results of Refs. [31–35,72–74]. Actually,
similar to the QED effects, the nuclear recoil contributions
are not described completely in the present calculations
[31–35,72–76]. So we will do more studies on corrections by
nuclear recoil in the future.

TABLE XIII. Calculated g factors of the 2s22p 2P1/2 and2P3/2 states of Ar13+ ions in comparison with those of previous studies. The
uncertainties are given in parentheses. The �gQED values of Refs. [28, 31–35] include the contributions of one-loop and two-loop QED.

2s22p 2P1/2 2s22p 2P3/2

Contribution This work Other studies This work Other studies

gD 0.663775447 0.663775447 [31] 1.331030389 1.331030389 [31]
�gPS 0.0007179 0.0005432
�gNS −0.0000669 −0.0000608
�gEEI(�gPS + �gNS) 0.0006510(9) 0.0006500(8) [31] 0.0004824(26) 0.0004812(30) [31]

0.0006500(4) [32] 0.0004782(30) [32]
0.0006506(7) [33] 0.000482(3) [36]
0.00064996(20) [28] 0.0004787(6) [34]
0.000651(3) [36] 0.000483 [30]
0.0006499(4) [35]
0.0006518 [30]

�gQED −0.0007733(49) −0.0007687(5) [31] 0.0007733(42) 0.0007784(8) [31]
−0.0007687(5) [32] 0.0007784(8) [32]
−0.0007681(9) [33] 0.000773(3)(6) [36]
−0.0007682(2) [28] 0.0007783(12) [34]
−0.000774(3)(6) [36] 0.00077 [30]
−0.0007682(2) [35]
−0.00078 [30]

Total 0.6636531(50) 0.663647(1) [31] 1.3322861(49) 1.332285(3) [31]
0.6636477(7) [32] 1.332282(3) [32]
0.6636488(12) [33] 1.332286(3)(6) [36]
0.66364812(58) [28] 1.3322825(14) [34]
0.663652(3)(6) [36] 1.33228 [30]
0.6636481(5) [35] 1.332365 [37]
0.66365 [30] 1.332372(1) [38]
0.663728 [37]
0.663899(2) [38]

Expt. 0.66364845532(93) [28] 1.3322895(13)(56) [29]
0.663(7) [30] 1.333(2) [30]
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Table XIII lists the g factors of the 2P1/2 and 2P3/2 states
and the contributions of different effects, along with a com-
parison with some available theoretical results [28–38] as
well as the experimental results [28,29]. �gEEI represents the
contribution of the total electron-electron interaction, which
is the summation of the contributions of the positive-energy
states, Breit interaction, and negative-energy states. We find
that �gEEI are in good agreement with the results of the
large scale configuration interaction approach in the basis of
the Dirac-Fock-Sturm orbitals (CI-DFS) [30], the first order
within perturbation theory (PT), second- and higher-order CI-
DFS [28,31,32,35], first- and second-order PT [33,34], and
the RCC [36]. The present total values of 0.6636531(50) and
1.3322861(49) for the 2P1/2 and 2P3/2 states, respectively,
agree with the most accurate experimental results [28,29] very
well. The differences are 4.6×10−6 and 3.4×10−6.

Through the above comparison, we can find that there
are two main reasons for the discrepancy between the exist-
ing multiconfiguration Dirac-Fock calculations [37,38] and
the experimental results [28,29]. One is that the electronic
correlation was not fully considered in both calculations. In
Ref. [38], the active space was generated by SD excitations
to nmax = 5, and the single-reference configuration was used.
Therefore, there were only 1772 and 2943 CSFs included for
2P1/2 and 2P3/2, respectively. In Ref. [37], although nmax = 9
active space was applied and a multi-reference-configuration
calculation was performed, the authors included only partial
SD excitations from the reference configurations, and their
CSF numbers were much lower than the present calcula-
tions. The other is that the contributions of negative-energy
states were not included in their final results. As a result,
the electronic correlation effect in these two calculations is
incomplete.

IV. CONCLUSIONS

By using the MCDHF method and RCICP method, the
wave functions and energy levels of the low-lying states of
the 2s22p and 2s2p2 configurations and the single-electron
excited states of 2s2nl (n � 3; l = s, p, d ) configurations
of Ar13+ ions were calculated. The absorption oscillator

strengths and transition probabilities were then obtained. A
detailed discussion of the contributions of the electron cor-
relation effects, Breit interaction, QED effects, and nuclear
recoil to these atomic parameters was also presented. The
present results are in good agreement with available theo-
retical calculations and experimental measurements from the
NIST tabulations. The electric dipole polarizabilities of the
2s22p 2P1/2, 3/2 states, which are dominated by the transitions
from the states of 2s2p2 and 2s2nl (n = 3, 4; l = s, d ), were
determined accurately and showed good agreement with the
RCC results with a difference of no more than 0.5%. Re-
garding the g factors of 2s22p 2P1/2,3/2 states, the present
theoretical values are in agreement to 10−6 with the most
accurate experiments [28,29].

Although our calculated results are in good agreement
with the experimental data, there are still some open prob-
lems that need to be solved. For example, in terms of the
contributions of QED effects to the g factors, the binding
and screening effects [28,31–35,77] are not included in our
calculations, and our results are still different from those in the
Refs. [28,31–35]. As for the contribution of nuclear re-
coil to the g factors, only the NMS and SMS are included
in the present calculations; the other significant operators
[31–35,72–76] are not included yet, and the present calcula-
tions underestimate this effect compared with some available
results [31–35,72–74]. In terms of radiation transition, the
correction of the transition operator by QED effects [78] is
not considered. Therefore, we will undertake detailed studies
on these issues.
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