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Storage and manipulation of single x-ray photons via nuclear hyperfine splitting
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We introduce a technique to store and manipulate single x-ray photons, which relies on dynamically controlled
absorption via nuclear hyperfine magnetic splitting. This scheme is inherently suitable for storage, on-demand
generation, and dynamical manipulation of single x-ray photons, for instance, the manipulation of the temporal
shape, temporal splitting, the interference between x-ray photons, and the control of the polarization. Our
approach provides more opportunities in x-ray quantum information.
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I. INTRODUCTION

The commissioning of novel x-ray sources opens the new
field of x-ray quantum optics, which expands the light-matter
interactions into x-ray-nuclear regime [1]. Compared to op-
tical photons, x rays have a number of desirable properties
such as deeper penetration, better focus, and correspondingly
superior spatial resolution, as well as robustness. Based on
x-ray-nuclear interfaces, many coherent control tools of x-
ray photons have been demonstrated experimentally [2–10],
which provide potential applications for the fields of metrol-
ogy, material science, biology and chemistry. Moreover, the
properties of x-ray photons provide some advantages over
the optical photons in quantum information technologies, for
instance, x-ray photons are no longer limited by an inconve-
nient diffraction limit as for low-frequency photons and x rays
are resonant to nuclear transitions with long coherence times,
which are very well isolated from the environment even at
room temperature.

Storage and retrieval of flying photons on demand are
key elements for quantum information technologies, which
has been realized in optical regime [11–17]. Some propos-
als to store single x-ray photons have been put forward,
for instance, the storage of narrow-band x-ray pulses based
on electromagnetically induced transparency (EIT) [18], the
generation of x-ray photon echoes using gradient frequency
comb (GFC) and stepwise gradient echo (SGE) [19,20].
Similar photon-echo quantum memory techniques based on
controlled reversible inhomogeneous broadening (CRIB) have
been widely investigated in optical regime [21–23]. Coher-
ent storage of nuclear excitation (not the input x-ray pulse)
has also been proposed and realized experimentally [24–26].
Very recently, an optical memory protocol based on Autler-
Townes splitting (ATS) has been proposed [27] and realized
experimentally [28–30], which can not be transferred di-
rectly to the hard x-ray regime due to the lack of two-color
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x-ray lasers. In this paper, we propose a mechanism to store
and manipulate a broadband single x-ray photon pulse via
dynamically controlled nuclear hyperfine magnetic splitting
(NHMS). Our protocol relies on controlled absorption through
NHMS peaks and our results show highly effective storage
and on-demand generation of broadband single x-ray photon
pulses. Unlike the usual photon-echo quantum memory tech-
nique [21–23], our protocol uses a dynamically controlled
NHMS to replace the requirement of CRIB. Compared with
established theoretical proposals [19,20] for a broadband sin-
gle x-ray photon pulse, our mechanism does not require the
inherent high-speed operation of the mechanical motion in the
original storage schemes, which offers relaxed requirements
for future experimental implementation. Moreover, coherent
control of the photon echo based on CRIB have been proposed
[31,32] and realized [33], which is very important in quan-
tum information. Here, we present the methods to manipulate
the signal x-ray photons, for instance, temporal shaping and
splitting of retrieval x-ray pulses, interfering x-ray photons,
and polarization switching. This provides suggested applica-
tions in developing new quantum information technologies in
x-ray regime such as x-ray qubits.

II. THEORETICAL MODEL

We begin with a typical nuclear forward-scattering sys-
tem with monochromatized x-ray pulses shining along z axis,
which is perpendicular to a nonmagnetic sample containing
Mössbauer nuclei 57Fe, for instance, the stainless steel or
K2Mg57Fe(CN)6, see Fig. 1. This isotope has a stable ground
state and a first excited state at 14.413 keV, corresponding to
a wavelength of 0.86 Å. These two states are connected via a
magnetic dipole (M1) transition. With the nuclear resonance
of approximate 4.66 neV natural linewidth, even when tuned
to the nuclear transition energy, synchrotron pulses will act
as broadband sources, with just one resonant photon in each
pulse at most. In the presence of hyperfine magnetic field, the
stable ground state of 57Fe (nuclear spin Ig = 1/2) is then split
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FIG. 1. Schematic of the nuclear forward-scattering system with
a nuclear ensemble containing 57Fe. An incident x-ray pulse with
linear polarization penetrates the resonant nuclear sample under a
time-dependent magnetic field. The diagram of the nuclear levels is
shown.

into a doublet with mg = ±1/2 and the first excited state (nu-
clear spin Ie = 3/2, lifetime τ0 = 141 ns) into a quadruplet
with me = ±1/2, ±3/2. The hyperfine levels are coupled by
six transitions, depending on the magnetic field geometry and
polarization of the incident x-ray pulses. In the following,
we first consider the x-ray pulse is linearly polarized with
x-polarized light denoted as π polarization by convention. A
time-dependent magnetic field B(t ) that sets the quantization
axis for the nuclear ground- and excited-state spin projections
mg and me is parallel to the y axis. In this scenario, the two
�m = me − mg = 0 magnetic dipole transitions will be driven
by the incident pulse.

The simplified Maxwell-Bloch equations in perturbation
regime where the amplitude of probe Rabi frequency �0 �
� describes the dynamics of x-ray-nuclear interaction sys-
tem, which has been verified in nuclear forward scattering
[24,27,34]

∂tρS (z, t ) = − �

2
ρS (z, t ) − i�(t )ρP(z, t ), (1)

∂tρP(z, t ) = − �

2
ρP(z, t ) − i�(t )ρS (z, t ) + i

C

2
�p(z, t ), (2)

1

c
∂t�p(z, t ) + ∂z�p(z, t ) = i

β

C
ρP(z, t ), (3)

where

�(t ) = 1

h̄
(me4μe − mg1μg)μN B(t ), (4)

ρP(z, t ) = ρ41(z, t ) + ρ32(z, t ) = 2iIm[ρ41(z, t )], (5)

ρS (z, t ) = ρ41(z, t ) − ρ32(z, t ) = 2Re[ρ41(z, t )]. (6)

In the above equations, the states |1〉 and |2〉 denote the two
ground states with mg = −1/2 and mg = 1/2, respectively,
and |3〉 and |4〉 the two excited states with me = 1/2 and
me = −1/2, respectively. μN is nuclear magneton, μg and μe

are the Landé factors of the ground states and excited states,
respectively. The constant � is the spontaneous decay rate of
57Fe, C = √

2/3 is the corresponding Clebsch-Gordan coeffi-
cient for the two �m = 0 transitions in Fig. 1, and β = 4�ξ/L
where ξ is the resonant thickness and L the thickness of nu-
clear target. ρP(z, t ) and ρS (z, t ) denote nuclear polarization
and spin coherences, respectively.

III. RESULTS

With the goal of highly reliable storage and retrieval of
a broadband single x-ray photon pulse, we investigate the
configuration that pulsed magnetic fields are applied. As an
example, we consider a Gaussian input single x-ray photon
pulse with 9 ns bandwidth and 14.413 keV central frequency,
which is resonant to the nuclear transition of 57Fe. Our pro-
posal is not limited to Gaussian input pulses, for example, an
exponential attenuated input x-ray pulse is considered in the
Appendix. In our protocol, we first consider the magnetic field
has the same temporal shape as the input x-ray photon with
the condition AB = ∫

�(t )dt ≈ π , which has been adopted
in recent works [35,36]. The first magnetic field pulse arrives
simultaneously as the input x-ray pulse. Here, AB is defined
as the area of the magnetic field, which is set to π for all
the numerical simulations presented in this paper. Under the
above conditions, an analytical solution of Eqs. (A1)–(A3)
with the first pulsed magnetic field is derived with some ap-
proximations (details are presented in the Appendix)

ρS (L, t ) = A01

(
1 − cos

[∫ t

t01

�1(t ′)dt ′
])

e− �
2 t , (7)

ρP(L, t ) = A01sin

[∫ t

t01

�1(t ′)dt ′
]

e− �
2 t , (8)

�1
p(L, t ) = �p(0, t ) − �Lsin

[∫ t

t01

�1(t ′)dt ′
]

e− �
2 t , (9)

where A01 = C�0
4�01

e− 2�ξ

�01 and �L = �0(1 − e− 2�ξ

�01 ). �1
p is Rabi

frequency of the output x-ray photon, �1(t ) and �01 is the
temporal splitting and the splitting amplitude caused by the
first magnetic field, and t01 is the starting time.

When the single x-ray photon pulse arrives with the mag-
netic field, it is absorbed by the nuclei and transferred to the
nuclear polarization coherence ρP and nuclear spin coherence
ρS inside the medium. After some time, the output x-ray pho-
ton leaves out the nuclear medium meanwhile the polarization
coherence ρP evolves to zero since

∫
�(t )dt ≈ π , see Eq. (8)

and Eq. (9). Surprisingly, the nuclear spin coherence term ρS

reaches a maximum, which is preserved if we neglect the
spontaneous decay �, see Eq. (7). The numerical results are
shown in Fig. 2(a). After a chosen storage time T1 = 75 ns at
random, the second magnetic field is switched on as a readout
signal. The analytical solution under some approximations is
presented in the following:

ρS (L, t ) = 2A02

(
1 − 2�ξ

�0

)
cos

[∫ t

t02

�2(t ′)dt ′
]

e− �
2 t

+ 2A02
2�ξ

�0
e− �

2 t , (10)

ρP(L, t ) = −2A02

(
1 − 2�ξ

�0

)
sin

[∫ t

t02

�2(t ′)dt ′
]

e− �
2 t , (11)

�2
p(L, t ) = 2�0

2�ξ

�02
e− 2�ξ

�02 sin

[∫ t

t02

�2(t ′)dt ′
]

e− �
2 t , (12)

where A02 = C�0
4�02

e− 2�ξ

�02 and �2
p represents the Rabi fre-

quency of the first echo pulse. The shape of the regenerated
x-ray pulse is approximately the same as input since
sin[

∫ t
t02

�2(t ′)dt ′] ≈ �2(t )/�02 under the initial conditions.
Based on the above equations, we find that the magnetic field
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FIG. 2. (a) Storage and retrieval of a broadband single x-ray
photon pulse. The input x-ray pulse (orange line) shines the nuclear
sample together with a pulsed magnetic field (dashed green line).
The solid red and blue lines are the numerical and analytical results
for the propagated x-ray photon, respectively. The x-ray photon is
recovered by the second pulsed magnetic field at the central time
t = 75 ns. (b) The efficiency of the first echo depending on the
resonant thickness. Here, the spontaneous decay is taken into account
and makes the efficiency decrease with time.

mediates the transformation from the nuclear spin coherence
ρS to the nuclear polarization coherence ρP and the x-ray
photon. First, the x-ray photon is mapped to the nuclear spin
and polarization coherences via the absorption in the presence
of the magnetic field. Then the nuclear spin coherence ρS

is preserved, which can be transformed back to the output
x-ray photon by the readout magnetic field. The retrieval of
the x-ray photon is shown in Fig. 2(a) and the approximate
analytical solution fits well with the numerical result. Our
analytical method can also been applied in the optical domain.
The storage mechanism discussed here is via the dynamically
controlled absorption, which is different from the narrow-
band storage protocol based on EIT [18] and this makes our
approach suitable for storing a broadband single x-ray pho-
ton pulse. A detailed discussion of these two mechanisms is
demonstrated in Ref. [28,30].

The Rabi frequency of the regenerated x-ray photon using
a π readout magnetic field pulse is dependent on the resonant
thickness ξ , see Eq. (12). When 2�ξ

�02
∼ 1, the amplitude of

Rabi frequency reaches a maximum, which obtains a optimal
echo efficiency. This efficiency is defined as

η =
∫ ∣∣�2

p(L, t )
∣∣2

dt∫ ∣∣�p(0, t )
∣∣2

dt
(13)

FIG. 3. Temporal manipulation of regenerated x-ray photons.
Two readout magnetic field pulses with duration 4.5 ns and 18 ns are
used, which are corresponding to the temporal compression (solid
blue line) and stretching (solid black line), respectively.

and the numerical result of η as a function of the storage
time and ξ is demonstrated in Fig. 2(b). Using the readout
magnetic field pulse with area π , our mechanism provides a
maximal nearly 55% storage efficiency of the first retrieved
x-ray photon with the optimal ξ = 16( 2�ξ

�02
= 1) if the spon-

taneous decay is neglected. When the spontaneous decay is
considered, the storage efficiency decreases with time, as
shown in Fig. 2(b). A larger storage efficiency can be provided
using magnetic fields with different areas.

According to Eq. (12), the temporal shape and amplitude of
the recovered x-ray photon can be manipulated by the readout
magnetic field. As in the writing process, we choose a mag-
netic field with area π and matches the temporal shape of the
input x-ray signal. Two pulsed magnetic fields with the same
area π but different durations, which do not match the input
x-ray signal are used in the readout process for comparison.
As presented in Fig. 3, the durations of the readout magnetic
fields are 4.5 ns and 18 ns, which are corresponding to the
temporal compression and stretching, respectively. A larger
amplitude of the recovered x-ray photon is obtained with the
temporal compression. Our approach is robust to the band-
width of the controllable incident few ns x-ray pulse [5,37],
which determines the properties of the optimal magnetic field
for storage. The magnetic field of dozens of Tesla with the du-
ration time from a few nanoseconds to hundreds of nanosec-
onds has been widely used in laser-plasma experiments
[38–42] and the nuclear forward scattering of synchrotron
radiation in a pulsed magnetic field with a few milliseconds
under the repetition rate of 6 min−1 has been demonstrated
[43], which makes our protocol in experimental reach.

In our storage protocol, the signal is recalled by the mag-
netic field. Using a train of magnetic field pulses, multiple
x-ray echoes can be generated in time domain, which makes
the storage system as temporal x-ray beam splitters. In our
simulation, four identical magnetic field pulses with area π

are used and each of them splits the x-ray photon in time
domain. The analytical solution for the Rabi frequency of the
second x-ray photon echo is derived as

�3
p(L, t ) = 2�0

(
A2

L − AL
)
e−AL sin

[∫ t

t03

�3(t ′)dt ′
]

e− �
2 t ,

(14)
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FIG. 4. Temporal splitting of regenerated x-ray signals. (a) In-
tensity of regenerated x-ray photons for ξ = 8. (b) Rabi frequency of
regenerated x-ray photons for ξ = 8 and ξ = 24. The four identical
magnetic field pulses (dashed green lines) play the role of temporal
beam splitters, which split the input x-ray pulses in time domain.

where AL = βL
2�03

= 2�ξ

�03
. The numerical calculations for the

intensities of the temporal split x-ray signals with AL =
0.5(ξ = 8) is demonstrated in Fig. 4(a). The temporal shape
is approximately the same for each echo, but the sign of the
amplitude of the Rabi frequency is different. Depending on
AL is larger or smaller than one, �3

p may have different signs.
Figure 4(b) shows the temporal Rabi frequencies for AL = 0.5
and AL = 1.45 cases, in which there is a π phase shift between
the third and fourth echoes. And if AL ∼ 1, the intensity of the
second echo will be very close to zero, which is quite different
from the case of the first echo.

Depending on the phase shift of the echoes, our protocol
can be used for operating the interference between x-ray pho-
tons recovered from distinct temporal inputs. The simulations
for AL = 0.5 and AL = 1.45 have been performed, respec-
tively. For each AL, we consider two cases, which are 0 and π

phase shifts between the two input x-ray pulses. The numer-
ical results are demonstrated in Fig. 5. Comparing with the
first input x-ray pulse, the second one has the same temporal
shape and a half-amplitude of the Rabi frequency. The time
internal is 50 ns and three identical π magnetic field pulses
are used. When AL = 0.5, the second echo shown in Fig. 5(a)

FIG. 5. Interference of two regenerated x-ray signals from dif-
ferent input modes. (a) and (b) show the numerical results for the
resonant thickness ξ = 8 and ξ = 24, respectively. Three identical
magnetic field pulses are used (dashed green lines).

is generated under the interference between the signals from
the two input x-ray pulses. Destructive and constructive inter-
ferences occur for 0 and π phase shifts cases, respectively.
Conversely, destructive and constructive interference occur
when AL = 1.45 for π and 0 phase shifts cases, respectively,
as presented in Fig. 5(b). Our numerical results show our
protocol may provide a suitable platform for manipulating the
interference between x-ray photons.

In the discussions above, the polarization of x-ray echoes
stays conserved since the directions of the magnetic fields
keep constant. The situation changes if a subsequent mag-
netic field with a different direction is applied, which leads
to the change of the quantization axis and a redistribution
of the nuclear spin ρS [25,44]. Here we discuss the case
that a π -polarization input x-ray pulse shines the nuclear
sample with a pulsed magnetic field along y direction as an
example. A σ -polarization echo is generated with a subse-
quent pulsed magnetic field along x direction, as shown in
Fig. 6. The polarization of the x-ray echo is controlled by
the direction of the subsequent magnetic field pulse. Our plat-
form can be used to realize the single-photon entanglement
and logical gates in keV regime proposed in Ref. [44] and
Ref. [45], respectively. Compared with the original proposals
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FIG. 6. Polarization control of the x-ray echo. The initial x-ray
pulse (orange solid line) is π -polarized and the magnetic field (green
dashed line) is along y direction. The output of x-ray pulse (red solid
line) is π polarized. After applying a subsequent magnetic field pulse
parallel to x direction (purple dashed line), a σ -polarized x-ray echo
is generated (blue solid line).

[44,45], our method works and provides a much higher ef-
ficiency due to the effective storage of x-ray signal, which
makes a further step to achieve polarization-encoded x-ray
qubits.

IV. CONCLUSION

In conclusion, we have proposed a protocol for the
storage and manipulation of a broadband single x-ray pho-
ton pulse based on dynamically controlled NHMS. The
storage is deterministic and allows flexible storage times.
Meanwhile, the temporal shape, phase, and polarization
of the recovered x-ray pulse can be controlled. Our ap-
proach points a way to realize x-ray photonics devices
using nuclear transitions. We believe our work will bring
new opportunities for x-ray quantum information and x-ray
science.
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APPENDIX

In the following we present the derivation of the analytical
solutions under effective approximations, which describe the
dynamics of the storage and retrieval of single x-ray photons
through a nuclear target containing 57Fe. Meanwhile, the nu-
merical results using an exponential attenuated x-ray pulse as
the input have been shown.

1. Maxwell-Bloch equations

In the presence of the magnetic field, the two �m = me −
mg = 0 transitions will be driven by the incident linearly po-
larized x-ray pulses. Maxwell-Bloch equations (MBEs) can be
used to describe the dynamics of the system, which are written
as

∂tρ11 = �
(
C2

13ρ33 + C2
14ρ44

) − i

2
C14(�pρ14 − �∗

pρ41),

(A1)

∂tρ22 = �
(
C2

23ρ33 + C2
24ρ44

) − i

2
C23(�pρ23 − �∗

pρ32),

(A2)

∂tρ32 = −1

2

(
2i�p,4→2 + C2

13� + C2
23�

)
ρ32

− i

2
C23�p(ρ33 − ρ22), (A3)

∂tρ33 = − �
(
C2

13 + C2
23

)
ρ33 + i

2
C23(�pρ23 − �∗

pρ32), (A4)

∂tρ41 = −1

2

(
2i�p,5→1 + C2

14� + C2
24�

)
ρ41

− i

2
C14�p(ρ44 − ρ11), (A5)

∂tρ44 = − �
(
C2

14 + C2
24

)
ρ44 + i

2
C14

(
�pρ14 − �∗

pρ41
)
,

(A6)
1

c
∂t�p + ∂z�p = iβ

(
ρ41

C14
+ ρ32

C23

)
. (A7)

In the above equations, the states |1〉 and |2〉 denote the
two ground states with mg = −1/2 and mg = 1/2, respec-
tively, and the two ground states |3〉 and |4〉 with me = 1/2
and me = −1/2, respectively. The shortened notation used for
the Clebsch-Gordan coefficients is Ci j = C(Ig Ie 1; mg me M )
where i ∈ {1, 2} sets the value of mg and j ∈ {3, 4} the one of
me. Furthermore, �p,3→2 = ω32 − ω and �p,4→1 = ω41 − ω,
where ω41 and ω32 are the resonant frequencies of the |1〉 →
|4〉 and |2〉 → |3〉 transitions, and ω is the resonant frequency
of the ground state and the excited state in the absence of the
magnetic field. � is the spontaneous decay rate comprising
the radiative and the internal conversion channel. β = 4�ξ/L
where ξ is the resonant thickness and L the thickness of
nuclear target.

The initial conditions are considered as follows:

ρ11(z, 0) = 0.5, (A8)

ρ22(z, 0) = 0.5, (A9)

�p(z, 0) = 0, (A10)

�p(0, t ) = �0e−2 ln 2( t−t0
τ

)
2

, (A11)

where the amplitude of probe Rabi frequency �0 � � and τ

is the x-ray pulse bandwidth.
Since the incident x-ray pulse is very weak, we assume

ρ11(z, t ) − ρ44(z, t ) ≈ 0.5, (A12)

ρ22(z, t ) − ρ33(z, t ) ≈ 0.5, (A13)
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Inserting Eq. (A12) and Eq. (A13) into the MBEs and we
obtain

∂tρ32(z, t ) = − 1
2

(
2i�p,3→2 + C2

13� + C2
23�

)
ρ32(z, t )

+ i

4
C23�p(z, t ), (A14)

∂tρ41(z, t ) = − 1
2

(
2i�p,4→1 + C2

14� + C2
24�

)
ρ41(z, t )

+ i

4
C14�p(z, t ), (A15)

1

c
∂t�p + ∂z�p = iβ

(
ρ41

C14
+ ρ32

C23

)
. (A16)

Since �0 is real and C2
13 + C2

23 = C2
14 + C2

24 = 1,C23 = C14 =
C, the following equations are obtained depending on the
symmetry:

ρP(z, t ) = ρ41(z, t )+ρ32(z, t ) = 2iIm[ρ41(z, t )], (A17)

ρS (z, t ) = ρ41(z, t ) − ρ32(z, t ) = 2Re[ρ41(z, t )]. (A18)

Applying the definitions of ρP and ρS in Eqs. (A14)–(A15),
the following equations are derived:

∂tρS (z, t ) = − �

2
ρS (z, t ) − i�(t )ρP(z, t ), (A19)

∂tρP(z, t ) = −�

2
ρP(z, t ) − i�(t )ρS (z, t )

+ i
C

2
�p(z, t ), (A20)

1

c
∂t�p(z, t ) + ∂z�p(z, t ) = i

β

C
ρP(z, t ), (A21)

where

�(t ) = �p,4→1 = −�p,3→2 = 1

h̄
(me4μe − mg1μg)μN B(t ).

(A22)

Here, h̄ is reduced Planck constant, me4 = − 1
2 , mg1 = − 1

2 ,
μg, and μe are the Landé factors of the ground states and
excited states, respectively, μN is nuclear magneton, B(t ) is
the magnetic flux density.

Do the approximation that

1

c
∂t�p(z, t ) ≈ 0, (A23)

which is valid in our system and define

ρS (z, t ) = 2ρR(z, t )e− �
2 t , (A24)

ρP(z, t ) = 2iρI (z, t )e− �
2 t . (A25)

Finally we derive the simplified MBEs under weak and
slowing varying approximations

∂tρR(z, t ) = ρI (z, t )�(t ), (A26)

∂tρI (z, t ) = −ρR(z, t )�(t ) + C

4
�p(z, t )e

�
2 t , (A27)

∂z�p = − 2

C
βρI (z, t )e− �

2 t . (A28)

2. Approximate analytical solution under the first
magnetic pulse

In our protocol, we first consider the magnetic field has the
same temporal shape as the input x-ray photon with the con-
dition that AB = ∫

�1(t )dt ≈ π and the first pulse magnetic
arrives simultaneously as the single x-ray photon. Define

�1(t ) = �01e−2 ln 2
(

t−t0
τ

)2

, (A29)

where �01 is the splitting amplitude caused by the first mag-
netic field. In the following we present the analytical solutions
of Eq. (A26) to Eq. (A28).

�p(z, t ) = �p(0, t ) − 2

C
β

∫ z

0
ρI (z′, t )e− �

2 t dz′, (A30)

∂tρI (z, t ) = −ρR(z, t )�(t ) + C�0

4�01
e

�
2 t�(t )

− β

2

∫ z

0
ρI (z′, t )dz′, (A31)

≈ −ρR(z, t )�(t ) + C�0

4�01
e

�
2 t0�(t )

− β

2

∫ z

0
ρI (z′, t )dz′. (A32)

At z = 0, we have

∂tρI (z, t ) = −ρR(z, t )�(t ) + C�0

4�01
e

�
2 t0�(t ), (A33)

∂tρR(z, t ) = ρI (z, t )�(t ). (A34)

The analytical solution is derived

ρR(0, t ) = C�0

4�01
e

�
2 t0

(
1 − cos

[∫ t

t01

�1(t ′)dt ′
])

, (A35)

ρI (0, t ) = C�0

4�01
e

�
2 t0 sin

[∫ t

t01

�1(t ′)dt ′
]
. (A36)

For z �= 0, we set zi = idz where dz is infinitesimal. At z = z1,
we have

∂tρI (z, t ) = −ρR(z, t )�(t ) + C�0

4�01
e

�
2 t0�(t )

− β

2

C�0

4�01
e

�
2 t0 sin

[∫ t

t01

�1(t ′)dt ′
]

dz, (A37)

∂tρR(z, t ) = ρI (z, t )�(t ). (A38)

As AB = π , an approximation is used as follows:

sin

[∫ t

t01

�1(t ′)dt ′
]

≈ �1(t )

�01
. (A39)

Substituting Eq. (A39) into Eq. (A37) and Eq. (A38), we
obtain

∂tρI (z, t ) = −ρR(z, t )�(t )

+ C�0

4�01
e

�
2 t0

(
1 − β

2�01
dz

)
�(t ), (A40)

∂tρR(z, t ) = ρI (z, t )�(t ). (A41)
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Then we derive

ρR(z1, t ) = C�0

4�01
e

�
2 t0

(
1 − β

2�01
dz

)

×
(

1 − cos

[∫ t

t01

�1(t ′)dt ′
])

, (A42)

ρI (z1, t ) = C�0

4�01
e

�
2 t0

(
1 − β

2�01
dz

)

× sin

[∫ t

t01

�1(t ′)dt ′
]
. (A43)

For z = z2 and z = z3, it is easily derived that

ρR(z2, t ) = C�0

4�01
e

�
2 t0

(
1 − β

2�01
dz

)2

×
(

1 − cos

[∫ t

t01

�1(t ′)dt ′
])

, (A44)

ρI (z2, t ) = C�0

4�01
e

�
2 t0

(
1 − β

2�01
dz

)2

× sin

[∫ t

t01

�1(t ′)dt ′
]
, (A45)

ρR(z3, t ) = C�0

4�01
e

�
2 t0

(
1 − β

2�01
dz

)3

×
(

1 − cos

[∫ t

t01

�1(t ′)dt ′
])

, (A46)

ρI (z3, t ) = C�0

4�01
e

�
2 t0

(
1 − β

2�01
dz

)3

× sin

[∫ t

t01

�1(t ′)dt ′
]
. (A47)

For z = zn, a recursion formula is presented in the following:

ρR(zn, t ) = C�0

4�01
e

�
2 t0

(
1 − β

2�01
dz

)n

×
(

1 − cos

[∫ t

t01

�1(t ′)dt ′
])

, (A48)

ρI (zn, t ) = C�0

4�01
e

�
2 t0

(
1 − β

2�01
dz

)n

× sin

[∫ t

t01

�1(t ′)dt ′
]
. (A49)

Using

lim
n→+∞

(
1 − β

2�01
dz

)n

= lim
n→+∞

(
1 − β

2�01

z

n

)n

= e− βz
2�01 , (A50)

we derive

ρR(z, t ) = C�0

4�01
e

�
2 t0 e− βz

2�01

×
(

1 − cos

[ ∫ t

t01

�1(t ′)dt ′
])

, (A51)

ρI (z, t ) = C�0

4�01
e

�
2 t0 e− βz

2�01

× sin

[ ∫ t

t01

�1(t ′)dt ′
]
, (A52)

and

�1
p(z, t ) = �p(0, t ) − �0

(
1 − e− βz

2�01
)

× sin

[∫ t

t01

�1(t ′)dt ′
]

e− �
2 (t−t0 ). (A53)

3. Approximate analytical solution under
the second magnetic pulse

Here, we consider the second magnetic field pulse, which
has the same temporal shape as the input x-ray photon. Before
the arrival of the second magnetic pulse, we have

ρR(z, t ) = 2
C�0

4�01
e

�
2 t0 e− βz

2�01 , (A54)

ρI (z, t ) = 0 , (A55)

�p(z, t ) = 0. (A56)

Then the corresponding equations are

∂tρI (z, t ) = −ρR(z, t )�2(t ) − β

2

∫ z

0
ρI (x, t )dx, (A57)

∂tρR(z, t ) = ρI (z, t )�2(t ), (A58)

∂z�p(z, t ) = − 2

C
βρI (z, t )e− �

2 t . (A59)

At z = 0,

∂tρR(z, t ) = ρI (z, t )�2(t ), (A60)

∂tρI (z, t ) = −ρR(z, t )�2(t ). (A61)

We derive

ρR(0, t ) = ρR1 (0)cos

[ ∫ t

t02

�2(t ′)dt ′
]
, (A62)

ρI (0, t ) = −ρR1 (0)sin

[ ∫ t

t02

�2(t ′)dt ′
]
. (A63)

The solution for z �= 0 is derived using the same method as
described before. For z = z1,

∂tρI (z, t ) = −ρR(z, t )�2(t )

+ β

2
ρR1 (0)sin

( ∫ t

t02

�2(t ′)dt ′
)

dz

≈ −ρR(z, t )�2(t ) + β

2�01
ρR1 (0)�2(t )dz, (A64)

∂tρR(z, t ) = ρI (z, t )�2(t ). (A65)
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The derived solution is presented as follows:

ρR(z1, t ) =
(

ρR1 (z1) − ρR1 (0)
β

2�01
dz

)

× cos

[∫ t

t02

�2(t ′)dt ′
]

+ ρR1 (0)
β

2�01
dz, (A66)

ρI (z1, t ) = −
(

ρR1 (z1) − ρR1 (0)
β

2�01
dz

)

× sin

[ ∫ t

t02

�2(t ′)dt ′
]
. (A67)

We define

F (0)(z) = ρR1 (z), (A68)

F (1)(z) =
∫ z

0
ρR1 (z1)dz1, (A69)

F (2)(z) =
∫ z

0

∫ z1

0
ρR1 (z2)dz2dz1, (A70)

F (n)(z) =
∫ z

0
· · ·

∫ zn−1

0
ρR1 (zn)dzn · · · dz1. (A71)

The solution is derived

ρR(z, t ) = lim
n→+∞

n∑
j=0

(
− βz

2�01

) j

F ( j)(z)

× cos

[ ∫ t

t02

�2(t ′)dt ′
]

− lim
n→+∞

n∑
j=1

(
− βz

2�01

) j

F ( j)(z), (A72)

ρI (z, t ) = − lim
n→+∞

n∑
j=0

(
− βz

2�01

) j

F ( j)(z)

× sin

[ ∫ t

t02

�2(t ′)dt ′
]
. (A73)

In the following we go into details of (− βz
2�01

)
n
F (n)(z):

F (0)(z) =
(

C�0

2�01
e

�
2 t0

)
e− βz

2�01 , (A74)
(

− βz

2�01

)
F (1)(z) =

(
C�0

2�01
e

�
2 t0

)(
e− βz

2�01 − 1
)
, (A75)

(
− βz

2�01

)2

F (2)(z) =
(

C�0

2�01
e

�
2 t0

)

×
[

e− βz
2�01 −

(
1 − βz

2�01

)]
, (A76)

(
− βz

2�01

)n

F (n)(z) =
(

C�0

2�01
e

�
2 t0

)

×
[

e− βz
2�01 −

n−1∑
j=0

1

j!

(
− βz

2�01

) j]
.

(A77)

Then we have
n∑

j=0

(
− βz

2�01

) j

F ( j)(z)

/(
C�0

2�01
e

�
2 t0

)

= (n + 1)e− βz
2�01 −

n−1∑
j=0

n − j

( j)!

(
− βz

2�01

) j

= e− βz
2�01 +

(
− βz

2�01

) n−2∑
j=0

1

(n − 2)!

(
− βz

2�01

)n−2

+ n
+∞∑
j=n

1

j!

(
− βz

2�01

) j

. (A78)

When n → +∞, we obtain

lim
n→+∞

n∑
j=0

(
− βz

2�01

) j

F ( j)(z)

=
(

C�0

2�01
e

�
2 t0

)(
1 − βz

2�01

)
e− βz

2�01 . (A79)

Then we derive the final expressions

ρR(z, t ) =
(

C�0

2�01
e

�
2 t0

)(
1 − βz

2�01

)
e− 2�ξz

�01L

× cos

[ ∫ t

t02

�2(t ′)dt ′
]

+
(

C�0

2�01
e

�
2 t0

)
βz

2�01
e− βz

2�01 , (A80)

ρI (z, t ) = −
(

C�0

2�01
e

�
2 t0

)(
1 − βz

2�01

)
e− βz

2�01

× sin

[ ∫ t

t02

�2(t ′)dt ′
]
, (A81)

�2
p(z, t ) = − 2

C
βe− �

2 t
∫ z

0
ρI (z′, t )dz′

= 2�0
βz

2�01
e− βz

2�01

× sin

[ ∫ t

t02

�2(t ′)dt ′
]

e− �
2 (t−t0 ). (A82)

4. Approximate analytical solution under the third magnetic
pulse

Next, we consider the third magnetic field pulse, which has
the same temporal shape as the input x-ray photon. Before the
arrival of the third magnetic pulse, we have

ρR(z, t ) = ρR2 (z) =
(

C�0

2�01
e

�
2 t0

)

×
(

2
βz

2�01
− 1

)
e− βz

2�01 , (A83)

ρI (z, t ) = 0 , (A84)

�p(z, t ) = 0. (A85)
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And just like we did for the second magnetic pulse, we can
define

F (0)
3 (z) = ρR2 (z), (A86)

F (1)
3 (z) =

∫ z

0
ρR2 (z1)dz1, (A87)

F (2)
3 (z) =

∫ z

0

∫ z1

0
ρR2 (z2)dz2dz1, (A88)

F (n)
3 (z) =

∫ z

0
· · ·

∫ zn−1

0
ρR2 (zn)dzn · · · dz1. (A89)

The solution at z can be

ρR(z, t ) = lim
n→+∞

n∑
j=0

(
− βz

2�01

) j

F ( j)
3 (z)

× cos

[ ∫ t

t03

�3(t ′)dt ′
]
, (A90)

ρI (z, t ) = − lim
n→+∞

n∑
j=0

(
− βz

2�01

) j

F ( j)
3 (z)

× sin

[ ∫ t

t03

�3(t ′)dt ′
]
. (A91)

It is easy to get the general formula of (− βz
2�01

)
n
F (n)(z)

(
− βz

2�01

)n

F (n)
3 (z)/

(
C�0

2�01
e

�
2 t0

)

= −(2n − 1 + 2
βz

2�01
)e− βz

2�01

+
n−1∑
j=0

2n − 1 − 2 j

j!

(
− βz

2�01

) j

. (A92)

Then we derive

n∑
j=0

(
− βz

2�01

) j

F ( j)
3 (z)

/(
C�0

2�01
e

�
2 t0

)

=
(

1 − n2 − 2(n − 1)
βz

2�01

)
e− βz

2�01

−
n−1∑
j=0

(n − j)2

( j)!

(
− βz

2�01

) j

. (A93)

When n → +∞, we obtain

lim
n→+∞

n∑
j=0

(
− βz

2�01

) j

F ( j)
3 (z)

=
(

C�0

2�01
e

�
2 t0

)(
1 − 3

βz

2�01
+

(
βz

2�01

)2)
e− βz

2�01 .

(A94)

The corresponding solution to the third magnetic pulse

ρR(z, t ) = −
(

C�0

2�01
e

�
2 t0

)(
1 − 3

βz

2�01
+

(
βz

2�01

)2)

× e− βz
2�01 cos

[ ∫ t

t03

�3(t ′)dt ′
]

+
(

− 2�ξz

�01L
+

(
βz

2�01

)2)
e− βz

2�01 , (A95)

ρI (z, t ) =
(

C�0

2�01
e

�
2 t0

)(
1 − 3

βz

2�01
+

(
βz

2�01

)2)

× e− βz
2�01 sin

[ ∫ t

t03

�3(t ′)dt ′
]
, (A96)

�3
p(z, t ) = − 2

C
βe− �

2 t
∫ z

0
ρI (z′, t )dz′

= 2�0

(
− βz

2�01
+

(
βz

2�01

)2)

× e− βz
2�01 sin

[ ∫ t

t03

�3(t ′)dt ′
]

e− �
2 (t−t0 ). (A97)

5. General solution under a train of the magnetic field pulses

Using the recursive method, we assume the general solu-
tion of ρR and ρI under the nth magnetic field pulse is

ρR(z, t ) = (−1)n

(
C�0

2�01
e

�
2 t0

)
g(z)cos

[ ∫ t

t0n

�n(t ′)dt ′
]

+ (−1)n−1

(
C�0

2�01
e

�
2 t0

)
f (z), (A98)

ρI (z, t ) = (−1)n−1

(
C�0

2�01
e

�
2 t0

)
g(z)

× sin

[ ∫ t

t0n

�n(t ′)dt ′
]
. (A99)

Substituting Eqs. (A98)–(A99) into Eqs. (A57)–(A58), we
have

dg(z)

dz
= − β

2�01
[g(z) + f (z)]. (A100)

Using Eq. (A100) and Eqs. (A57)–(A58), we obtain

�n
p(z, t ) = 2�0(−1)n−1e− βz

2�01

n−1∑
j=1

2 j

j!

(
− βz

2�01

) j

× F (n, j)sin

[ ∫ t

t0n

�n(t ′)dt ′
]

e− �
2 (t−t0 ). (A101)

where F (n, j) is defined as

F (n, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, j = 1,

n − j, j = 2,

n− j∑
x j−2=1

x j−2∑
x j−3=1

· · ·
x2∑

x1=1

x1, j > 2.

(A102)

We have derived the general solution under the nth magnetic
field pulse.
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FIG. 7. Storage and retrieval of a broadband single x-ray photon
pulse. The input exponential attenuated x-ray pulse (orange line)
shines the nuclear sample together with an exponential attenuated
magnetic field (green dashed line). The x-ray echo is generated
by the second pulsed magnetic field at the central time t = 75 ns.
Comparing with the input pulse, there is a distortion of the time
profile of the echo signal.

6. Numerical results with an exponential attenuated
input x-ray pulse

In the main text, all the numerical results are obtained
using a Gaussian input pulse. In this section, we present more
numerical results using an exponential attenuated x-ray pulse
as the input. Meanwhile, the magnetic fields have the same
temporal shape as the input x-ray pulse and the numerical
results are presented in Fig. 7. Other parameters are the same
as what has been used in Fig. 2(a) in the main text. An x-ray

FIG. 8. Generation of a Gaussian x-ray pulse using an exponen-
tial attenuated input. The input exponential attenuated x-ray pulse
(orange line) shines the nuclear sample together with an exponential
attenuated magnetic field (green dashed line). The Gaussian x-ray
echo is generated by the second pulsed magnetic field with a Gaus-
sian temporal shape at the central time t = 75 ns.

echo can also be generated in this case. It should be pointed
out that the temporal shape of the x-ray echo is a little different
comparing with the input pulse.

In addition, the temporal shape of the x-ray echo is deter-
mined by the second magnetic field. If the temporal shape of
the second magnetic field is Gaussian, then a Gaussian x-ray
echo is generated in the presence of an exponential attenuated
input, see Fig. 8. In conclusion, our method not only can be
used to store broadband x-ray pulses with different temporal
shapes but also provides a way to generate a temporal Gaus-
sian x-ray pulse using an exponential attenuated input.
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