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Implementation of a noise-robust quantum algorithm for multivariate polynomial factorization
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We implement in an IBM quantum computer a quantum algorithm for multivariate polynomial factoring and
propose a noise-avoiding protocol to distill the experimental results in the presence of noise. This algorithm uses
single-qubit quantum state tomography (QST) processes to factor a specific type of multivariate polynomials. In
one-to-one correspondence, it encodes each multivariate polynomial to one quantum state. While the validity of
the algorithm is experimentally verified, the quality of the final results is subjected to the decoherence levels of
the preparation of the quantum states. In this paper we propose a protocol to ensure the validity of factors found
by our algorithm in the presence of such decoherence and noise. This method might be, in fact, part of a larger
class of methods based on that same premise and useful outside the implementation of this specific algorithm. In
combination with the noise robustness of the single-qubit QST, our factorization algorithm performs perfectly,
even reversing the effects of weak noise, for the second- to fifth-order polynomial cases for which it has been
implemented.
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I. INTRODUCTION

Experimental quantum computing, in its present status,
is still a technology with limited applications: the noisy
intermediate-scale quantum (NISQ) devices of today are far
from being the mature quantum computers needed for use-
ful implementation of the algorithms that gave fame to the
field [1,2]. However, studies of quantum computation have
notably progressed since the seminal publications in the early
1980s [3–5] and the discoveries of the first quantum algo-
rithms [1,2,6–8] during the 1990s. These earlier protocols
and algorithms were successfully tested shortly after in nu-
clear magnetic resonance (NMR) devices [9–11], and steady
advances followed until the mid-2010s [12–20]. However, it
was not until the last decade that, thanks to the develop-
ment of gate-model quantum computers (QCs) with a longer
coherence time, cloud platform QCs have become widely
available for use in investigations through projects like the
superconductor-based IBMQ [21], Rigetti [22], and Google
Q AI [23]; the photonic Xanadu [24]; the ion-trapping Hon-
eywell [25] and IonQ [26]; and other similar platforms.
These advances, along with improvements in NMR quan-
tum devices, have allowed a number of previously theoretical
algorithms [27–37] to become experimentally implemented
[38–50] in real quantum devices. The present realizability
of those theoretical advances, together with the improvement
of the physical devices themselves [51,52], will certainly al-
low broader uses of quantum computing technologies in the
future.

In this paper we show the implementation of one task that
QCs are able to perform in their current NISQ technological
state: the multivariate polynomial factorization algorithm for-
mulated theoretically in [53], which allows the identification

and extraction of first-order terms of a certain class of N th-
order multivariate polynomials in O(N ) steps. The specific
protocol developed in this paper for implementation in real-
istic noisy quantum systems allows us to get rid, to a certain
extent, of system-bath entanglement caused by decoherence
and helps us find models in which noise does not affect the
crucial factorability of the target polynomial PT . For this proof
of concept we have chosen the five-qubit QC IBMQ Santiago,
whose technical details are shown in Table I.

II. THE ALGORITHM

There are only a few classes of quantum algorithms which
offer a speedup over classical algorithms. It is these and any
new quantum algorithms which provide the main motivation
for the development of quantum devices and computers. In
this sense, any new quantum algorithm with speedup over its
classical counterpart is desired, although one may need time
to find its practical utility.

One such example, the Deutsch-Jozsa algorithm, solves
a black-box problem which probably requires exponentially
many queries to the black box for any deterministic classi-
cal computer but can be done with exactly one query by a
quantum computer. Moreover, this quantum algorithm may
be overridden by statistical pseudorandom algorithms with an
exponentially small error probability [54]. In the same sense,
the algorithm presented here solves factorization of a specific
class of multivariate polynomials. It should be mentioned that
classical algorithms such as the Lenstra-Lenstra-Lovász are
able to factor certain types of polynomials using a polynomial
number of queries [55]. However, any classical algorithm
would need an exponentially large storage space in order to
deal with the 2N different monomials or terms of a target
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TABLE I. Details of the IBMQ Santiago device at the time of
the experiments [58]. Note how the average CNOT error might be
misleading since it takes into account severed connections, with error
equal to 1. For that reason, the two more representative CNOT error
values are included.

Parameter Value

Qubit number 5
Processor type Falcon r4L
Basis gates CX, ID, RZ, SX, X
Average CNOT error 5.028 × 10−1

CNOT error 0-1 5.885 × 10−3

CNOT error 3-4 6.258 × 10−3

Average readout error 6.542 × 10−2

Average T1 81.73 μs
Average T2 104.68 μs
Quantum volume 32

polynomial of order N . A quantum device, on the other
hand, can perform our algorithm with O(N ) operations and,
crucially, using only O(N ) qubits of storage. Our quantum
algorithms show quantum advance in factoring polynomials,
perhaps in the same way the Deutsch-Jozsa algorithm ad-
vanced solving a black-box problem.

The goal of the implemented algorithm [53] is to factor
the first-order terms of homogeneous multivariate polynomi-
als constructed as linear combinations of the set of products
of two different sets of variables, which we will represent
with lowercase and uppercase letters. One such target mul-
tivariate polynomial could be PT = 2abC − 2aBC − Abc +
ABc, which factors as (b − B) × (2aC − Ac). Then, from the
expanded form of PT , our algorithm would extract an approx-
imation of that first-order (b − B) term, leaving f (a, A, c,C)
to be obtained by division.

It is known, as the Solovay-Kitaev theorem [56] tells us,
that any quantum state can be approximated efficiently with
only a small number of available gates and an oracle. Simi-
larly, we can also assume that the target polynomial state PT

preexists in the computer. Then, the number of steps required
for a classical computer to trace the N-qubit state and to obtain
the reduced density matrices is O(22N ), whereas a quantum
computer needs only the O(N ) steps required to perform
N single-qubit quantum state tomography (QST) processes:
the quantum advantage is overwhelming [57]. Even without
that general oracle, however, this algorithm can be performed
without loss of efficiency for those states obtainable in a
number of steps proportional to its number of qubits. It is
important to note that with these single-qubit QSTs one cannot
obtain the complete 2N × 2N density matrix of the whole
system like one would in a complete QST process. Doing
so indeed requires O(22N ) steps. It is precisely the ability
to obtain the single-qubit reduced density matrices (RDMs)
without having the complete N-qubit density matrix that gives
QCs the advantage in this process of our algorithm.

Quantum computing, as it is widely known, is based on
the manipulation of qubits, the fundamental unit of quan-
tum information and analogs of the bits used in classical
computing. Unlike bits, which can be in only states |0〉 and
|1〉, qubits are represented by complex superpositions of the

form |Pψ 〉 = ω |0〉 + � |1〉 : |ω|2 + |�|2 = 1. This, after we
choose to relate the relaxed state |0〉 to lowercase variables and
the excited state |1〉 to uppercase variables, allows the qubit
to describe any normalized first-order multivariate polyno-
mial of the form Pψ = ωa + �A : |ω|2 + |�|2 = 1. There is
also, then, a one-to-one correspondence between N-qubit pure
states and normalized N th-order multivariate polynomials.
For non-normalized target polynomials, the leading constant
can be externally encoded in classical bits, such as a 32-bit
float, and can then be multiplied by our output polynomial as
the final step of the procedure. The third-order target poly-
nomial of our example, PT = 2abC − 2aBC − Abc + ABc,
would then be encoded in the quantum state |PT 〉 = (2 |001〉 −
2 |011〉 − |100〉 + |110〉)/

√
10.

Ideally, we would be able to build and measure |PT 〉 per-
fectly. Then, for ρT ≡ |PT 〉 〈PT |, if we obtained the target
RDMs ρ

(i)
T of each of the N qubits,

ρ
(i)
T ≡ Tr1Tr2 · · · Tri−1Tri+1 · · · TrNρT , (1)

they would have an entropy S (ρ (i)
T ) = 0 if and only if the ith

variable pair could be extracted as a first-order factor f (ai, Ai )
from the target polynomial. This somewhat obscure statement
is much clarified once one understands its source: a matrix
whose entropy is zero is a matrix that is pure. Then, as a
single-qubit pure matrix, it can be written as a ket-bra of some
single-qubit quantum state. As we have already shown, each
quantum state has a related normalized polynomial. Thus,
the detection of each single-qubit RDM with S = 0 means
the existence of a first-order term in the target multivariate
polynomial.

However, in a realistic scenario, single-qubit QSTs or any
analogous method are used to obtain the N RDMs, which
will always introduce noise, both from the built state deco-
hering before measurement and from the finite number of
runs used to obtain the 3N averages 〈z〉(i), 〈x〉(i), and 〈y〉(i).
Then, the obtained N RDMs are not the target ideal RDMs
ρ

(i)
T themselves, but some noisy version of them: ρ

(i)
B , the built

RDMs. Each single-qubit RDM is given by measuring only
the corresponding single qubit:

ρ
(i)
B = 1

2 (1 + 〈x〉(i)σx + 〈y〉(i)σy + 〈z〉(i)σz ), (2)

where 1 is the 2 × 2 identity and σx,y,z are the three Pauli
matrices. The values 〈z〉(i), 〈x〉(i), and 〈y〉(i) are each averaged
over a number of runs (typically, 1024) of measurements of
the qubit i in the corresponding direction.

The difference between the idealized ρ
(i)
T and practical ρ

(i)
B

is that the latter includes noise. Due to the noise, in reality
ρ

(i)
B will never have an entropy reliably equal to zero. Since

in the idealized algorithm no noise was taken into account,
it was implicitly assumed that ρ

(i)
B = ρ

(i)
T , so we could allow

ourselves to filter all ρ
(i)
B with S (ρ (i)

T ) �= 0. However, if the
algorithm is to be implemented in a real device, noise has to
be taken into account. One needs to accept RDMs with S ≈ 0
as corresponding to a separable term, not just those with
exactly S = 0, and bear in mind that the difference comes
from experimental deviations.

However, the one-to-one relationship between RDMs and
first-order polynomial terms is only true for pure matrices.
For this reason, here we introduce a protocol to transform the
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TABLE II. Coefficients of the monomials of PS and PT .

Monomial PS (expanded) PT (expanded)

abcd 1.0727 1
abcD 0.1103 − 0.0075 i 0
abCd 1.0598 + 0.0237 i 1
abCD 0.1091 − 0.0050 i 0
aBcd 0.9967 − 0.0456 i 1
aBcD 0.1021 − 0.0117 i 0
aBCd 0.9857 − 0.0230 i 1
aBCD 0.1012 − 0.0095 i 0
Abcd −0.9977 − 0.0354 i −1
AbcD −0.1028 + 0.0033 i 0
AbCd −0.9849 − 0.0570 i −1
AbCD −0.1016 + 0.0010 i 0
ABcd −0.9285 + 0.0095 i −1
ABcD −0.0954 + 0.0075 i 0
ABCd −0.9175 − 0.0111 i −1
ABCD −0.0944 + 0.0053 i 0

noisy built RDMs into matrices with S exactly equal to zero.
We term those purified RDMs “separabilized RDMs,” and we
define them as follows:

ρ
(i)
S = ∣∣P(i)

S

〉 〈
P(i)

S

∣∣ :
∣∣P(i)

S

〉 = ωi |0i〉 + �i |1i〉√
|ωi|2 + |�i|2

(3)

for the coefficients

ωi =
√

1 + 〈z〉(i)

2
, �i = 〈x〉(i) + i〈y〉(i)√

2 + 2〈z〉(i)
. (4)

Then, the first-order polynomial term related to ρ
(i)
S is

P(i)
S (ai, Ai ) = ωiai + �iAi√

|ωi|2 + |�i|2
. (5)

At this point, we have to bear in mind that P(i)
S should be

verified as the correct factor since it has been obtained from
ρ

(i)
S , an artificial matrix we have devised, and not directly from

the measured ρ
(i)
B . Theoretically, a verification protocol would

be to compare the coefficients of the expanded form of the
obtained PS with the coefficients of the target polynomial PT ,
for which we know the expanded form only if we have it
explicitly in oracle, as shown, for example, in Table II. How-
ever, the process would require us to compare 2N numbers
for an N th-order polynomial and is not scalable. To avoid
these problems we propose to process the verification using
the fidelities

F (ρ1, ρ2) ≡ Tr(
√√

ρ1ρ2
√

ρ1)2 = F (ρ2, ρ1) (6)

between experimental ρ
(i)
B and the separable RDM ρ

(i)
S , both

2 × 2 matrices. As a preliminary verification protocol, it uses
available data from single-qubit QSTs and requires only O(N )
steps. If F (ρ (i)

B , ρ
(i)
S ) ≈ 1, then the separation process has

barely changed the RDM, where we regard F (ρ (i)
B , ρ

(i)
S ) ≈ 1

as the first-order approximation of F (ρ (i)
S , ρ

(i)
T ) ≈ 1 so that the

ith term is well separable from the rest and the polynomial
term has the form of P(i)

S . If, on the contrary, F (ρ (i)
B , ρ

(i)
S ) is

FIG. 1. Implementation of the second-order multivariate polyno-
mial aB + AB.

small, even if S(i) ≈ 0, no separable factor of the form P(i)
S

will exist in our final polynomial.

III. IMPLEMENTATION OF TWO REPRESENTATIVE
SECOND-ORDER MULTIVARIATE POLYNOMIALS IN

THE PRESENCE OF DECOHERENCE

Now we test the multivariate polynomial factorization
method theoretically proposed in [53] for two second-order
multivariate polynomials in a real IBM QC, one factorable
and one nonfactorable. These polynomials are represented by
a two-qubit state each, for which they share a one-to-one
correspondence, up to a normalization constant. The imple-
mentation will be built and measured using the IBM QC
IBMQ Santiago. The characteristics of the device, detailed in
IBMQ’s documentation [58], are reproduced in Table I.

On the other hand, quantum decoherence and noise, caused
by the interaction of the system with its environment, will ruin
the dynamics and add additional difficulties to control. In the
presence of decoherence and noise the built RDMs ρ

(i)
B would,

for instance, become nonseparable even if the ideally expected
target multivariate polynomial PT were factorable. Thanks
to our confirmation protocol, in addition to the ideal-case
algorithm [53], we can still distill the separable multivariate
polynomial PS = P(1)

S × P(2)
S from the measured ρ

(i)
B RDMs

and thus ensure that our model for the polynomial PT retains
its same factorability.

A. A factorable multivariate polynomial

It is clear that the second-order multivariate polynomial
aB + AB can be factored as (a + A)B, and its correspond-
ing two-qubit state (|01〉 + |11〉)/

√
2 can be separated into a

multiplication of two single-qubit states. This shows that the
separability of the quantum state is equivalent to the factora-
bility of the corresponding multivariate polynomial. We now
display the multivariate polynomial factorization algorithm,
starting from this simple known state.

The polynomial PT is generated via the circuit in Fig. 1,
bearing in mind that qubit 0 corresponds to the first a + A
term, and qubit 1 corresponds to the first B.

The QST protocol for IBMQ Santiago starts with sending
the circuit to the setup. After the standard 1024 runs for each
axis Z , X , and Y , we obtain the expectation values 〈z〉(i), 〈x〉(i),
and 〈y〉(i) shown in Table III(a).

Once we have Table III(a), the density matrix ρ
(i)
B can

be directly obtained by the standard QST procedure [57] in
Eq. (2). The density matrices related to our first and second
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TABLE III. Measurements of the expectation values needed as inputs for Eqs. (2) and (4). (a) Measurements for the factorable second-
order multivariate polynomial in Sec. III A. (b) Measurements for the nonfactorable second-order multivariate polynomial in Sec. III B.
(c) Measurements for the third-order multivariate polynomial in Sec. IV A. (d) Measurements for the fourth-order multivariate polynomial
in Sec. IV B. (e) Measurements for the fifth-order multivariate polynomial in Sec. IV C.

(a) Factorable second-order multivariate polynomial
First term (q1) Second term (q0)

〈z〉(i) 0.0742 −0.9453
〈x〉(i) 0.9746 0.1387
〈y〉(i) 0.0214 −0.0625

(b) Nonfactorable second-order multivariate polynomial
First term (q1) Second term (q0)

〈z〉(i) 0.1133 0.0938
〈x〉(i) 0.1523 0.1230
〈y〉(i) −0.0039 0.0274

(c) Third-order multivariate polynomial
First term (q2) Second term (q1) Third term (q0)

〈z〉(i) 0.0273 0.1992 −0.1934
〈x〉(i) 0.9453 −0.0293 −0.0469
〈y〉(i) 0.0234 −0.0332 −0.0449

(d) Fourth-order multivariate polynomial
First term (q3) Second term (q2) Third term (q1) Fourth term (q0)

〈z〉(i) 0.0059 −0.0351 −0.0273 0.9570
〈x〉(i) −0.9355 0.8965 0.9609 0.2012
〈y〉(i) −0.0332 −0.0410 0.0215 −0.0137

(e) Fifth-order multivariate polynomial
First term (q4) Second term (q3) Third term (q2) Fourth term (q1) Fifth term (q0)

〈z〉(i) 0.9824 0.0391 0.0430 0.1074 −0.9258
〈x〉(i) 0.0352 −0.0625 −0.0410 0.9824 0.2383
〈y〉(i) 0.0723 −0.0234 0.0566 −0.0586 0.0586

terms are

ρ
(1)
B =

(
0.5371 0.4873 − 0.0107i

0.4873 + 0.0107i 0.4629

)
(7)

and

ρ
(2)
B =

(
0.0273 0.0693 + 0.0313i

0.0693 − 0.0313i 0.9727

)
. (8)

As shown in [53] and explained in Sec. II, in the ideal case
these ρ

(i)
B RDMs would represent a separable factor of PB

if and only if their von Neumann entropies S (i) were ex-
actly zero. In our realistic case, however, noise has made our
two ρ

(i)
B nonseparable, as expected. The entropies of the two

RDMs are shown in Table IV(a): neither of the two is exactly
zero, but we can take them as close to zero since with the
confirmation method we have a way to justify that choice
later.

From Eq. (4), we obtain

P(1)
S = 1.0473a + (0.9502 + 0.0209i)A ≈ (a + A),

P(2)
S = 0.3383b + (0.8579 − 0.3866i)B ≈ B, (9)

which is the result we expected. Moreover, as Ai variables (A
and B in this N = 2 case) correspond to excited states, they
should partially relax into ai states (a and b, respectively)

before measurement due to the environmental noise. This
effect is more pronounced for the second term since P(2)

T = B.
As we will see, this relaxation happens in general for our
measurements and will be the main source of our fidelity
losses, as claimed by [48].

Using Eq. (3), we calculate the density matrices associated
with these polynomials,

ρ
(1)
S =

(
0.5484 0.4975 − 0.0110i

0.4975 + 0.0110i 0.4516

)
(10)

and

ρ
(2)
S =

(
0.1145 0.2903 + 0.1308i

0.2903 − 0.1308i 0.8855

)
. (11)

As we can see by comparing each pair of ith RDMs, the
separabilization procedure which obtains ρ

(i)
S from ρ

(i)
B has

only a slight changing effect. To properly quantify the results,
we calculate the fidelity between the experimental ρ

(i)
B and

separable ρ
(i)
S RDMs, as shown in Eq. (6), and obtain good

matches:

F
(
ρ

(1)
B , ρ

(1)
S

) = 0.9887, F
(
ρ

(2)
B , ρ

(2)
S

) = 0.9129. (12)

This is the end of the process: those fidelities show that, as
ρ

(i)
S is close to ρ

(i)
B , as long as we accept the measured ρ

(i)
B ,
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TABLE IV. Entropies and separability diagnoses of the RDMs
for multivariate polynomials. For the single-qubit density matrix of a
first-order multivariate polynomial, SMAX = log 2. (a) Entropies and
separabilities of the two ρ

(i)
B RDMs in Sec. III A. By construction,

S(ρ (i)
S ) ≡ 0. (b) Entropies and separabilities of the two ρ

(i)
B RDMs in

Sec. III B. By construction, S(ρ (i)
S ) ≡ 0. (c) Entropies and separabil-

ities the three ρ
(i)
B RDMs in Sec. IV A. By construction, S(ρ (i)

S ) ≡ 0.
(d) Entropies and separabilities of the four ρ

(i)
B RDMs in Sec. IV B.

By construction, S(ρ (i)
S ) ≡ 0. (e) Entropies and separabilities of the

five ρ
(i)
B RDMs in Sec. IV C. By construction, S(ρ (i)

S ) ≡ 0.

S (i) S (i)/SMAX
Separability

diagnosis

(a) ρ
(i)
B RDMs in Sec. III A

First term 0.0613 8.84% Separable
Second term 0.1029 14.85% Separable

(b) ρ
(i)
B RDMs in Sec. III B

First term 0.6750 97.38% Nonseparable
Second term 0.6808 98.21% Nonseparable

(c) ρ
(i)
B RDMs in Sec. IV A

First term 0.1242 17.91% Separable
Second term 0.6722 96.97% Nonseparable
Third term 0.6722 96.98% Nonseparable

(d) ρ
(i)
B RDMs in Sec. IV B

First term 0.1414 20.39% Separable
Second term 0.2013 29.04% Separable
Third term 0.0950 13.70% Separable
Fourth term 0.0605 8.72% Separable

(e) ρ
(i)
B RDMs in Sec. IV C

First term 0.0424 6.12% Separable
Second term 0.6901 99.56% Nonseparable
Third term 0.6898 99.51% Nonseparable
Fourth term 0.0314 4.54% Separable
Fifth term 0.1024 14.77% Separable

we also have to trust using ρ
(i)
S to calculate the first-order

polynomial factors P(i)
S , so our final approximation to the

target polynomial is confirmed to be PS = P(1)
S × P(2)

S .
We have demonstrated how our method is able to offer PS

as an approximation equally factorable to the target polyno-
mial PT . On the other hand, the algorithm is also capable
of identifying the cases when PT is nonfactorable. To show
this, of course, we shall start with the corresponding entangled
polynomial and see whether the values of S(i) and F (ρ (i)

B , ρ
(i)
S )

vary in a significant manner.

B. A nonfactorable multivariate polynomial

Now we start with the Bell state (|00〉 + |11〉)/
√

2, with
the maximal von Neumann entropy log 2. In this sense, we
can call PT = ab + AB a maximally nonfactorable multivari-
ate polynomial. The state is built via the circuit in Fig. 2,
and the expectation values of the measurements obtained in
IBMQ Santiago are shown in Table III(b). Substituting these

FIG. 2. Implementation of the second-order multivariate polyno-
mial ab + AB.

expectation values into Eq. (2), we obtain the density matrices

ρ
(1)
B =

(
0.5566 0.0762 + 0.0020i

0.0762 − 0.0020i 0.4434

)
(13)

and

ρ
(2)
B =

(
0.5469 0.0615 − 0.0137i

0.0615 − 0.0137i 0.4531

)
, (14)

and they have entropies very close to the maximum, as shown
in Table IV(b). This verifies that PT is nonfactorable since
such high entropies could not be produced by the noise per-
turbing a separable PT .

Having concluded that PT is nonfactorable, in a real sce-
nario we would end our analysis since we have no separable
factors whose coefficients need to be calculated. However, we
can still run our protocol to see what erroneous conclusion can
be reached. Having an idea of to what extent the resulting PS

is flawed is still insightful for this case study.
Using the values in Table III(b) in Eq. (2), we obtain

P(1)
S = 0.9908a + (0.1356 − 0.0035i)A ≈ a,

P(2)
S = 0.9934b + (0.1118 + 0.0248i)B ≈ b

⇒ PT ≈ PS ≈ ab. (15)

This result is obviously incorrect, as we know that PT =
ab + AB. Moreover, the obtained separated RDMs, defined in
Eq. (3), have the forms

ρ
(1)
S =

(
0.9816 0.1343 + 0.0034i

0.1343 − 0.0034i 0.01839

)
(16)

and

ρ
(2)
S =

(
0.9867 0.1110 − 0.0247i

0.1110 + 0.0247i 0.0131

)
, (17)

which have nothing to do with the forms of ρ
(i)
B obtained from

the QST measurements. Their relative fidelities are far from
1:

F
(
ρ

(1)
B , ρ

(1)
S

) = 0.5750, F
(
ρ

(2)
B , ρ

(2)
S

) = 0.5600. (18)

We see that the confirmation method is not only able to
confirm the factorability of factorable polynomials but would
also be able to spot false-positive cases treated as separable
when they should have not been.
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FIG. 3. Circuits used in Sec. IV that encode the (a) third-,
(b) fourth-, and (c) fifth-order generated multivariate polynomials in
Secs. IV A, IV B, and IV C, respectively.

IV. SCALABILITY: IMPLEMENTATION FOR
HIGHER-ORDER MULTIVARIATE POLYNOMIALS

IN THE PRESENCE OF NOISE

We now come to verify the scalability of our protocol.
Using the IBM QC IBMQ Santiago [58] described in Table I,
the protocol will be applied to third-order, fourth-order, and
fifth-order multivariate polynomials in the presence of noise.
The third-order and fourth-order circuits will be created ran-
domly, without taking into account any optimization, to avoid
testing the method in just the most favorable scenarios. Even if
simpler versions of the circuits would make separability easier
to spot in these simple cases, this will not be the case in large-
scale circuits with hundreds of qubits and tens of thousands
of gates, to which the method is meant to be applied in the
future. The fifth-order circuit, however, has been constructed
as simply as possible in order to minimize noise and thus
emulate the effect of a quantum-error-correction algorithm.

A. A third-order multivariate polynomial

Let us now verify the protocol for a three-qubit case. We
construct a circuit with at least one separable qubit to test
the protocol. The circuit is shown in Fig. 3, and Table III(c)
reflects the expectation values for the three orthogonal direc-

tions required by the QST. The experiment shows that the built
RDMs are rather noisy. By calculating the entropy with those
RDMs, we obtain Table IV(c).

In this realistic, noisy scenario the entropies cannot be
exactly zero, as shown in Sec. II. However, there is a clear
difference between the first term with much less entropy and
the other two, which almost maximize their respective en-
tropies. Our algorithm ascertains that this first term should
be taken as separable from the rest of the polynomial and
that the imperfectness of entropies in Table IV(a) would have
been introduced by the noise in the process of building the
circuit. Under this assumption we calculate the separabilized
polynomial given by the only separable qubit, using Eq. (4) to
obtain the coefficients of Eq. (5), and obtain

P(1)
S = 1.0406a + (0.9574 + 0.0238i)A, (19)

which almost restores the term a + A. In order to verify the
validity of that term, we now have to calculate the fidelity
between ρ

(1)
B and ρ

(1)
S :

F
(
ρ

(1)
B , ρ

(1)
S

) = 0.9723. (20)

As this high fidelity confirms the validity of P(1)
S , our ap-

proximation of the target multivariate polynomial would be,
then, PS = P(1)

S × f (b, B, c,C), which crucially maintains the
factorability properties of the target polynomial PT = (a +
A)(bC + Bc).

B. A fourth-order multivariate polynomial

We build a fourth-order multivariate polynomial using the
circuit shown in Fig. 3, and the QST results are shown in
Table III(d). With these expectation values we can calculate
the four RDMs ρ

(i)
B and four entropies, as shown in Ta-

ble IV(d). Here, as in Table IV(c), we have obtained entropies
that are far from zero. However, none of them are above or
close to 90% either, so our preliminary conclusion would be
that the four qubits were separable from each other on the
original PT .

Under this assumption, the four purified P(i)
S obtained are

P(1)
S = 1.0352a − (0.9629 + 0.0342i)A ≈ a − A,

P(2)
S = 1.0355b + (0.9622 − 0.0440i)B ≈ b + B,

P(3)
S = 1.0059c + (0.9938 + 0.0222i)C ≈ c + C,

P(4)
S = 0.9947d + (0.1023 − 0.0069i)D ≈ d. (21)

Now our protocol is to check the fidelities between ρ
(i)
B and

ρ
(i)
S :

F
(
ρ

(1)
B , ρ

(1)
S

) = 0.9671,

F
(
ρ

(2)
B , ρ

(2)
S

) = 0.9462,

F
(
ρ

(3)
B , ρ

(3)
S

) = 0.9804,

F
(
ρ

(4)
B , ρ

(4)
S

) = 0.9890. (22)

With these fidelities we confirm that PS is a good approxima-
tion for PT . Taking into account that we have taken entropies
as high as almost 30% as S(i) ≈ 0, these high fidelities are
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notable. Thanks to the justification protocol, the robustness of
the separabilization procedure with respect to noise is clear.

For this fully factorable case, we can obtain an approxi-
mation to the whole target polynomial. From Eqs. (21), we
obtain

PS ≈ (a − A)(b + B)(c + C)d = PT . (23)

We can also compare the polynomial PS ≡ ∏
i P(i)

S with the
expanded form of PT . As we can see by examining Table II,
the coefficients of both fit well with each other, showing that
the obtained approximation PS not only imitates the factoring
properties of PT but is also a good numerical match.

C. A fifth-order representative multivariate polynomial

To demonstrate fifth-order multivariate polynomials we
focus on a carefully chosen multivariate polynomial to under-
stand to what extent our protocol could be refined through the
improvement of the measured state. It is interesting to note
that such a scheme is analogous to implementing a quantum-
error-correction algorithm.

We generate PT = a(bC + Bc)(d + D)E using the simple
circuit in Fig. 3. Remember that in a real-life scenario one
would not have the factorization of PT since that is pre-
cisely what we are looking for. The QST results are given
in Table III(e), and RDM entropies are given in Table IV(e),
which gives two clearly different entropy levels. With en-
tropies S (2),S (3) > 99.5%, the second and third terms are not
individually separable. This is an improvement with respect to
the nonseparable terms in the above third-order multivariate
polynomial in Sec. IV A, as shown in Table IV(c), in which
entropies are dropped from 100% to lower than 97%. In the
case of the separable terms we can also see an improvement:
from 8.72%–29.04% in the three- and four-qubit cases to
4.54%–14.77%, the entropy range of these RDMs has been
approximately halved.

The purified states for the separable terms are

P(1)
S = 0.9992a + (0.0177 + 0.0364i)A ≈ a,

P(4)
S = 1.0571d + (0.9378 − 0.0559i)D ≈ d + D,

P(5)
S = 0.2895e + (0.9295 + 0.2286i)E ≈ E . (24)

Results of Eq. (24) lead to the polynomial PS ≈ a ×
f (b, B, c,C) × (d + D)E , which is exactly the same form of
the target multivariate polynomial a(bC + Bc)(d + D)E .

In order to quantify this closeness, we turn to our confir-
mation protocol. The obtained fidelities are

F
(
ρ

(1)
B , ρ

(1)
S

) = 0.9929,

F
(
ρ

(4)
B , ρ

(4)
S

) = 0.9950,

F
(
ρ

(5)
B , ρ

(5)
S

) = 0.9533, (25)

which confirm the validity of the three P(i)
S obtained.

As mentioned in Sec. III A, relaxed ai terms like a barely
suffer any changes, indicating the robustness of our algorithm
against decoherence. However, Ai terms like E , corresponding
to excited states, also suffer from relaxation. This means that
experimentally, there is no symmetry between ai and Ai terms,
even though the theoretical (noiseless) version of the algo-

TABLE V. Cases when, for separable P(i)
T , F (ρ (i)

S , ρ
(i)
T ) >

F (ρ (i)
B , ρ

(i)
T ). N/A = not applicable.

N = 2 N = 3 N = 4 N = 5

i = 1 Yes Yes Yes Yes
i = 2 No N/A Yes N/A
i = 3 N/A Yes N/A
i = 4 Yes Yes
i = 5 No

rithm treats them equally and interchangeably. This means
that even if the coding of ai and Ai into relaxed and excited
states of the qubit, respectively, is completely arbitrary, noise
breaks that symmetry, and the choice may end up influencing
the experimental results.

V. NOISE-REVERTING EFFECTS
OF FIXED-PROPERTY RDMS

A remarkable tendency observed when comparing the built
and separabilized RDMs with the target RDMs one would ob-
tain in the ideal case is the following: ρ (i)

S seem to be of a better
quality than ρ

(i)
B . In other words, the separabilization process

tends to reverse the effects of the small quantities of noise
that make ρ

(i)
B different from ρ

(i)
T , leading to F (ρ (i)

S , ρ
(i)
T ) >

F (ρ (i)
B , ρ

(i)
T ) in most of the studied examples, as shown in

Table V.
Then, it seems that forcing our RDMs to have some prop-

erties we know they should have (in this case, the factorability
of ρT ) does not come with a cost in fidelity; on the contrary,
it may well be that, for some small amounts of noise, those
imposed properties improved the quality of our RDMs (here
ρ

(i)
S ) with respect to the freely measured ρ

(i)
B .

The two examples where this is not fulfilled, the N =
2, i = 2, and N = 5, i = 5, cases, represent terms of the
form P(i)

T = Ai encoded into excited |1〉 states, which means
they suffer maximally from relaxation. In those cases, noise is
too great for the separabilization process to reverse. However,
even if in those two cases F (ρ (i)

S , ρ
(i)
T ) < F (ρ (i)

B , ρ
(i)
T ), the

final results are still totally valid.

VI. STATISTICAL ERROR ASSESSMENT

States obtained through QST present two different types
of errors. On the one hand, they suffer the losses and
decoherence inherent in physical quantum devices, as has
been discussed. On the other hand, the finite size of the
measurement sample used in QST allows for only certain
mathematical significance. In this section the size of the
latter, which is controllable, will be calculated in order to
show how it is smaller than the physical noise we cannot
control.

In order to quantify the effects of the mathematical un-
certainty produced by the QST method itself, as opposed
to the physical noise produced by the imperfections of the
QC, one can calculate the width of the distribution of the
results that could arise purely from the measurement of the
state. The standard deviation of such a binomial distribution
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is σ = √
np(1 − p) for a number n of runs and a probability

p of measuring the first eigenstate. Both from the formula and
intuitively, we understand that for eigenstates of the measured
direction that width is zero. One example of this is measuring
state |0〉 on the z axis: it will always give a measurement of
〈z〉 = −1 ± 0. The maximum width is achieved when p =
0.5, as in the case of (|0〉 + |1〉)/

√
2. Here the chances of

measuring each eigenstate are equal, which gives a symmetric
binomial distribution. For 1024 runs this standard deviation is
16, so the value of our measurement will be 〈z〉 = 0 ± 16/1024.
Keeping the error at one significant figure, 〈z〉 = 0.00 ± 0.02.
To translate this measurement error into the error of the coef-
ficients of the terms of the polynomial we can apply the usual
error-propagation formula over Eq. (4),

σω =
∣∣∣∣ ∂ω

∂〈z〉
∣∣∣∣σz = 1

4

√
p/n, (26)

which has its maximum at p = 1. For n = 1024, σ MAX
ω =

1/128 ≈ 0.008. That value, or 0.01 for terms normalized to
√

2
like a + A, is the maximum error that arises from QST.

Most of the obtained P(i)
S differ from their P(i)

T by more than
the maximum deviation σ MAX

ω , which shows that n = 1024
runs is enough for our purposes and that physical noise plays
a role in the final results of our implementation. However, as
σω ∝ 1/

√
n, statistical noise can be reduced, increasing the run

sample size if needed.

VII. CONCLUSIONS

Our experiments confirm that, using the noise-avoiding
protocol presented in this paper, our N th-order multivariate
polynomial factorization algorithm [53] can be successfully
implemented in IBM QCs. We are able to overcome the noise
introduced by the quantum circuits and obtain results close to
the ideal factorization. This is the case even for multivariate
polynomial terms of the form Ai, encoded into excited |1〉
states, that partially relax into ai states before measurement,
which represent the noisiest scenarios [48]. Thanks to the im-
plementation protocol, for all the presented target polynomials
PT we are able to discern the individual separability of all

qubits of the target state and provide a close approximation PS

to those first-order factorable terms of the target polynomial.
We are able to do this in O(N ) steps, just as in the ideal case
of the theoretical algorithm [53]. This approximation PS is
factorable for all originally separable qubits, by construction,
retaining the main property of the target polynomial PT the
algorithm is trying to analyze.

The protocol that allows the implementation of the al-
gorithm in the nonideal case is based on the controlled
modification of the measured state. The modified density
matrix, upon which known properties of the target state are
imposed, tends to actually get closer to the target density
matrix under limited enough noise. Due to the general nature
of the method, it can be implemented outside the ambit of this
specific algorithm in those cases when certain properties of
the target state are known.

Quantum-error-correction methods [48,49] that preserve
the shape of the built state, keeping it close to the target
noiseless state, are easily combined with our polynomial fac-
torization quantum algorithm since they are applied to the
construction of the state itself before measurements, improv-
ing the input of the QST and so improving the quality of
our algorithm’s predictions. Due to the asymmetry between
excited and relaxed qubits, it would also be relevant to choose
the correct encoding for each problem: the less excitation
there is in the target state, the less relaxation decoherence it
will suffer. The protocol proposed in this paper ensure the
validity of our algorithm in the presence of decoherence and
noise.
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