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Investigation of two-photon 2s — 1s decay in one-electron and one-muon ions
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We study the radiative decay of the 2s state of one-electron and one-muon ions, where the two-photon
mechanism plays an important role. Due to the nuclear size corrections, the radiative decay of the 2s state in the
electron and muon ions is qualitatively different. Based on the accurate relativistic calculation, we introduce a
two-parameter approximation, which makes it possible to describe the two-photon angular-differential transition
probability for the polarized emitted photons with high accuracy. The emission of photons with linear and circular
polarizations is studied separately. We also investigate the transition probabilities for the polarized initial and
final states. The investigation is performed for ions with atomic numbers 1 < Z < 120.
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I. INTRODUCTION

Two-photon transitions represent a fundamental process in
atomic physics. Two-photon decay is best studied for one-
electron ions, which is the dominant decay channel of the
2s-electron state for low- and medium-Z H-like ions, where
Z is the atomic number. The probabilities of one- and two-
photon transitions become comparable for Z &~ 40. The decay
of the 2s-electron state has been extensively studied in theo-
retical [1-13] and experimental works [14-25]. In the reverse
process, two-photon excitation 1s — 2s, a record accuracy
of measurement of the transition frequency in hydrogen was
obtained [26]. For one-muon ions, two-photon decay is the
main radiative channel for all ions.

An experimental investigation of the 2s — 1s transition
in muon ions was performed in [27,28]. Since significant
progress was recently made in the quality of muon beams [29],
the study of muon ions has become relevant.

Unlike one-photon decay, the emission spectrum of two-
photon decay has a continuous distribution determined by the
energy conservation law. The study of differential transition
probabilities is of particular interest. The energy-differential
transition probabilities were investigated theoretically in
[3-5,7,8,11,30,31].
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For one-electron ions, radiative corrections to the tran-
sition probabilities were investigated in Refs. [31-33]. The
dominant part of the electron self-energy radiative correction
to the two-photon transition probabilities was calculated in
[32,33]. Vacuum polarization corrections (in the Uehling ap-
proximation) were presented in [31]. The contribution of the
negative continuum of the Dirac spectrum to the total and
differential transition probabilities was investigated in [9,11],
respectively.

The angle-differential transition probabilities have a non-
trivial dependence on the angle between the emitted photons.
The angular distribution of the emitted photons is determined
by the dominant £ 1E1 transitions, which gives a distribution
1 + cos? 6, where 6 is the angle between the momenta of
the emitted photons. The deviation from this distribution was
investigated by Au in the nonrelativistic limit [6]. The devia-
tion leads to an asymmetry of the angle-differential transition
probability, which is explained by the interference between
the E1E1 and higher multipoles (mainly E2E2 and M 1M1).
For the one-electron ions, the asymmetry of the angular dis-
tribution was investigated for unpolarized photons emitted by
ions of xenon and uranium in [10].

In this work, the asymmetry of the angular distribution
is investigated for both unpolarized and polarized emitted

©2022 American Physical Society
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photons for all one-electron and one-muon ions including su-
perheavy elements. The asymmetry obtained in the relativistic
calculation and in the calculation of Au [6] can differ for
heavy elements by up to a factor of 3. In the case of light
ions, the asymmetry is small but important for evaluating the
nonresonant corrections [34]. The nonresonant corrections set
the limit of the concept of energy levels and have already
been taken into account in the most accurate experiments
[35]. The polarization properties of the two-photon transitions
were studied in the processes of elastic photon scattering on
atoms [36-38]. We consider the two-photon decay of the 2s
state of one-electron and one-muon ions with atomic numbers
1 < Z < 120 within the relativistic theory. We find that the
radiative decay of the 2s state in the electron and muon ions is
qualitatively different. In particular, for one-electron ions, the
only cascade channel is 2s — 2p;/, — 1s, which is negligi-
bly weak, mainly due to the small energy difference between
2s and 2p;,, states [31]. In the case of one-muon ions, the
situation is different. First, there is another cascade channel:
2s — 2p3;» — 1s. Second, the energy difference between the
2s and 2p states is sufficiently large so that the cascade chan-
nels become dominant already for the middle-Z ions. All this
radically changes the decay of the 2s-muon state.

We also present the investigation of the angle-differential
transition probabilities with respect to the polarization of the
emitted photons. We study the differential transition proba-
bilities for the emission of a photon with certain linear and
circular polarizations, as well as the transition probabilities
for polarized initial and final states. Recently, it was reported
that the detector technology for the measurement of linear
photon polarization (appearing in K-shell radiative electron
capture by heavy ions) was significantly improved [39]. We
introduce a two-parameter approximation for the differential
transition probabilities, which is used to analyze different
polarizations of photons even in the relativistic domain. The
two-parameter approximation describes with a high accuracy
the angle-differential transition probability (even for Z = 120,
the accuracy is better than 1% for the photons with equal ener-
gies); in particular, it explicitly describes the asymmetry of the
angular distribution. It is found that the negative continuum of
the Dirac equation is of great importance for the asymmetry
parameter even for light ions (the transverse gauge is used).

II. THEORY

In this paper we consider the radiative decay of one-
electron and one-muon ions. Since the muon can be consid-
ered as a heavy electron (the muon mass is about 207 of the
electron mass), the application of the theory developed for
electron ions to muon ions consists in replacing the mass of
the electron with the mass of the muon [40]. In this section we
present the theory of two-photon decay of one-electron ions.

We note that we do not consider the magnetic hyperfine
structure. The hyperfine structure of the muon ions was inves-
tigated in [41].

The two-photon decay of the 2s state of one-electron ions
can be schematically depicted as

2s > s+ y1 + »». Q)

f f
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1{71, )\1 ]{?2, )\2
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FIG. 1. Feynman graphs describing a two-photon transition in a
one-electron ion. The double solid lines denote an electron in the
potential of the atomic nucleus (the Furry picture). The wavy lines
with the arrows describe the emission of a photon with momentum
k" = (w, k) and polarization A.

The Feynman graphs corresponding to the two-photon decay
are presented in Fig. 1, where the double lines represent
electrons in the electric field of the atomic nucleus (the Furry
picture). The graphs in Figs. 1(a) and 1(b) differ in the order
of the emitted photons. The index n denotes the summation
over the complete Dirac spectrum, including the positive- and
negative-energy continuum.

Using the Feynman rules, the S-matrix element for the tran-
sition from the initial state i to the final state f corresponding
to the graph in Fig. 1(a) can be written as

S, = (—ie? / o d 5 )y AR (1)
XSz, X))y AR (e (), 2)

where e is the electron charge,

S(x, x) = L/ da)ne_i‘“'l("_’Z)Z Y)Y (r2)

3)

is the electron propagator, v; and ¥, are the wave functions
of the initial and final states, respectively, and A, is the elec-
tromagnetic four-potential. The sum includes the summation
of the discrete Dirac spectrum and the integration over the
positive and negative continuum. In Eq. (3) the index n de-
notes a set of quantum numbers [n = (n, j, [, m)] defining an
intermediate state with principal quantum number 7, angular
momentum j, parity (—1)*, and projection of angular momen-
tum m. The photon wave functions A***) are considered in
the transverse gauge where the scalar photons are absent

AFED () = (0, A4P (r, ). @)
The vector part of the photon 4-vector is expressed as
ARSI 1) = ABD (e (5)
Relativistic units are used throughout the paper (4 =1 and
c=1).

The amplitude is connected with the S matrix as

Simy = —2mid(ef + w1 + w2 — &)Uy, (6)
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where ¢; and ¢ are the energies of the initial and final states.
Integrating over the time variables in Eq. (2) and introducing
the matrix elements

A = / dr iy (r)(=DaAd* 2@y, (7)

AR = / dryrf () (=DeA 2 )y, ), (8)

where « are the Dirac alpha matrices, we obtain the expression
for the amplitude corresponding to the graph in Fig. 1(a),

Arkna) gk k)
U =2y )

n & —wp — &,

Similarly, the expression for the graph in Fig. 1(b) reads

Ak g xao)
U=y L (10)

" Ei —wy — &,

In the case of the one-electron ions, the energy of the inter-
mediate 2p;,, state is placed between the energies of the Is
and 2s states (g15 < &2, n < &ys) and the two-photon decay
considered can proceed through the formation of the 2p;,
state (cascade decay). Direct accounting for the 2p;,, state
leads to a zero denominator if the frequency of one of the
photons is w; » = & — E2pi- Considering this state, it is nec-
essary to make numerous insertions of the electron self-energy
Feynman graph into the internal electron line [42]. This pro-
cedure adds the self-energy correction Ag,in =L — %F to
the Dirac energy ¢, corresponding to the 2p,, state, where L
is the Lamb shift and I' is the one-photon radiative width of
the 2py, state. We note that evaluation of the Lamb shift L is
a question of renormalization and it is neglected in the present
calculation. However, the imaginary part of the self-energy
correction (radiative width I') is taken into account. In this
approach, zero denominators do not arise.

‘We note that in the case of one-muon ions, between the
energies of the 1s and 2s states there is also the 2p3/, state
(615 < €25, < &25). Accordingly, such a procedure must be
performed for the 2ps, state as well.

The total transition amplitude is the sum of the contribu-
tions of the graphs in Figs. 1(a) and 1(b),

U =U+Up. (11)
The two-photon differential transition probability reads
AW = 27 Ui P8(e; — w1 — wp — £5)
dk, dk,
Q2r)} 2n)*

After integration over one of the photon energies, we obtain
the differential transition probability

x (12)

(A1,22)
del-l 2 _ 1
ddQ0dw,  (Q2n)

where ), is the solid angle of the corresponding photon
momentum. The energy of the second emitted photon is de-
termined by the energy conservation law

Usi|*wiw3, (13)

W+ wy =¢& —&f. (14)

It is convenient to introduce the energy sharing fraction

w1

5)

x(a)l)zg o
i—ef

To describe the polarization of a photon, we introduce a
unit vector directed along the photon momentum

. sin 6y cos @i
k = | sinf singy |, (16)
cos 6

with the vector e, = (0, 0, 1) and two vectors orthogonal to IAc,

e. x k e x k

= — = —. a7
I[e; x k]| I[e™V) x k]|
In spherical coordinates, these vectors read
— sin @ c0s 0y cos @i
eV = cosg e? = [ cossingy |. (18)
0 — sin 6y

The photon polarization vector €* can be presented as a
linear combination of the vectors e and e?,

eV = eV + are?, (19)

where |o;|? + |aa]? = 1.
To calculate the matrix elements in Egs. (7) and (8), we use
the partial wave expansion of the photon function

[2m ;
A(k,A)* (r) — _G(A)*e—zkr

)
2 A
= ;ﬂ Z(—i)l(em, Y jim(k))

Jjlm
x4 j; (kr)ijlm ), (20)

where j(kr) is the spherical Bessel function. The scalar prod-
uct involves the complex conjugation for the first element.
Integration over the spatial angular variables 7 is performed
analytically and integration over the radial variables is per-
formed numerically. In Egs. (9) and (10), summation over the
complete Dirac spectrum is performed using the finite basis
sets for the Dirac equation [43,44].

We use the Fermi distribution of the nuclear charge density.
The nuclear root-mean-square charge radii were taken from
[45-47] and are listed in Tables VI and VII. We note that
for Z = 1 the Fermi distribution is inapplicable, so we use
the model of a homogeneously charged sphere. In the case
of muon ions, the transition probabilities are sensitive to the
nuclear model used. To study it, we also perform a calculation
with the model of a homogeneously charged sphere.

For the one-muon ions, the nuclear recoil correction is
taken into account using the reduced muon mass. In the case
of the muon ions, the main radiative correction is the elec-
tron vacuum polarization correction, which can be taken into
account within the Uehling approximation. For one-electron
ions, the nuclear recoil correction and the radiative correc-
tions are neglected because of their smallness [31]. For the
light ions the main omitted correction is the nuclear recoil
correction, which is about 0.05% for Z = 1 and 0.003% for
Z = 10. The transition probabilities are proportional to the

012809-3



V. A. KNYAZEVA et al. PHYSICAL REVIEW A 106, 012809 (2022)

TABLE I. Transition probabilities W (in s™!) for one-electron ions. The digits in square brackets denote multiplication by powers of 10.
The first column gives the charge of the atomic nuclei (Z). The next four columns present the one-photon (E1) transition probabilities for the
2pij2 — 1s and 2p3,» — 1s transitions, respectively. The next two columns present the sum of one-photon (M 1) and two-photon transition
probabilities for the 25 — 1s transition. The last column gives the 2s — 2p, , transitions probabilities. The values WO(E) are calculated with the

pointlike nucleus. The values W are calculated with the Fermi distribution of the nuclear charge density.

Nucleus 2pipp —> 1s 2p3;p —> 1s 2s —> Is(1y +2y) 2s — 2pip
7 Wo(f) w© Wo(f) w Wo(e) w© w

1 6.26835[8] 6.26835[8] 6.26824(8] 6.26824(8] 8.22906 8.22906 8.56912[—21]
10 6.27225[12] 6.27225[12] 6.26060[12] 6.26060[12] 8.22575[6] 8.22574(6] 4.26634[—8]
50 3.98005[15] 3.97985[15] 3.79354[15] 3.79338[15] 4.01596[11] 4.01592[11] 6.34525[1]
92 4.72601[16] 4.72033[16] 3.95022[16] 3.94939[16] 1.96240[14] 1.96244[14] 2.63046[7]
120 1.37847[17] 1.36493[17] 9.66319[16] 9.77117[16] 4.74519[15] 4.74417[15] 1.49830[11]

factor m™ /m,, where m™? is the reduced mass and m, is the
electron mass. For the heavier ions, the main omitted correc-
tions are the radiative corrections. In particular, the vacuum
polarization correction reaches 0.03% for Z = 92 [31].

III. RESULTS AND DISCUSSION

A. Transition probabilities

We investigate the radiative decay of the 2s state in one-
electron and one-muon ions. We consider ions with atomic
nuclear charges in the range from 1 to 120. Particular attention
is paid to the role of two-photon decay.

The 2s state is the longest lived among the states of the
L shell, i.e., the 25, 2p1 /5, and 2p3/, states. Tables I and II

give the transition probabilities for these states for electron
and muon ions, respectively. The radiative decay of 2p;,, and
2p3, states is determined by the one-photon (E1) transitions
to the 1s state. For the electron ions, the dominant channel
of the 2s-state radiative decay depends on the nuclear charge
Z: For light ions, the two-photon (mainly E1E1) transitions
predominate, while for heavier ions (Z > 40), the decay is
determined by one-photon (M1) transitions. For muon ions
the radiative decay is determined by the two-photon (E1E1)
transition for all Z. Therefore, in Tables I and II the total
2s — ls transition probabilities are given as the sum of the
one- and two-photon transition probabilities. Below we con-
sider the decay of 2s states in more detail. The last column of
Table I contains data for the 2s — 2p;, transition probability

TABLE II. Transition probabilities W * (in s~') for one-muon ions. The first column gives the charge of the atomic nuclei (Z). The next

four columns present the one-photon (E1) transition probabilities for the 2p;,, — 1s and 2p3,, — 1s transitions, respectively. The last two
columns present the sum of one-photon (M 1) and two-photon transition probabilities for the 2s — 1s transition. The values WOW ) are calculated
with the pointlike nucleus. The values W) are calculated with the Fermi distribution of the nuclear charge density (the nuclear recoil and the
vacuum polarization corrections are also taken into account).

Nucleus 2pip — 1s 2p3;p —> 1s 2s —> 1s(1y +2y)

7 WO(M) W WO(N) 1740 WOW) W

1 1.29610[11] 1.16600[11] 1.29607[11] 1.16598[11] 1.70151[3] 1.53071[3]

2.07379[12] 2.02137[12] 2.07364[12] 2.02122[12] 1.08886]5] 1.06175][5]

5 8.10183[13] 8.04560([13] 8.09807[13] 8.04186[13] 2.65686[7] 2.64501[7]
6[13]*

10 1.29690[15] 1.28259[15] 1.29449[15] 1.28030[15] 1.70082[9] 2.13163[9]
1[15]*

20 2.07896[16] 1.96523[16] 2.06350[16] 1.95388[16] 1.12827[11] 8.88038[11]

30 1.05580[17] 9.09875(16] 1.03810[17] 9.02417[16] 1.52467[12] 4.57589[13]
1[17]*

40 3.35164[17] 2.52880[17] 3.25149[17] 2.51522[17] 1.25584[12] 5.93759(14]

50 8.22949(17] 5.18286[17] 7.84383[17] 5.20931[17] 8.30638[13] 3.81497[15]

60 1.71835[18] 8.76268[17] 1.60181[18] 8.95361[17] 4.59891[14] 1.48179[16]

70 3.20931[18] 1.26516[18] 2.91112[18] 1.31995[18] 2.15766[15] 4.32850[16]

80 5.52446[18] 1.71216[18] 4.84830[18] 1.82341[18] 8.78912[15] 9.53850[16]

90 8.93288[18] 2.10984[18] 7.53338[18] 2.29237[18] 3.20313[16] 1.83676[17]

92 9.77188[18] 2.12891[18] 8.16780[18] 2.32133[18] 4.10465[16] 2.09096([17]

100 1.37345[19] 2.51872[18] 1.10367[19] 2.78650[18] 1.07708[17] 3.09386([17]

110 2.02189[19] 2.83524[18] 1.53073[19] 3.18497[18] 3.45306([17] 4.79458[17]

118 2.67118[19] 3.07752[18] 1.90552[19] 3.49419[18] 8.71521[17] 6.44089[17]

120 2.84985[19] 3.13174[18] 1.99841[19] 3.56431[18] 1.10201[18] 6.89189[17]

2From Ref. [27].
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TABLE III. Transition probabilities W (in s~!) for one- and two-photon 25 — 1s transitions in one-electron ions. The value of py shows
the power dependence on Z of the corresponding transition probability (W) ~ ZP%)_ In the first column the atomic number of the ion (Z) is
indicated. In the next two columns the one-photon transition probabilities and their power dependence on Z are given. In the columns marked
“E1E1: 25 — 1s” we give the two-photon transition probabilities with emission of E1E1 photons (W, in s~!) and the corresponding results
of Ref. [9] (W ©)) together with their power dependence on Z. The columns for “2s — 1s, total 2y present the results of the exact calculation
of transition probabilities: W@, the total transition probability; non-spin-flip and spin-flip, transition probabilities in which the initial state does
not change or changes the projection of the total angular momentum, respectively. We note that the spin flip for the one-photon M1 transition

is 2 of the total transition probability W, while the non-spin-flip is § of W,

Nucleus M1:2s — 1s E1E1:2s — 1s 25 — ls, total 2y

Z w© pw w© w s Pw w© pw  Non-spin-flip  py Spin flip Dst
1 2.49592[—-6] 10.00 8.22906 8.22906* 6.00 8.22906 6.00 8.22906 6.00 3.88291[-9] 9.99
10 251003[4] 1001  820064[6] 8.1923[6]° 599 820065[6] 599 820061[6] 599 3.15349[1]  9.64
20 2.61488[7] 10.05  5.19513[8] 5.1901[8]* 597 5.19515[8] 5.97 5.19492[8] 5.97  2.30865[4] 9.43
30 1.55241[9] 10.11  5.82109[9] 5.8151[9]* 594 5.82125[9] 594  5.82019[9] 5.94  1.05200[6] 9.36
40 2.87414[10] 1020 3.19862[10] 3.1954[10] 590 3.19889[10] 5.90 3.19735[10] 590  1.54080[7]  9.28
50 2.82905[11] 10.32  1.18662[11] 1.1854[11]* 5.84 1.18686[11] 5.84 1.18565[11] 5.84  1.21404[8] 9.21
60 1.87950[12] 10.48 3.42645[11] 3.4229[11]* 5.78 3.42797[11] 5.78 3.42150[11] 5.78  6.47328[8] 9.15
64 3.70310[12] 1056 4.97148[11] 575 497436[11] 575 4.96269[11] 5.74 1.16734[9]  9.11
70 9.58288[12] 10.69 8.30599[11] 8.2975[11]* 5.70 8.31297[11] 5.70  8.28657[11] 5.69  2.63989[9] 9.09
80 4.05532[13] 10.96 1.76726[12] 1.7655[12]* 5.59 1.76988[12] 5.60 1.76102[12] 5.58  8.85741[9] 9.04
90 1.50037[14] 1135 3.39348[12] 3.3899[12]* 5.46 3.40186[12] 547 3.37619[12] 5.44 256687[10] 9.03
92 1.92408[14] 11.44 3.82557[12] 3.8216[12]* 5.43 3.83600[12] 5.44 3.80469[12] 5.41 3.13168[10] 9.00
100 5.04074[14] 11.79 5.98484[12] 5.9782[12]* 5.28 6.00879[12] 5.30 5.94218[12] 5.25 6.66209[10] 9.15
110 1.58119[15]  12.45 9.80101[12] 504 9.86357(12] 5.07 9.70146[12] 499 1.62121[11] 9.87
118 3.81066[15] 12.81 1.38978[13] 5.02  1.40264[13] 5.02 1.36779[13] 4.80 3.48470[11] 13.40
120 4.72890[15] 12.94 1.51115[13] 5.06 1.52650[13] 5.12  1.48250[13] 4.80 4.39623[11] 1544

2From Ref. [9].

for one-electron ions. The data show that this cascade channel
is very small. This is explained by the fact that the 2s and
2pi, energy levels are very close in one-electron ions. We
will show that in the case of one-muon ions this channel is
significant.

The results presented in Tables I and II are obtained sep-
arately for the pointlike nucleus (WO(E’“ )) and for the Fermi
distribution of nuclear charge density (W (¢*)). The data show
that for the electron ions, the nuclear size corrections are
noticeable only for very heavy ions, while for the muon ions
they are of great importance even for light ions. For example,
for the muon ions with Z = 50 the 2s — 1s transition proba-
bilities calculated with the pointlike and the Fermi distribution
of nuclear charge density differ by one order of magnitude.
Another remarkable fact is that for muon ions the nuclear size
corrections decrease the transition probabilities for the 2p;/»
and 2p;, states, but increase them for the 2s state for Z > 3.

For the one-electron ions, the one-photon transition prob-
abilities are listed in [48] and the nuclear size corrections
are considered in [49]. The two-photon transitions for
the 2s-electron state were investigated by many authors
[6,9,11,13,31].

The results of calculating the transition probabilities for
the 2s state of one-electron ions are presented in Table III.
In the columns labeled “M1: 2s — 1s” the one-photon (M 1)
transition probabilities W (¢ and their power dependence py
on Z are given. For small Z the transition probabilities are
proportional to Z'0; for large Z this dependence changes,
reaching Z'? for Z = 120. The columns labeled “E1E1: 25 —
1s” present the results for the two-photon transition probabili-

ties W(© and their power dependence py ; the calculation was
carried out in the approximation where only E' 1 photons were
taken into account. In the columns marked “2s — 1s, total
2y’ the results for the total two-photon transition probability
W (@ and their power dependence py are listed. In the columns
mentioned, the transition probabilities were obtained by aver-
aging over the projections of the total angular momentum of
the initial state m; and summing over the final projections m.
Due to the different power dependence py on Z of the one-
and two-photon transition probabilities, the two-photon decay
dominates for Z < 40, while for larger Z, the decay occurs
mainly via single-photon M1 emission. The data presented
show that taking into account only the E'1 photons is a good
approximation: Even for heavy elements its accuracy does
not exceed 1%. However, below we will show that higher
multipoles are of importance for differential transition prob-
abilities. The transition probabilities for non-spin-flip (m; =
my) and spin-flip (m; = —my) transitions are listed separately
in the following columns. The spin-flip transition probabil-

ity for the one-photon M1 transition is ¥ of W) and the

non-spin-flip transition is § of W), where W is the
total M1 transition probability for either a one-electron or
one-muon ion, respectively. In contrast to the one-photon
transition, the two-photon transitions occur mainly without
the spin flip. We note that in the case of the two-photon
transitions, the non-spin-flip and spin flip have different Z
dependences. For a hydrogen atom, the two-photon transition
probability with the non-spin-flip is nine orders of magnitude
larger than the transition probability with the spin flip. For
the heavy ions, this difference is only 1.5 order of magnitude.
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TABLE IV. Transition probabilities W (in s~!) for the one- and two-photon decay of the 2s state of one-muon ions. The values W0<" )
are calculated with the pointlike nucleus. The values W) are calculated with the Fermi distribution of the nuclear charge density (the nuclear
recoil and the vacuum polarization corrections are also taken into account). The notation is the same as in Table II.

Nucleus M1:2s — 1s El:2s — 2pips El1:2s — 2ps3p 2s — s, total 2y
7 WO(M) W 174 W WO(M) W
1 5.16078[—4] 4.66233[—4] 2.25265 5.09542 1.70151[3] 1.53071[3]
5.28554[—1] 5.18875[—1] 1.53770[2] 4.16282[2] 1.08885]5] 1.06174[5]
5 5.04671[3] 4.99412[3] 4.66810[3] 1.88840[2] 2.65636[7] 2.64451[7]
5[3]* 1[4)* 3[771*
10 5.18997[6] 4.72237[6] 2.17920[8] 2.20546[8] 1.69563[9] 2.12691[9]
5[6]* 1[9]* 2[9]*
20 5.40686[9] 3.44581[9] 3.62043[11] 4.17798[11] 1.07420[11] 8.84592[11]
30 3.21013[11] 1.17226[11] 2.02420[13] 2.42670[13] 1.20366[12] 4.56417[13]
171172 5[13]* 411177
40 5.94395[12] 1.14696[12] 2.65386[14] 3.21458[14] 6.61441[12] 5.92612[14]
50 5.85222[13] 5.56180[12] 1.69154[15] 2.09944[15] 2.45416[13] 3.80941[15]
60 3.89006[14] 1.82667[13] 6.50114[15] 8.25557[15] 7.08851[13] 1.47996[16]
70 1.98575[15] 4.33285[13] 1.85809[16] 2.45839[16] 1.71910[14] 4.32417[16]
80 8.42309[15] 9.37768[13] 4.05345[16] 5.46345[16] 3.66026[14] 9.52912[16]
90 3.13278[16] 1.66535[14] 7.67106[16] 1.06633[17] 7.03501[14] 1.83509[17]
92 4.02531[16] 1.72935[14] 8.64745[16] 1.22282[17] 7.93361[14] 2.08923[17]
100 1.06466[17] 2.80172[14] 1.27813[17] 1.81081[17] 1.24176[15] 3.09106[17]
110 3.43275[17] 4.13532[14] 1.95286[17] 2.83513[17] 2.03054[15] 4.79044[17]
118 8.68675[17] 5.49249[14] 2.60176[17] 3.83097[17] 2.84567[15] 6.43540[17]
120 1.09894[18] 5.85407[14] 2.77829[17] 4.10504[17] 3.06912[15] 6.88604[17]

2From Ref. [27].

We also compare our results for transition probabilities with
the results obtained in Ref. [9], where only E1E1 transitions
were considered. Our results are in reasonable agreement. The
transition probabilities for a pointlike nucleus are presented
in Refs. [12,13], where an analytical expression for the Dirac
Coulomb Green’s function was used, and in Ref. [31], where
the finite basis set for the Dirac equation constructed from
B splines was employed [43,44] (as in the present work). In

Ref. [31] the vacuum polarization corrections (in the Uehling
approximation) to the transition probabilities were calculated.
The results of our calculation (for 1 < Z < 92) are in com-
plete agreement with those in [31], so we do not give the
results therein.

In Tables IV and V we give various transition probabilities
for the radiative decay of the 2s state of the muon ions.
We see that the radiative decay channels of the 2s state for

TABLE V. Transition probabilities W) (in s~!) for one- and two-photon decay of the 2s state of one-muon ions. The notation is the same
as in Table IV. The second column lists the energy difference between 2s and 1s muon states AE = g5, — &y, (in keV).

Nucleus Frequency E1E1:2s — 1s 25 — 1s, total 2y

Z (keV) W W Non-spin-flip Spin flip

1 1.89818 1.53071[3] 1.53071[3] 1.53071[3] 6.43978[—17]
2 8.22384 1.06174[5] 1.06174[5] 1.06174[5] 6.50581[—4]
5 5.22860[1] 2.64451[7] 2.64451[7] 2.64428[7] 2.35653[3]

10 2.07693[2] 2.12691[9] 2.12691[9] 1.96354[9] 1.63372[8]

20 7.91683[2] 8.84588[11] 8.84592[11] 5.99008[11] 2.85584[11]
30 1.64027[3] 4.564006[13] 4.56417[13] 2.94113[13] 1.62303[13]
40 2.64523[3] 5.92577[14] 5.92612[14] 3.78631[14] 2.13981[14]
50 3.70203[3] 3.80899[15] 3.80941[15] 2.43066[15] 1.37875[15]
60 4.77824[3] 1.47970[16] 1.47996[16] 9.44594[15] 5.35368[15]
70 5.77201[3] 4.32310[16] 4.32417[16] 2.76732[16] 1.55685[16]
80 6.82037[3] 9.52598[16] 9.52912[16] 6.10387[16] 3.42524[16]
90 7.74204(3] 1.83435[17] 1.83509[17] 1.17823[17] 6.89703[16]
92 7.82436[3] 2.08837[17] 2.08923[17] 1.34355[17] 7.45678[16]
100 8.67626[3] 3.08954(17] 3.09106[17] 1.98734[17] 1.10372[17]
110 9.46714[3] 4.78775[17] 4.79044[17] 3.08634[17] 1.70410[17]
118 1.00866[4] 6.43142[17] 6.43540[17] 4.15117[17] 2.28423[17]
120 1.02323[4] 6.88168[17] 6.88604[17] 4.44322[17] 2.44282[17]
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TABLE VI. Bound energies and root-mean-square radii for electron ions. In the first two columns, the nuclear charge Z and the nuclear
root-mean-square charge radii R (in fm) are given. In the next columns, the bound energies £ = & — m,c? (in keV) and the root-mean-
square radii (y|r?|y)!/? (in fm) are presented for the corresponding electron states.

Nucleus 1s 2s 2[71/2 2[)3/2
7 R E®© r© E®© 7@ E®© r© E®© r©

1 0.8791 —1.360587283[—2] 91654.8 —3.401479529[—3] 342939.9 —3.401479530[—3] 289836.2 —3.401434246[—3] 289840.9
10 3.0053 —1.36238 9151.37 —0.34071 34233.1 —0.34071 28923.1 —0.34026 28970.1
50 4.6266 —3.52266[1] 1759.47 —8.88410 6543.62 —8.88437 5483.07 —8.57551 5725.50
92  5.860 —1.32081[2] 846.916 —3.41777(1] 3101.99 —3.42111[1] 2525.50 —2.96498[1] 3016.38
120 6.330 —2.59627(2] 543.913 —6.97852[1] 1960.51 —7.06350[1] 1500.79 —5.15841[1] 2236.49

electron and muon ions are qualitatively different. First of all,
it should be noted that the order of the energy levels of the
L shell for electron ions and for muon ions is different. In
Tables VI and VII we present the bound energies of the 1s, 2s,
2pi1,2, and 2p3, states for one-electron ions and one-muon
ions, respectively. We can see that, in the case of one-electron
ions, only the 2p;,, state is placed between the 2s and Is
states and the possible cascade channel of decay 2s — 2py,,
is very weak even for superheavy ions (see the last column
of Table I). In the case of one-muon ions both the 2p;,, and
2p3; states are below the 2s state (see Table VII). The cascade
decay channels 2s — 2p;; and 25 — 2p3,, are strong and
become dominant for Z > 30 (see Table IV). In Fig. 2 we
present the differential transition probabilities for electron and
muon uranium ions presented as a function of x [the parameter
x is defined by Eq. (15)]. The figure demonstrates that for
the electron ions the contribution of the cascade channel is
not noticeable, while for the muon ions the cascade channels
dominate. The differential transition probabilities are symmet-
ric with respect to the middle energy of the emitted photon
x= %). The cascade transitions 2s — 2py, — ls (the first
and fourth peaks) and 2s — 2p3,, — 1s (the second and third
peaks) are represented by the resonances in the differential
transition probabilities. In Fig. 3 we show the differential tran-
sition probabilities for the muon ions for several Z. We can see
the increase in the contribution of the cascade transitions with
increasing nuclear charge Z. Since the cascade channels are
strong in muon ions, the energy of the 2s — 2p and 2p — 1s
transitions can be measured, which will provide information
about the structure of atomic nuclei.

The second important feature of the muon ions is that the
nuclear size corrections are of great importance. For Z > 5

these corrections decrease the one-photon transition probabil-
ities and increase the two-photon transition probabilities (see
Table IV). Since, in the case of the muon ions, the two-photon
decay of the 2s state is dominant for all Z, the nuclear size
correction increases the total transition probability of the 2s
state. The importance of the nuclear size correction for the
muon ions is explained by the fact that the muon is placed
much closer to the nucleus than the electron. The values
of the root-mean-square orbital radius of the corresponding
states (r@®) = (Y ©M|r2 |y @1 1/2) are given in Tables VI
and VII. We see that in the case of the muon ions the root-
mean-square radii of the L-shell states are very close to the
root-mean-square radii of the nuclei (R). In Fig. 4 we present
the ratio between the one-photon and two-photon transition
probabilities for the electron and muon ions. For small Z these
ratios are close for electron and muon ions, but for heavy
ions they become very different. The difference between these
ratios shows the role of the nuclear size corrections for the
muon ions.

The nuclear size corrections, determined by the nuclear
charge radii, are of great importance for the one-muon
ions. However, the radii of the nuclei depend on Z non-
linearly. Accordingly, the Z dependence of the transition
probabilities (where the nuclear corrections are taken into
account) is cumbersome. So we do not present the Z de-
pendence of the transition probabilities for the one-muon
ions where the nuclear charge corrections are taken into
account.

In Tables II and IV we compare our results with the
data presented in [27]. In general, our data are in reasonable
agreement. The only serious discrepancy is found for the two-
photon transition probability for Z = 30 in Table I'V.

TABLE VII. Bound energies and root-mean-square radii for muon ions. In the first two columns, the nuclear charge Z and the nuclear root-
mean-square charge radii R (in fm) are given. In the next columns, the bound energies E® = ¢ — m, c* (in keV) and the root-mean-square
radii (¥ |r?|y)'/? (in fm) are presented for the corresponding muon states.

Nucleus 1s 2s 2])1/2 2]73/2
7 R EW r EW ) EW ) E@ )
1 0.8791 —2.53057 492.842 —6.32394[—1] 1844.61 —6.32192[—1] 1559.44 —6.32184[—1] 1559.46
10 3.0053 —2.77410[2] 449618 —6.97169[1] 167.328 —7.01762[1] 140.450 —7.00826][1] 140.677
50 4.6266 —5.23928(3] 11.6014 —1.53726(3] 37.7515 —1.81440[3] 27.0449 —1.76858]3] 27.8725
92 5.860 —1.21496[4] 8.88120 —4.32520[3] 24.4212 —5.93616[3] 15.4070 —5.70775[3] 16.0846
120 6.330 —1.68862[4] 8.16188 —6.65385[3] 20.5221 —9.46687[3] 12.7713 —9.10565[3] 13.3167

012809-7



V. A. KNYAZEVA et al.

PHYSICAL REVIEW A 106, 012809 (2022)

18 T T

— 7792, electron
16— —- 7=92, muon

f(x)

0.4 0.6 0.8 1
X

FIG. 2. Differential transition probabilities ‘"ZZ:M) (ins 'keV™")
for electron and muon ions for Z =92 as a function of the en-
ergy sharing fraction x [see Eq. (15)]. The differential transition
probabilities are given on a logarithmic scale as log,, f(x), where

F) = W 1571 TkeVTH.

dw|

We also investigated the contribution of the E1E1 transi-
tion for the muon ions and the separate contributions of the
spin-flip and non-spin-flip transitions. In Table V we can see
that for the muon ions as well as for the electron ions the
E1E1 transition is dominant. However, in contrast to the one-
electron ions, for the one-muon ions the spin-flip transition
becomes significant for Z > 10.

For the one-electron ions, the nuclear size corrections
and the vacuum polarization corrections (in the Uehling ap-
proximation) for the two-photon transition probabilities were
investigated in [31]. In general, these corrections are notice-
able only for the heavy ions. In contrast to the one-electron
ions, for the one-muon ions these corrections are of impor-

18 T T
16 2 — Z-1 ] 7
- Z:SO ] ! 7
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Z-120 o
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: ]
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X
FIG. 3. Differential transition probabilities  (££“)  (in

dw
s'keV™!) for muon ions as a function of the energy

sharing fraction x [see Eq. (15)]. The differential transition
probabilities are given on a logarithmic scale as log,, f(x),
where f(x) = {{W—aj]m /(1 s7'1 keV™"). The data are presented for
Z =1,50,92,118.

— electron
— - muon

4
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FIG. 4. Ratios between the one-photon and two-photon transi-
tion probabilities (W,(:}'I") / Wz(;ﬁ’”) for electron (black solid curve) and
muon (red dashed line) ions as a function of the atomic number
Z. The ratios are given on a logarithmic scale as log,, f(Z), where
F@) = Wil (Wil

tance even for the light ions. In Table VIII we present various
corrections to the transition probabilities. We see that the tran-
sition probabilities calculated with the pointlike nucleus have
the same power dependence on Z as the transition probabili-
ties for the one-electron ions. We can also see the importance
of the nuclear size correction: The difference between the data
for the pointlike nucleus and the data obtained with the Fermi
distribution for the nuclear charge density exceeds two orders
of magnitude for the heavy ions.

The nuclear recoil correction is taken into account using
the reduced muon mass. This correction is important only for
the light ions. The vacuum polarization correction is taken into
account within the Uehling approximation. For the one-muon
ions the vacuum polarization correction is noticeable for ions
with Z > 10.

Since the nuclear size corrections are large for the one-
muon ions, we investigate the dependence of these corrections
on the nuclear model. In Table IX we present the results of
the calculation with two models of distribution of the nu-
clear charge density: the Fermi distribution and the nucleus
considered as a homogeneously charged sphere. We can see
that the difference between these two models reaches 3% for
superheavy ions. We estimate the accuracy of our calculation
by the difference between these models.

B. Two-parameter approximation

We performed the calculation of the differential transition
probability as a function of the angle between the momenta
of the emitted photons (6). The results of the calculations
of differential (over the angle ) transition probabilities for
one-electron ions for several Z are presented in Fig. 5. The
results for differential (over the angle 6 and energy w)) tran-
sition probabilities are given in Fig. 6. These results are in
good agreement with those in Ref. [10]. We found that the
differential transition probability can be approximated with
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TABLE VIII. Corrections to the two-photon transition probabilities for one-muon ions (in s~!). In the first column the nuclear charge Z
is given. The columns labeled “Point” present the results of calculation for the pointlike nucleus: the transition probability WO(“ ), its power
dependence on Z (WO(’” o Z™), the asymmetry parameter Ay, and its power dependence on Z (A o< Z"4%). The numbers in parentheses
indicate the accuracy of the two-parameter approximation defined by Eqgs. (21)—(23). The columns labeled “Fermi” give the results of
calculation with the Fermi distribution of the nuclear charge density. The columns labeled “Fermi, NR” give the results of calculation with the
Fermi distribution of the nuclear charge density and the nuclear recoil correction taken into account. The columns labeled “Fermi, NR, VP”
give the results of calculation with the Fermi distribution of the nuclear charge density, the nuclear recoil correction, and the electron vacuum
polarization (in the Uehling approximation) corrections taken into account.

Point Fermi Fermi, NR Fermi, NR, VP

7 WO(/L) Pw, Ao Pay w A w A w A

1 1.70151[3] 6.00 —2.48681(4)[—5] —0.17 1.70149[3] —2.48683(4)[—5] 1.52939[3] —2.4868(1)[—5] 1.53071[3] —2.4861(1)[-5]
10 1.69563[9] 5.99 4.2702(1)[—4] 2.01 2.38340[9] 2.9(2)[—4] 2.34722[9] 2.9(2)[—4] 2.12691[9]  3.3(1)[—4]
50 2.45416[13] 5.84 1.140(2)[-2]  2.13 3.79574[15] 2.9(8)[-5] 3.78207[15]  2.9(8)[—-5]  3.80941[15] 3.0(8)[-5]
92 7.93239[14] 5.44  4.3(1)[-2] 2.17 2.06754[17] 2.1(6)[-5] 2.06579[17]  1.9(6)[-5]  2.08923[17]  1.9(6)[-5]
120 3.06912[15] 3.38 6.8(2)[-2] 0.27 6.82392[17] 1.9(6)[-5] 6.82120[17]  2.0(6)[-5] 6.88604[17]  2.0(6)[—5]

two parameters: the total two-photon transition probability W The calculated values of the transition probabilities W and
and the asymmetry factor A, the asymmetry factors A are listed in Table X for one-electron
dW 3 ions and in Table VIII for one-muon ions. We can see that for

- = —(1 +cos’0)EO)W, 21 the muon ions, taking into account the nuclear size corrections

sinfdo 8 leads to a significant decrease in the asymmetry factors. For
E@)=1—Acos0. 22) the low-Z ions, the asymmetry factors for muon and electron

ions are comparable, while for medium and heavy ions, the
asymmetry factors for muon ions are three to four orders of
dW_(180°) — —4W_ () magnitude smaller than for an electron ion. Accordingly, we

The asymmetry factor is derived as

A= Si?iafw 150° Si;afle 0 (23)  will focus on the study of the asymmetry of the angular distri-
Sngas ( )+ neas (0) bution of the emitted photon only for one-electron ions, where

it is significant. However, for the light ions, despite their small
values, nonzero asymmetry factors lead to the appearance of
nonresonant corrections, which are discussed in Sec. III E.

In Table X we also give the asymmetry factor obtained
from the nonrelativistic calculations [6]. Our results show

The angular distribution 14 cos?6 is determined by the
E1E1 transition [6,38]. The asymmetry of the angular dis-
tribution is explained by the interference between the E1E1
multipole and the M1M1 or E2E?2 multipoles. The higher
multipoles makg a small cor}trlbutl(.)n to the asymmetry even good agreement with [6] for light ions. However, the dis-
for superheavy {o.ns. The d1.fferent1al (over the angle 6 and crepancy between our results for Z = 50 is about 5%, for
energy w;) transition .probab%hty can also be approx1mateq by Z = 92it is 41%, and for Z = 118 they differ by more than
two parameters: the dlffere.ngal (over the energy of the emitted ) oo (imes. For medium Z and heavy ions the results of the
photon) transition probability dW/dw, and the asymmetry 0 elativistic calculation [6] are larger than our results. The

factor a, calculated values for the differential transition probabilities
dw 3 ) aw dW/dw, with the corresponding asymmetry factors a(x) for

sin0dodw, = g(l + cos” )€ (0, wi )a’ @ = %, %, and é are presented in Tables XI-XTII. The accuracy

of the parameters A and a(x) is determined by the accuracy of

§(0,w1) = 1—a(x)cosb. (25 the approximations (21) and (24), respectively. The best accu-

The asymmetry factor a(x) is derived similarly to Eq. (23). racy of the two-parameter approximation reaches x = % This
The approximations (21)—(25) for differential transition prob- ~ accuracy is better than 6 x 1073% for Z = 1 and becomes 1%
abilities are called two-parameter approximations. for Z = 120. In Table XI (x = 3) we also give the asymmetry

TABLE IX. Corrections to the two-photon transition probabilities for one-muon ions (in s~!). The columns labeled “Fermi” give the results
of calculation with the Fermi distribution of the nuclear charge density. The columns labeled “Sphere” show the results of calculations with
the nucleus considered as a homogeneously charged sphere.

Fermi Sphere
7 w A W A
10 2.12691[9] 3.3(1)[—4] 2.13988[9] 3.3(2)[—4]
50 3.80941[15] 3.0(8)[—5] 3.98007[15] 2.8(1)[-5]
92 2.08923[17] 1.9(6)[—5] 2.16710[17] 1.9(6)[—5]
120 6.88604[17] 2.0(6)[—5] 7.11310[17] 1.9(6)[—5]
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FIG. 5. Normalized differential transition probabilities [f(0) =
#fn&;d‘)] for one-electron ions as a function of the angle between
the momenta of the emitted photons (¢). The data are presented for

Z=1,64,92,118.

factor derived from Ref. [10]. In Ref. [10] the calculations
were carried out for point nuclei, which explains the differ-
ence between our results. As follows from Tables XI-XIII, the
asymmetry factor a(x) depends on the energy of the emitted
photon (w; and w,). However, the asymmetry factors A and
a(x) are almost independent of the angle between the emitted
photons.

C. Photon polarizations

To study different polarizations of the emitted photons, it
is convenient to employ the two-parameter approximation.
We consider the two-photon emission in a coplanar geom-
etry. We assume that the momenta of the emitted photons
are placed in the (x,y) plane, i.e., the polar angles of the
photon momenta are 6; = 6, = /2. The x axis is directed
along the momentum of the first photon k; = we,. In this
case, the angle between the momenta of the emitted photons
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FIG. 6. Normalized differential transition probabilities [f(0) =
( AW )(dw(e)
sin 0dOdw; dwy

between the momenta of the emitted photons (6) for x =
are presented for Z = 1, 64, 92, 118.

)~'] for one-electron ions as a function of the angle
1. The data

TABLE X. Transition probabilities W (in s~!) for two-photon
decay of the 2s-electron state and the asymmetry factor A. The
numbers in parentheses indicate the accuracy of the two-parameter
approximation defined by Eqgs. (21)—-(23). The numbers in square
brackets denote multiplication by powers of 10. The values of py
and p, show the power dependence on Z of W© and A (W© oc ZPW
and A o« ZP4), respectively.

z W pw A A Pa

1 822906  6.00 4.256617(3)[—6] 4.22[—6]  2.00
10 8.20063[6] 5.99 4.27022(1)[—4] 4.24[-4] 2.01
20 5.19515[8] 597  1.72422)[-3]  1.72[-3] 2.03
30 5.82125[9] 594  3.9368(3)[—3] 3.97[-3] 2.05
40 3.19889[10] 590  7.136(2)[—3]  7.32[-3] 2.09
50 1.18687[11] 5.84  L141(D[=2]  1.20[—2] 2.12
60  3.42797[11] 5.78  1.686(2)[— 1.84[-2] 2.16
64  4.97436[11] 5.75  1.9403)[-2]  2.16[—1] 2.17
70 831297[11] 5.70  2.3594)[-2]  271[=2] 2.19
80  1.76987[12] 5.60 3.16(1)[—2] 3.92[-2] 2.20
90  3.40186[12] 5.47 4.102)[-2] 5.62[-2] 2.16
92 3.83600[12] 5.44 4.30(2)[—2] 6.06[-2] 2.15
100 6.00880[12] 5.30 5.13(3)[—2] 8.19[-2] 2.02
110 9.86369[12] 5.07 6.15(5)[—2] 1.23[—1] 1.59
118 1.40273[13] 5.02 6.7(1)[=2] 1.80[—1] 0.55
120 1.52661[13] 5.12 6.8(2)[—2] 2.00[—1] 0.01

2From Ref. [6].

is determined by the azimuthal angle of the second photon:
6 = min(g,, 2m — ¢,). Then the vectors e; and e, [introduced
in Eq. (18)] for the first photon read

0 0
eV=11], &»=[o0 (26)
0 ~1

and those of the second photon are

— sin ¢, 0
eV =1 cospn |, &P =1|0|]. (27)
0 -1

Since all the plates composed of the emitted photons mo-
menta are equivalent, the differential transition probability can
be written as

dW(M)\z) dW(Mlz)
)= 8n2—(3, 0,7, 6). (28)
sin 0d0dw,; dQ1dQ0dw; \ 2 2

Then the energy-differential transition probability and the to-
tal transition probability read

()»1/\2)
_Z / df sin—m787 M7 (29)
dwl sinfdodw;’
(ei—ef)/2 dW *i22)
W= do 0 do,——. (30
Z/ sin / O nodede OO

AAa

Within the dipole approximation, the differential transition
probability is proportional to [6,36,38]

dW *122)
— (61, 91, 02, ~ €M (o, €526,
dQlszda)l(l(pl b 02) ~ |€" (01, ¢1) - € (2(02)|

€1V
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TABLE XI. Differential transition probabilities dW© /dw, (in
s~'keV~!) for two-photon decay of the 2s-electron state and the
asymmetry factor a(x) for x = % The numbers in parentheses indi-
cate the accuracy of the two-parameter approximation [see Egs. (24)
and (25)]. The numbers in square brackets denote multiplication by
powers of 10. The values of py and p, show the power dependence
onZ of W and a (W® o ZP and a o< ZP+), respectively.

z dW© Jdw, Pw a(x) Pa
1 2.08759[3] 4.00 6.108760(4)[—6] 2.00
<2.5[—4]
10 2.08250[7] 4.00 6.118315(4)[—4] 2.00
20 3.30725[8] 3.98 2.45890(1)[—3] 2.01
30 1.65327[9] 3.95 5.5759(1)[—3] 2.03
40 5.13119[9] 391 1.00205(3)[—3] 2.05
50 1.22281[10] 3.86 1.5872(2)[-2] 2.08
54 1.64456[10] 3.83 1.8628(2)[—2] 2.09
1.865[—2]*
60 2.45826[10] 3.79 2.3229(4)[-2] 2.10
64 3.13637[10] 3.75 2.6617(6)[—2] 2.12
70 4.38029[10] 3.69 3.220(1)[—2] 2.13
80 7.11800[10] 3.56 4.288(3)[—2] 2.16
920 1.07276[11] 3.37 5.533(6)[—2] 2.16
92 1.15507[11] 3.33 5.801(7)[=2] 2.16
5.838[—2]*
100 1.51322[11] 3.11 6.93(1)[-2] 2.10
110 2.00333[11] 2.71 8.43(2)[-2] 1.91
118 2.38972[11] 2.23 9.56(4)[-2] 1.51
120 2.47937[11] 2.08 9.70(4)[-2] 1.34

2From Ref. [10].

Within the two-parameter approximation, the differential tran-
sition probability for the polarized emitted photons reads

dwW Ai22) 3 2
mododay ~ 519 Oren) €6
x&(@,wl)d—w. (32)
da)1
TABLE XII. Same as in Table XI but for x = 1.
Z dW© Jdw, Pw a(x) Pa
1 1.98512[3] 4.00 5.12938(2)[—6] 2.00
10 1.97912[7] 3.9 5.13841(1)[—4] 2.00
20 3.13751[8] 3.97 2.06626(1)[—3] 2.01
30 1.56380[9] 3.94 4.6899(1)[—3] 2.03
40 4.83349[9] 3.89 8.4387(5)[-3] 2.06
50 1.14574[10] 3.83 1.3387(2)[—2] 2.08
60 2.28832[10] 3.74 1.962(1)[—2] 2.11
64 2.91094[10] 3.70 2.250(1)[-2] 2.13
70 4.04597(10] 3.63 2.725(2)[-2] 2.14
80 6.51572[10] 3.48 3.633(4)[-2] 2.16
90 9.71948[10] 3.27 4.69(1)[—2] 2.15
92 1.04422[11] 322 4.91(2)[-2] 2.15
100 1.35527[11] 2.99 5.87(2)[-2] 2.07
110 1.77166[11] 2.56 7.103)[-2] 1.81
118 2.09131[11] 2.08 7.96(5)[—2] 1.26
120 2.16419[11] 1.93 8.14(6)[—2] 1.04

TABLE XIII. Same as in Table XI but for x = é

z dw'® [dw, Pw a(x) Pa

1 1.56161[3] 4.00 2.584334(3)[—6] 2.00
10 1.55301[7] 3.99 2.591451(4)[—4] 2.01
20 2.44352[8] 3.95 1.04514(1)[—3] 2.02
30 1.20281[9] 3.90 2.3831(2)[-3] 2.05
40 3.65405[9] 3.81 4.313(1)[-3] 2.08
50 8.47412[9] 371 6.884(4)[—3] 2.11
60 1.64860[10] 3.57 1.015(2)[—2] 2.14
64 2.07284[10] 3,51 1.165(2)[—2] 2.14
70 2.82774[10] 3.40 1.4133)[-2] 2.14
80 4.40119[10] 3.19 1.870(7)[—2] 2.09
90 6.32470[10] 2.92 2.4002)[—2] 1.88
92 6.74259[10] 2.85 2.50(2)[—2] 1.88
100 8.47504[10] 2.58 2.90(3)[—2] 1.50
110 1.06410[11] 2.13 3.23(5)[=2] 0.33
118 1.21958[11] 1.70 3.12(7)[=2] ~2.36
120 1.25419[11] 1.58 2.98(6)[—2] ~3.70

Below we consider three different polarizations of the emitted
photons.

1. Linear polarizations € and ¢®*

The polarization vectors of the first (i = 1) and second
(i =2) photons are chosen as GEOO) = eE]) and 65906) = e@,
respectively. In this case, the polarization vectors efoc) are
placed in the (x, y) plane. Accordingly, the differential transi-
tion probabilities for the considered photon linear polarization

are

WEZ 3 g, (33)
= &0, 01)—,
sinfdfdw, 8 Ydw,
dwO9 3 dw
2 os?0E0, w) 34
Sin6dode, 80 08O g 4
AW @90 g 90°.0%)
- = — =0. (35)
sin 0dOd w sin 0dOdw

The function £(6, w;) is given by Eq. (25). The numerical
results for the differential transition probabilities (for x = %)
as a function of the angle 6 are presented in Fig. 7. The
results of the exact numerical calculation and the results of the
two-parameter approximation are not distinguishable in this
scale. The blue dashed line represents the angular dependence
of the differential transition probability (34). The red solid
line gives the angular dependence of the differential transition
probability (33). According to Eq. (33), the red solid line
shows the angular dependence of the function £(6, w;). In the
case of this linear polarization, the contributions of photons
with polarizations of eﬁoc) and 6590°> are very different.

2. Linear polarizations €*>) and ')

In this section we consider the polarization vectors chosen

as
€20, o) = —=[e" O, 0) + PO, 0], (36)

135°
e, o) =

Sl=8l-

e @ 0 — 7@ gn)]. 3D
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Z=1 7=64 7=92 Z=118
08T ~ T T T JogFE " " 1 " T 08F T T T T TogFE " "~ 1 "
0.6 — —0.6 — 0.6 — —0.6 — —

= L 1 L L 4 L i
= 04 |< /—0.4 = 04 ——504 -7
- 1S ’ o R /]
02+ \ ;0 02 N / 02 N 7/ —02F /
LN s 4 L / LN s/ 4 b N 7
0 1 |\J/| 1 0 LN 0 LN 0 RN SN A
0 90 180 0 90 180 0 90 180 0 90 180
0 (deg) 0 (deg) 0 (deg) 0 (deg)

FIG. 7. Normalized differential transition probabilities [f(6) = (

dw ©0122) )( aw®
sin0dOdw,

do )~!'] as a function of the angle between the momenta of

the emitted photons (¢) for x = 1. The results for the photon linear polarizations € and €®*) considered in Sec. III C 1 are presented. The

blue dashed line gives the angular dependence of the differential transition probability for the photons with polarizations €,

©0%) and 6(2900) [see

Eq. (34)]. The red solid line gives the angular dependence of the differential transition probability for the photons with polarizations 6(10”) and

egoo) [see Eq. (33)]. The data are presented for Z = 1, 64, 92, 118.

where egl) and el@ are given by Eqgs. (26) and (27). The index
i = 1, 2 denotes the photon number.
Using Eq. (32), we can write the differential transition
probabilities in the two-parameter approximation as
AW (457,459 dW (135°.135%)

related to the transition probabilities for the circularly polar-
ized photons, which are discussed below.

3. Circular polarization

The polarization vectors of the emitted photons with the

sinfdfdw, ~ sin0dOdw, circular polarization read
3,0 dw +) Lo e
= — - 9, _—, 38 ej (eiv gol) = = ei (eis (pl) + lei (eis (pl) ) (40)
700! 360, o) (38) 2l ]
(45°,135°) (135°,45%) _ 1 )
aw _ W €O 0) = —=[e]" O, p) —ie? 61 9)]. @D
sin0d0dw,  sin0dOdw, V2
340 0 aw 39 Using Eq. (32), we can write the differential transition proba-
=35 55( ’ wl)%' (39 bilities in the two-parameter approximation as

The numerical results for the differential transition probabili- dw &+ dw =) 3,406 dw

ties (for x = 1) as a function of the angle 0 are presented in sin0d0dw; _ sinfdodw, 4 Sin 55(9’ wl)d_a)l’
Fig. 8. The blue dashed line shows the differential transition 2)
probabilities for the emission of photons with the same po-

larizations (A; = X,). The red solid line gives the differential dW &) AW 3 9 dW
transition probabilities for the emission of photons with dif- - = — = = cos* —£0, w)—.
ferent polarizations (A; # A,). The transition probabilities for sinddfdw;  sinddddw; 4 2 day

the emitted photons with this linear polarization are explicitly (43)

7Z=1

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2
0 0 0

0 90 180 0 90 180 0 90 180 0 90 180
0 (deg) 0 (deg) 0 (deg) 0 (deg)

FIG. 8. Normalized differential transition probabilities [f(8) = (‘iiv“:g:]zz:l) ) d;‘::) )~!] as a function of the angle between the momenta of
1

the emitted photons (6) for x = 1. The results for the photon linear polarizations € and €'%5") and the circular polarization considered
in Secs. III C 2 and IIT C 3 are presented, respectively. In the case of the photon linear polarizations € and €'**"), the blue dashed line
represents the angular dependence of the differential transition probability for the photons with equal polarizations [see Eq. (38)] and the red
solid line gives the angular dependence of the differential transition probability for the photons with different polarizations [see Eq. (39)]. In
the case of the circular photon polarization, the blue dashed line represents the angular dependence of the differential transition probability
for the photons with different polarizations [see Eq. (43)] and the red solid line gives the angular dependence of the differential transition

probability for the photons with equal polarizations [see Eq. (42)]. The data are presented for Z = 1, 64, 92, 118.
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TABLE XIV. Contributions of the positive- and negative-energy intermediate states of the electron spectrum to the transition probabilities
W (in s~1) for two-photon decay of the 2s state and the asymmetry factor A for one-electron ions. The columns labeled “Positive” and
“Negative” list the results of calculations, where only the positive- or negative-energy intermediate states are taken into account, respectively.

The notation is the same as in Table X.

Positive Negative
z we© pw A Pa W pw A Pa
1 8.22861 6.00 —6.220120(3)[—7] 2.00 6.25911[-9] 10.00 1.818(3)[—1] 7.49[—4]
10 8.15627[6] 5.98 —6.33096(3)[—5] 2.04 6.10945[1] 9.95 1.844(5)[—1] 2.89[-2]
50 1.04463[11] 5.59 —2.304(2)[-3] 2.73 4.60068(8] 9.67 221(D)[—1] 2.73[—1]
92 2.40261[12] 4.25 —1.80(2)[-2] 4.56 1.71783[11] 9.96 2.702)[—-1] 3.23[-1]
120 5.58159[12] 2.18 —8.8(4)[-2] 7.59 2.64389[12] 10.81 2.83(3)[—1] —7.53[-2]

The differential transition probability as a function of the
angle 6 is presented in Fig. 8. The results for circular po-
larizations are exactly the opposite of the results for linear
polarizations €*”) and €137, The red solid line gives the dif-
ferential transition probabilities for emission of photons with
the different polarizations (A; = X,). The blue dashed line
shows the differential transition probabilities for the emission
of photons with the same polarizations (A; # Az).

D. Contribution of the negative continuum

According to Egs. (9) and (10), both the positive- and
negative-energy parts of the Dirac spectrum contribute to the
two-photon transition probabilities. The contribution of the
negative-energy part was investigated in the work of Lab-
zowsky et al. [9], where it was shown that its contribution
to the total transition probabilities is small. The contribution
of the negative continuum to the differential transition proba-
bilities was studied in [11]. It was noticed that contribution
of the negative continuum to M 1M1 and E2E2 multipoles
of the two-photon transitions is of great importance [11].
Since the asymmetry of the differential transition probability
is a consequence of the interference of the E1E1 multipoles
with M1M1 and E2E2 multipoles, the contribution of the
negative continuum to the asymmetry factor is very large. In
Tables XIV and XV we present the results of the calculations
of the transition probabilities, where we give separately the
contributions of the positive- and negative-energy intermedi-
ate states for one-electron and one-muon ions, respectively.
The calculation was performed in the transverse gauge [see
Eq. (4)]. The data in Table XIV show that the negative contin-
uum gives the dominant contribution to the asymmetry even
for light ions, while the positive-energy intermediate state

gives the main contribution to the transition probability. In
Table XV we can see that the contribution of the negative
continuum for one-muon ions is very small even for heavy
ions.

E. Nonresonant corrections

The exited energy level is usually characterized by two
parameters: the energy and the width of the level. This is the
so-called resonant approximation [34]. In this approximation,
the line profile is described by the Lorentz contour, and the
energy and width of the level do not depend on the partic-
ular process of measurement. If we go beyond the resonant
approximation, nonresonant corrections arise, which lead to
asymmetry of the line profile [42]. Nonresonant corrections
are usually very small, but they are of importance since they
indicate the limit to which the concept of energy for an excited
atomic state has a physical meaning [34]. This corrections
were investigated in many works [50-53]. In some precision
experiments, nonresonant corrections are taken into account
when determining the accuracy of the experiment [35]. These
corrections should also be important for precision measure-
ments with muon ions [28]. We would like to note that, for the
light ions, the asymmetry factors for electron and muon ions
are of the same order of magnitude.

Since the asymmetry factor has a nonzero value even for
light ions, it can lead to nonresonant corrections to the energy
levels. In particular, for the hydrogen atom, the asymmetry
factor a(x) (forx = %) isequal to 6.1 x 107°. This asymmetry
factor should be compared with the declared accuracy of pre-
cise measurements of the frequency of the 1s-2s two-photon
transition in atomic hydrogen [26], which is 4.5 x 1071,
This measurement was performed in an experiment in which

TABLE XV. Contributions of the positive- and negative-energy intermediate states of the muon spectrum to the transition probabilities W )
(in s7!) for two-photon decay of the 2s state and the asymmetry factor A for one-muon ions. The columns labeled “Positive” and “Negative”
list the results of calculations where only the positive- or negative-energy intermediate muon states are taken into account, respectively.

Positive Negative
7 w A ww A
1 1.53062[3] —2.9748(1)[-5] 1.16940[—6] 1.816(5)[—1]
10 2.11820[9] —4.8(3)[-5] 1.14713[4] 1.89(1)[—1]
50 3.80852[15] —4.4(3)[—6] 1.02599[10] 3.01(5)[—1]
92 2.08906[17] —1.9(5)[—6] 2.55222[11] 4.5()[—1]
120 6.88561[17] —1.3(4)[—6] 7.67971[11] 5.53)[—1]
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the reverse process was studied: two-photon excitation of
the 1s state. The asymmetry factor gives a correction to the
two-photon transition probabilities due to the nonzero angle
between the photon momenta. If the angle spread between
momenta equals 86, then this should lead to a relative uncer-
tainty for the transition probability [see Eq. (25)]

dw dw -
(sin 0d0dw, 9~ Gn 0dodw, (0)) <sin 0dOdw, (0))
= a(x)(1 — cos 86). (44)

If 66 is about 1°, then the relative uncertainty given by
Eq. (44) is about 9.3 x 107'°, The relative difference between
the differential transition probabilities for 0° and 180° [given
by Eq. (44) with 86 = 180°] is 1.2 x 107>. We note that
in the experiment in [26] a set of mirrors was used. Thus,
photons were absorbed at both 0° and 180° angles. For ab-
sorption of photons with a 0° angle between the momenta, the
asymmetry factor decreases the transition probability, while
for absorption with 180°, the asymmetry factor increases the
transition probability. Accordingly, the presence of absorption
of photons at different angles should significantly reduce the
described uncertainty. Nevertheless, in principle, the asym-
metry factor should be taken into account as a source of
nonresonant corrections.

IV. SUMMARY

We investigated the radiative decay of the 2s state of one-
electron and one-muon ions with respect to the polarization
of the emitted photons. The investigation was performed for
the ions with nuclear charge numbers 1 < Z < 120. Particular
attention was paid to the role of the two-photon decay channel.
For both electron and muon ions the most long-lived state
of the L shell is the 2s state. The radiative decay of the 2s
state in the electron and muon ions is qualitatively different.
In particular, in contrast to electron ions, in the case of muon
ions the cascade (25 — 2p3;» — 1s and 25 — 2p;p — 1s)
channels are of great importance. For the muon ions, taking

into account the nuclear size corrections may change the tran-
sition probability by several orders of magnitude.

The two-parameter approximation was introduced, which
made it possible to describe with high accuracy the two-
photon angular-differential transition probability for the
polarized emitted photons. The accuracy of this approxima-
tion was 1073% for light ions, remaining within 1% even
for the superheavy ions (for the photons with equal ener-
gies). The parameters of the approximation are the total (or
energy-differential) transition probability and the asymmetry
factor, which are listed in the tables. Within the two-parameter
approximation, the asymmetry factor completely determines
the asymmetry of the differential transition probability. For
the one-muon ions the asymmetry is very small. For the one-
electron ions the main contribution to the asymmetry factor
is made by the negative continuum of the Dirac spectrum.
Using the two-parameter approximation, we investigated the
various polarizations of the emitted photons. The angular
dependence of the differential transition probabilities for the
emission of circularly polarized photons is clearly related to
the transition probabilities for linearly polarized photons. A
nonzero asymmetry factor even for light ions can be a source
of nonresonant corrections, which can be important for preci-
sion experiments.
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