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Dual-map framework for noise characterization of quantum computers
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In order to understand the capabilities and limitations of quantum computers, it is necessary to develop
methods that efficiently characterize and benchmark error channels present on these devices. In this paper, we
present a method that faithfully reconstructs a marginal (local) approximation of the effective noise (MATEN)
channel, that acts as a single layer at the end of the circuit. We first introduce a dual-map framework that
allows us to analytically derive expectation values of observables with respect to noisy circuits. These findings
are supported by numerical simulations of the quantum approximate optimization algorithm (QAOA) that also
justify the MATEN, even in the presence of nonlocal errors that occur during a circuit. Finally, we demonstrate
the performance of the method on Rigetti’s Aspen-11 quantum computer for QAOA circuits up to six qubits,
successfully predicting the observed measurements on a majority of the qubits.
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I. INTRODUCTION

Appropriate and accurate error characterization and bench-
marking is vital for many aspects of quantum computation.
Understanding dominant forms of error allows for improve-
ments on quantum hardware, bringing these devices closer
to the fault-tolerant regime, and possibly allowing for the
tailoring of error-correcting codes to specific error channels
[1]. On the algorithm side, error characterization opens the
possibility for error-aware algorithm design and error miti-
gation strategies, improving the performance of algorithms
on hardware [2,3]. A plethora of protocols have been de-
signed for understanding error. These can be divided into
benchmarking protocols, which aim to return numerical val-
ues that capture the rate of errors in a process (usually defined
as an average fidelity [4,5]), and characterization protocols,
which aim to return information about both the level and form
of the error channels themselves. Benchmarking protocols
include randomized benchmarking [6,7] (along with exten-
sions such as [8]), cycle benchmarking [9], and direct fidelity
estimation [10]. Characterization protocols include quantum
process tomography [11], gate set tomography [12], Hamil-
tonian estimation [13], and robust phase estimation [14], as
well as state preparation and measurement (SPAM) error char-
acterization methods [15–17]. Moreover, direct spectroscopic
methods allow to probe qubit frequency fluctuations and iden-
tify phenomena such as 1/ f noise (see, for example, [18–20]).
So far, benchmarking and characterization methods have
suffered substantial shortcomings—either returning limited
information [e.g., average fidelity for randomized benchmark-
ing (RB)] or restricted to small systems due to exponential
scaling (tomographic methods). Furthermore, correlated and
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non-Markovian noise is difficult to be faithfully captured [21];
however, some promising techniques have been already pro-
posed (see, for example, [22–26]). In this work, we develop
a characterization scheme that efficiently returns information
about the process matrix of the marginal noise channel acting
on a single qubit. The method combines ease and efficiency
of benchmarking techniques with substantially richer infor-
mation content. Additionally, the introduced protocol operates
without additional compilation overhead, as opposed to RB
approaches, which require a twirling subroutine to cast the
noisy channel into a convenient form of a Pauli channel.
Moreover, we demonstrate that the discussed protocol is ca-
pable of closely reconstructing nonlocal noise for processes
of decent fidelity (above 95%); this, however, does not mean
that the protocol is universal and robust against all types of
noise (e.g., non-Markovian or 1/ f ).

Quantum noise, which can lead to computational errors,
is an inevitable companion of quantum evolution. In or-
der to properly describe physically admissible errors, one
has to employ the framework of completely positive and
trace-preserving (CPTP) maps, which are referred to as error
channels. These channels can be represented in numerous
ways [27–29]. For our purposes, the most natural represen-
tation is of the following form:

E[ρ] =
d2−1∑
k,l=0

χk,l PkρP†
l , (1)

where Pk are operators, d = 2N is dimensionality of the
Hilbert space for N qubits, and χ is referred to as a process
matrix. Setting Pk to orthonormal basis elements (e.g., Pauli
matrices), one can determine all elements of the χ matrix
via quantum process tomography [11]. In order to represent a
valid quantum channel, Eq. (1) has to be CPTP, which happens
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when χ � 0 (CP condition) and

n2−1∑
k,l=0

χk,lP
†
l Pk = 1 (TP condition). (2)

On noisy intermediate-scale quantum (NISQ) devices, lev-
els of noise are too high for error correction and fault tolerance
to occur. Thus, error mitigation, and error-aware algorithm
co-design strategies are needed to maximize the performance
of algorithms run on these devices. In order to determine these
optimal mitigation and co-design strategies, it is imperative to
characterize and understand error. A popular and well-studied
algorithm for NISQ devices is the quantum approximate op-
timization algorithm or quantum alternating operator ansatz
(QAOA) [30–32], which aims to find approximately optimal
solutions to optimization problems. In this work, we study
the application of our characterization method for QAOAs run
on combinatorial optimization problems. The characterization
and effect of local noise in QAOA circuits has been previously
studied [33–36]; however, here we provide analytical treat-
ment for popular classes of error channels, as well as for a
generic single-qubit noise channel.

Given this understanding of prior work on error character-
ization and benchmarking, as well as the introduction of error
maps and QAOA, we lay out the rest of our paper as follows.
In Sec. II, we introduce the framework of the dual map that
is essential for analytical derivation of the expectation values
of arbitrary observables in the noisy setup. In Sec. III, we
use these results to reverse-engineer a method to introduce
a marginal approximation of the effective noise (MATEN),
the core procedure of this contribution, that allows to estimate
local contribution to the error channels. In Sec. IV, we discuss
limitations of the MATEN protocol for spatially correlated
noise. Finally, in Sec. V we demonstrate the efficacy of the
method in characterizing error on classical simulations, as
well as on the Aspen-11 quantum computer device from
Rigetti Computing.

II. DUAL-MAP FRAMEWORK

Given a quantum state ρ, an error channel E [in the form
of Eq. (1)], and an Hermitian operator O, the noisy expec-
tation value of O with respect to ρ is typically evaluated as
Tr[OE (ρ)]. In this work, however, we consider the dual action
of E , and compute the same expectation as

〈O〉 = Tr[E#(O)ρ] = Tr[O′ρ], (3)

where E# is the dual channel of E , defined as

E#[O] =
n2−1∑
k,l=0

χk,lP
†
l OPk, (4)

which can be derived from the cyclic property of trace.
We can then study properties of the modified operator O′ =

E#(O), which means that noise affects only the observable and
not the state ρ. Therefore, the expectation values with respect
to the ideal quantum state ρ (e.g., output of a quantum circuit)
can potentially benefit from the local structure of noise of the
observables. In particular, if ρ is a pure state (i.e., ρ2 = ρ),
we can avoid costly simulations of the density matrix and

focus on unitary simulations and local measurements of a state
vector.

Finally, note that it is always possible to decompose a
quantum map � associated with a noisy quantum circuit as
a composition � = E ◦ U , where U is the circuit’s (ideal) uni-
tary map, and E a noisy channel (e.g., with the trivial example
E = � ◦ U†). Therefore, instead of characterizing the total
error map � (which includes contribution from the ideal uni-
tary), we focus on determining E , which one can perceive as
an effective noise channel for the circuit (in general dependent
on U , e.g., rotational angles in QAOA). This mathematical
trick allows us to “move” effects of noise to the very last
layer of the quantum circuit (see Fig. 1) and exploit the dual-
map framework. The main advantage of using this formalism
is that many observables of interest (e.g., combinatorial or
molecular Hamiltonians) can be expressed as a combination
of k-local terms, the simulation of which, as explained above,
can be significantly more efficient in the dual-map framework.
We demonstrate this idea in the subsequent examples.

A. Example: Noisy single-layered QAOA

In this section we analyze the example of QAOA circuits,
which are constructed by interleaving layers of parametrized
unitaries of a mixing Hamiltonian B and a phasing Hamilto-
nian H , so

|�QAOA(�γ , �β )〉 = e−iβpBe−iγpH · · · e−iβ1Be−iγ1H |ψ0〉 , (5)

where p is the number of layers in the circuit, (�γ , �β ) repre-
sent length p parameter vectors, and |ψ0〉 corresponds to an
initial state. Given this form, one can then choose (�γ , �β ) such
that the expectation value of H is optimized (minimized or
maximized) when the circuit is applied to a suitably chosen
initial state. Strategies for optimizing (�γ , �β ) [37–40] as well
as choosing optimal starting states and mixing Hamiltonians
[32,41,42] have been intensively analyzed. In the original for-
mulation, and most applications of QAOA, the cost function is
classical, ensuring that its corresponding Hamiltonian consists
of Pauli terms only containing the Pauli-Z operators. For this
section, we restrict to QAOA applied to the well-studied form
of quadratic unconstrained binary optimization (QUBO), with
cost functions given by a Hamiltonian of the form

H = H1 + H2 =
∑

i

hiZi +
∑

i j

Ji jZiZ j . (6)

Many popular combinatorial optimization problems can be
cast into QUBO form [43]. In order to understand the effects
of various noise channels on specific problems under certain
noise assumptions then, it suffices to compute the action of the
dual channel on Pauli terms with limited locality, and analyze
how the modified H ′ Hamiltonians relate to the original cost
Hamiltonians.

For parametrized circuits, such as QAOA, in order to per-
form mathematical analysis, we assume E is independent of
the parameters (�γ , �β ), and is a product of local channels such
that we can write

ρ(�γ , �β ) = EU (�γ , �β )[|ψ0〉〈ψ0|]. (7)
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FIG. 1. Operational framework for the noisy circuit characterization that is described by a quantum map �(�θ ), where �θ is a collection
of circuit parameters. (a) Noise is “moved” to the last layer [according to E = �(�θ ) ◦ U†(�θ )], and in general it is of nonlocal character.
(b) The nonlocality is neglected by approximating the circuit with only local quantum channels Ei acting on the ith qubit. (c) The marginal
approximation for a single-layered QAOA.

This assumption for QAOA circuits is visualized in Fig. 1(c),
with E = ⊗N

i=1 Ei that is equivalent to MATEN (thoroughly
described in the next section). A similar noise structure was
considered in [33,34].

In the following sections, we analyze the effects of the dual
map of various common error channels on Hamiltonians of the
form of Eq. (6) with one layer. For these examples, we assume
the error channel is identical on each qubit in order to simplify
the equations, but this assumption can straightforwardly be
relaxed.

1. Single-qubit depolarizing channel

We first define a single-qubit depolarizing channel,
parametrized by a depolarization rate p, as

E i
p(ρ) = 1 + 3p

4
ρ + 1 − p

4

3∑
k=1

σ i
kρσ i

k, (8)

with σ1, σ2, and σ3 corresponding to Pauli X , Y , and Z re-
spectively, and the indices i corresponding to the qubit that
Pauli operators act upon. Note that each Pauli matrix is an
eigenmatrix of the depolarizing channel with eigenvalue p,
i.e., Ep(σk ) = pσk , and this map is self-dual (E = E#), so we
also have E#

p (σk ) = pσk .
For an N-qubit system we have a noise channel acting on

each qubit, i.e., Ep = E1
p ⊗ E2

p ⊗ · · · ⊗ EN
p , where E i

p corre-
sponds to a one-local channel on qubit i. Therefore, if Ep acts
on a k-local term in the Hamiltonian, and we assume that p
is constant on all qubits, Ep effectively multiplies this term by
pk . Specifically, we have

E#
p (Zi ) = pZi, (9)

E#
p (ZiZ j ) = p2ZiZ j . (10)

This allows us to easily identify the action of local depolariz-
ing noise on the QAOA for depth one with the noise channel
applied at the end of the circuit, by moving to the dual picture

H ′ = E#
p (H ) = pH1 + p2H2. (11)

Thus, for single-qubit depolarizing channels, the effect on
QAOA cost operators is simply that one-qubit terms are
rescaled by p, two-qubit terms are rescaled by p2, and k-qubit
terms by pk (although k > 2 are not considered for QUBO
problems). For a strictly 2-local problem such as MaxCut,

this would mean that the cost is simply rescaled by p2. For
optimization purposes, this simple rescaling means that the
optimal parameter settings stay unchanged.

2. Amplitude damping

Another common error channel is amplitude damping,
given by the following map:

Eρ = A1ρA†
1 + A2ρA†

2, (12)

where A1 and A2 are Kraus operators parametrized by a damp-
ing rate γ and given by

A1 =
(

1 0
0

√
1 − γ

)
, A2 =

(
0

√
γ

0 0

)
. (13)

The action of the dual of this error channel on single- and
two-qubit Pauli-Z operators are as follows:

E#
γ (Zi ) = (1 − γ )Zi + γ I, (14)

E#
γ (ZiZ j ) = (1 − γ )2ZiZ j + γ (1 − γ )(Zi + Zj ) + γ 2I. (15)

We can see then that the 1-local terms are simply scaled and
shifted. For the 2-local terms, we get not only a scale and
a shift from the first and third terms, respectively, but also
an extra contribution of 1-local terms from the middle term.
We can write out the action of this channel on the general
Hamiltonian given in Eq. (6):

H ′ = (1 − γ )H1 + γ
∑

i

hi + (1 − γ )2H2

+ γ 2
∑
i< j

Ji j + γ (1 − γ )
∑
i< j

Ji j (Zi + Zj ). (16)

Now the only term that is neither a scale nor a constant shift
is the last term. We first note that if hi = 0 for all i and we
start in a Z2 symmetric state, the resultant QAOA state is
Z2 symmetric, meaning that the state is invariant under the
application of X ⊗N ; thus all single-qubit Z terms go to zero
[44], so this added 1-local term has no effect on the observed
cost function value.

Another case where this term has a nice solution can
be seen as follows: We can rewrite

∑
i< j Ji j (Zi + Zj ) as∑

i Zi(
∑

j 	=i Ji j ). Next, if (
∑

j 	=i Ji j ) = ahi for all i and for
some constant a, then this term gives us aH1, meaning that H1
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is rescaled by 1 − γ + a instead. This occurs in some cases
enumerated below:

(1) If all h’s and J’s are constant (all equal h, J , respec-
tively),

∑
i

Zi

(∑
j 	=i

Ji j

)
= J (N − 1)

h
H1. (17)

(2) For a d-regular graph, all h’s constant, and all nonzero
J’s constant (all equal h, J , respectively),

∑
i

Zi

(∑
j 	=i

Ji j

)
= Jd

h
H1. (18)

(3) For a max-k-colorable subgraph [42] (hi = di where
di is degree of vertex i, Ji j = −1 if edge (i, j) exists in the
graph),

∑
i

Zi

(∑
j 	=i

Ji j

)
= −

∑
i

diZi = −H1. (19)

Notably, if a = −1 as in case 3, the Hamiltonian reduces
to

H ′ = (1 − γ )2H + γ
∑

i

hi + γ 2
∑
i< j

Ji j, (20)

where we see that the entire Hamiltonian is simply scaled and
shifted.

For an analysis of the effects of other common error chan-
nels on QAOA operators, such as Pauli channels, T1/T2 error,
and over-rotations, please see Appendix B.

III. SINGLE-QUBIT NOISE CHARACTERIZATION

So far we have shown how certain local noise channels
affect 1-local and 2-local observables, given complete knowl-
edge of the noise. In this section, however, we demonstrate
the opposite direction, showing how to exploit the dual-map
framework to find a MATEN, which is defined as follows:

Definition 1 (MATEN). For a unitary quantum circuit U
acting on N qubits, and its noisy realization �U , we call E =
�U ◦ U† an effective noise channel, that acts as the final CPTP
circuit layer. Additionally we define a marginal approximation
of the effective noise (MATEN) as

Ẽ =
N⊗

k=1

Trk̄ (E ) =
N⊗

k=1

Ek, (21)

where Trk̄ (E ) = Ek traces out all subsystems except the kth
subsystem [see Fig. 1(b)].

In order to determine a MATEN, we express a noisy map
in terms of a so-called process matrix (or χ matrix) that can
be in principle measured directly in a set of experiments via
quantum process tomography [11]. The map takes the form
(for a single qubit)

Eχ (ρ) =
3∑

k,l=0

χklσkρσl , (22)

where χkl are elements of the χ matrix, which in general can
be expressed as

χ =

⎛
⎜⎝

p0 t0,1 + iv0,1 t0,2 + iv0,2 t0,3 + iv0,3

t0,1 − iv0,1 p1 t1,2 − it0,3 t1,3 + it0,2

t0,2 − iv0,2 t1,2 + it0,3 p2 t2,3 − it0,1

t0,3 − iv0,3 t1,3 − it0,2 t2,3 + it0,1 p3

⎞
⎟⎠,

(23)
with tkl and vkl representing real and imaginary parts of χkl

elements, respectively. This form, combined with conditions
χ � 0 and

∑3
k=0 pk = 1, guarantees that the map is com-

pletely positive and trace preserving, and is the most general
for the qubit systems. Note that in total we have 12 free
parameters, and diagonalizing the χ matrix will lead to a
Kraus form (note that the Kraus form is not unique). Given
χ we can then evaluate the effect of the dual map on the Pauli
observables

Ĩ = I, (24)

X̃ = (p0 + p1 − p2 − p3)X + 4t01I

+ 2((t12 − v03)Y + (t13 + v02))Z, (25)

Ỹ = (p0 + p2 − p1 − p3)Y + 4t02I

+ 2((t23 − v01)Z + (t12 + v03))X, (26)

Z̃ = (p0 + p3 − p1 − p2)Z + 4t03I

+ 2((t13 − v02)X + (t23 + v01))Y, (27)

where Ĩ , X̃ , Ỹ , and Z̃ represent the noisy transformations of the
Pauli operators, and Ĩ = I due to the property that the duals
of trace-preserving maps are unital [i.e., E#(I ) = I]. We can
rewrite the coefficients in each equation as PAB, forming a vec-
tor of coefficients, �P, so, for example, X̃ = PXI I + PXX X +
PXY Y + PXZ Z . We can also write a simple matrix A that relates
coefficients PAB to the χ matrix elements as in �P = A �χ , where
�χ is a 12-dimensional vector having all independent χ matrix
elements (i.e., pk , tkl , and vkl ).

Given Eqs. (24)–(27) we can then perform the following
procedure for a parametrized circuit of interest:1

(1) Choose a set S of parameters to the circuit. For ex-
ample, for level 1 QAOA this corresponds to choosing |S|
different (γ1, β1) pairs.

(2) Implement the circuit on a quantum device, and take
many measurements in the X , Y , and Z bases to approximate
〈X̃ 〉, 〈Ỹ 〉, and 〈Z̃〉 for each parameter setting in S on each
qubit. Since 〈Ĩ〉 is trivial, the measurement is not needed.

(3) On a classical simulator or via analytic derivation,
determine the ideal values of the 〈X 〉, 〈Y 〉, and 〈Z〉 for each
parameter setting in S for each qubit. 〈I〉 is trivial to calculate.

(4) Using the ideal and noisy values of all four Pauli ob-
servables, determine the coefficients �P via linear regression on
Eqs. (24)–(27) for each qubit.

1The extension to parameter-free circuit is straightforward, and
requires only altering some gates, e.g., X → Z . However, this proce-
dure would disturb the investigated algorithm, and could serve only
as a characterization protocol.
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FIG. 2. Protocol for characterizing local approximation to effective noise in the case of a single-layered QAOA algorithm. (1) Run multiple
times a circuit with different parameters from the set S; (2) next measure all qubit registers in X , Y , and Z bases. Use output bit strings to infer
(on a classical computer) noisy expectation values 〈X̃ 〉, 〈Ỹ 〉, and 〈Z̃〉. For the same set of parameters, (3) simulate ideal circuits on a classical
computer to obtain expectation values. Based on the ideal expectation values, (4) construct vector �P, and then (5) determine �χpred . Perform this
procedure for each qubit in order to reconstruct the MATEN that approximates effective noise.

(5) Given the coefficients �P, along with the matrix A re-
lating �P to �χ matrix elements, perform �χpred = A−1 �P for each
qubit, where �χpred are the elements of the predicted χ matrix.

The above protocol is visualized in the chart in Fig. 2. We
note two limitations with the presented procedure. First is that
of step 3: in general, it may be prohibitive to determine the
ideal values of single-qubit expectation values in simulation.
However, for shallow circuits, one can use reverse light cone
arguments to calculate local operator expectation values in
time and memory growing exponentially with circuit depth,
rather than circuit size [45]. Additionally, if the noise channels
mildly depend on circuits,2 one could perform this charac-
terization process on a few sets of qubits individually; this
approach would work especially for shallow circuits. Finally,
state-of-the-art classical simulators can handle circuits with
relatively large depth and qubit number, depending on simu-
lation methods and computational resources.

Second, we note that the QAOA applied to MaxCut, as
analyzed in this work, is Z2 symmetric. For problems with Z2

symmetry, the ideal values of 〈Y 〉 and 〈Z〉 vanish, so it may be
impossible to fully determine �P, and it remains an open ques-
tion if we can reliably determine nonzero elements of �P. If this
is the case, one can derive similar equations as Eqs. (24)–(27),
but for two-qubit operators, although this becomes much more
complicated. For our analysis, we restrict to problems that
lack Z2 symmetry. For a problem such as MaxCut, this can
be achieved by simply adding single-qubit Z terms to the
Hamiltonian. Presumably, these single-qubit Z gates do not
introduce a significant amount of noise (on Rigetti devices,
they are indeed implemented in software), so the χpred matrix
should remain close to that of the original circuit. Thus, the
characterized channels for these modified problems should
match very well those of the original problems. One can also
break this symmetry by starting in a different initial state. For
QAOA problems the initial state is usually |+〉⊗N , which is Z2

itself, but changing |+〉 to a different non-Z2 symmetric state
would break that symmetry.

2Here by mildly we mean that noise is static, and parameter (e.g.,
angle) independent to the leading order.

IV. LOCAL VERSUS NONLOCAL CHANNELS

One of the major challenges in current technology is
understanding spatial correlations in noise. Whether or not
noise is confined locally to a single qubit, or can be corre-
lated across neighboring (or even distant) qubits (such as in
crosstalk [46,47]), determines the efficacy of error mitigation
techniques, and quantum error correction (where errors are
typically assumed to be independent). Here we aim to find out
how well one can approximate nonlocal noise channels with
the MATEN approach, leaving temporally correlated noise
(e.g., non-Markovian or 1/ f ) for future consideration.3 Our
strategy is as follows: (i) first we derive a lower bound for
the worst-case scenario, (ii) then we numerically compute
accuracy of the method for random nonlocal channels, and
(iii) finally we repeat numerical analysis from step (ii) but for
random Pauli channels, and analyze some scaling properties.

Since the single-qubit χ matrix (in Pauli basis) is a positive
operator of trace one, we can treat it as a four-dimensional
(4D) quantum state (with some extra constraints imposed by
the structure of χ ). This enables us to incorporate results
from the theory of quantum entanglement for the analysis of
nonlocal channels. In particular, all the marginal states for
maximally entangled states are maximally mixed states; i.e.,
they are proportional to the identity matrix. Therefore, the
marginal approximation (MA), which on the level of the χ

matrix, is translated to

χ = |�〉 〈�| → χMA =
N⊗

k=1

(
1

4
1

)
= 1

4N
14N , (28)

and also yields the maximally mixed state in the full 4N -
dimensional space (where N is the number of considered
qubits), which corresponds to the fully depolarizing chan-
nel. Above we denote the nonlocal process matrix χ as the
maximally entangled state, which is defined as a projector
onto |�〉 = 1

2

∑3
i=0 |ii · · · i〉, with N 4D subsystems (each cor-

responding to a qubit); note that this is a GHZ state [48].

3Note that, on the ensemble average level, one expects to describe
the effective noise channels with a CPTP map; however, correlation
lengths may exceed the averaging time, leading to ill-characterized
noise.
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FIG. 3. Comparison between random nonlocal χ matrix and its MA in terms of fidelity. The left plot depicts the case of full random
channels, while the right plot restricts the analysis to random Pauli channels. Additionally, we provide a numerical lower bound (LB) on Pauli
channels with two and three qubits (right plot). In both cases, insets magnify the region of χ00 that is relevant for “high” -fidelity circuits (above
95%), where random nonlocal channels can be reasonably well approximated.

We conjecture that the effective channel with the maximally
entangled χ matrix is the worst-case scenario for the pro-
posed MATEN protocol. Since the MATEN approach neglects
all nontrivial correlations between different subsystems, and
maximally entangled states exhibit the strongest correlations
among quantum objects resulting in minimal knowledge of
the subsystem’s structure (maximally mixed state), the proto-
col yields the minimum fidelity value between the MA and
the full χ . However, this conjecture requires more rigorous
treatment, which we leave as an open problem. Note that
maximally entangled χ is a completely valid choice, since
χ � 0 and the map associated with it is trace preserving.

Having established that the maximally entangled χ matrix
is the limiting case for the protocol, now we determine the ac-
curacy of this approximation. For this purpose we incorporate
the fidelity of quantum states as a useful figure of merit. We
compute it for the nonlocal χ matrix and its MA. Since the
MA gives a trivial state, one can easily compute the fidelity
[4,49]

F (χ, χMA) = 1

4N
Tr(

√
χ )2 = 1

4N
, (29)

where we used the fact that χ is a projector [i.e.,
√

χ = χ ,
and Tr(χ ) = 1]. As mentioned before, this result represents
the worst-case scenario, and is unlikely to happen in real
experiments (especially if one is interested in low-depth cir-
cuits), where hardware building blocks operate on fairly high
gate fidelity (95–99%, with lower fidelities for multiqubit
gates, and higher for single-qubit ones). Therefore, we can
escape this unfavorable scaling by restricting to channels that
are close to the perfect (noiseless) case, i.e., to the identity
channel (χ00 = 1 and all other elements equal to zero). This
also implies that nonlocal effects are comparably small to
the leading order, which is predominantly determined by the
χ00 element. Similar restrictions are commonly considered
in benchmarking literature (see for example [50]), since they
represent noise regimes that are more relevant for the current
hardware technology and help tailor error-correcting schemes.
One may expect high-fidelity quantum circuits (χ00 > 0.95)
in the future, and therefore milder contribution from spatial
correlation (i.e., nonlocality). In order to properly address

this issue, we incorporate numerical methods to find out how
well the MA can represent the true nonlocal noise process.
Here, we use random sampling of full χ matrices and random
samples of Pauli channels (i.e., χ matrices with a random
probability vector on the diagonal and all other elements equal
to zero). For the case of the full random χ processes, we
explore systems composed of N = 2, 3, 4 qubits, while for
Pauli channels we additionally look at N = 5. The results
are displayed in Fig. 3, where we took 10 000 samples of
random channels (generated with QUTIP [51]) and computed
all marginals of the multiqubit χ matrix (i.e., tracing out all
but one qubit) and compared fidelity between a tensor product
of the marginals (essentially what we call the MA) and the
nonlocal one.

For random Pauli channels, we additionally numerically
minimize the fidelity between the 4N -dimensional probability
vector representing the Pauli channel, and its MA.4 In order to
guarantee a genuine probability distribution over our param-
eters (without having to impose any constraint) we use the
modified Hurwitz parametrization for the probability vector
[52,53]:

χ = diag[cos2(θ4N −1), cos2(θ4N −2) sin2(θ4N −1), . . . ,

× sin2(θ1) sin2(θ2), . . . , sin2(θ4N −1)] .

(30)

We employ a Sequential Least Squares Programming (SLSQP)
[54] optimization routine to find the lower bound. Surpris-
ingly, two- and three-qubit channels display similar lower
bounds (in particular for high-fidelity channels, i.e., χ00 close
to one). The key observation is that for channels with rea-
sonably large χ00 (corresponding to the identity channel),
which is directly related to the gate or circuit fidelity, the
MA can provide results with acceptable accuracy, which is
demonstrated in Fig. 3 insets. Therefore, the MATEN protocol

4The marginal approximation for Pauli channels is also done on the
level of matrices, and not on the probability vectors.

012606-6



DUAL-MAP FRAMEWORK FOR NOISE CHARACTERIZATION … PHYSICAL REVIEW A 106, 012606 (2022)

identifies a MA that can estimate the leading order of the
effective noise channel, which also validates approximation
for that region of fidelity.

V. RESULTS

In this section we present the success of the method pre-
sented in Sec. III for noisy simulations.

A. Classical simulation

For classical simulations, we test our characterization
method against a variety of noise sources. Noiseless and noisy
classical simulations are performed via pure state and den-
sity matrix simulations with HYBRIDQ, an open-source hybrid
quantum simulator [55]. In some cases, we additionally gen-
erate and apply error channels via QUTIP [51], an open-source
toolbox that allows for classical simulation of open quantum
systems. With this capability of finding ideal and noisy states
and operators, we can easily compute metrics needed to eval-
uate our method. For all of these experiments, we test the
characterization method on parametrized QAOA circuits for
QUBO problems.

1. Purely local noise

First we test the efficacy of the characterization method
laid out in Sec. III for predicting χ matrices that we manu-
ally apply at the end of noiseless classical simulation. To do
this, we pick a χin matrix by iteratively selecting elements
uniformly randomly from the interval [0,1] for the elements
�p, and [−1, 1] for �t and �v in Eq. (23), and checking if the
resultant map is physical (i.e., χ � 0) until we succeed. We
further choose the same χin matrix on each qubit, although
this is relaxed in the next section. We additionally choose
random QUBO problems by randomly drawing J and h from
a uniform distribution in the range [0,1]. In this experiment,
we should expect that for some reasonable number of param-
eter settings (size of S) and for a sufficient number of shots
(measurements), we should be able to exactly recover the
input χin matrix to arbitrary precision, as the noise is taken to
fit perfectly within the MATEN approximation. We quantify
the accuracy of determining χin by taking the L2 distance
between the elements of χin and χpred , the process matrix our
method predicts. The results for various values of shot number
and number of regression angles are plotted in Fig. 4. These
plots are generated using state-vector simulations for perfect
evaluation of observables.

Indeed, we see that for a typical case, increasing the num-
ber of angles and the number of shots used in regression
allows for more accurate determination of χin. We further
see from this figure that the L2 distance shrinks with added
number of shots, by roughly a factor of 10 when the number
of shots increases by a factor of 10. We later numerically see
this roughly polynomial scaling with the number of shots for
various values of |S|. For instance, with |S| = 16 we find the
L2 distance goes as numshots−1.39. We note that the L2 dis-
tance between randomly chosen χ matrices was numerically
found to be 0.800 ± 0.125, but we see fidelities much higher
than this value for sufficiently large |S| and number of shots.

FIG. 4. Average L2 distance between the true and predicted χ

for classical simulations for randomly chosen two-qubit QUBO in-
stances with weights in the range [0,1], as a function of the number
of angles, |S|, used in the regression and the number of shots used in
the estimation of expectation values. Solid lines depict the average
over 100 runs, and shading depicts one standard deviation above
and below the average. For a large number of shots and angles, the
distance is below 10−6.

2. Nonlocal noise at end of circuit

In order to test the resiliency of the noise characterization
procedure, we must test the method against noise models that
a MATEN is not suited to perfectly capture. For the first of
these models, we choose a constant error channel that exists
only at the end of a quantum circuit, but is not a simple
tensor product of single-qubit channels. In order to apply this
combination of local and nonlocal noise, then, we apply an
error map of the form

E = (1 − c)E (N )
1 + cE (N )

n , (31)

where we have a combination of a purely local channel E (n)
1

and a nonlocal channel E (N )
n weighted by a correlation factor

c ∈ [0, 1]. In this section we allow the χin matrices to vary
for each qubit (in E (n)

1 ). Since due to the addition of extra
noise (E (n)

n ) we no longer expect that χpred ≈ χin, we no
longer report the fidelity between the two. Instead, we use
(1/3)[r(〈X 〉 , 〈X̃ 〉) + r(〈Y 〉 , 〈Ỹ 〉) + r(〈Z〉 , 〈Z̃〉)], the average
Pearson correlation coefficient r(x, y) between the measured
and predicted noisy expectation values of 〈X 〉, 〈Y 〉, and 〈Z〉,
as these tell us how well our noise model predicts simple
observables of interest on the quantum device. However, it is
possible to induce overfitting, especially when the number of
considered parameter settings (|S|) is small. Thus we addi-
tionally look at correlations for an additional “testing set” of
parameter settings. For our experiments at around |S| = 50,
however, these correlations very closely matched that of the
training set, so we only present correlations of the testing
set for the following cases. In addition to correlation, we
also use Choi fidelity, defined as F (�1,�2), the state fidelity
between Choi matrices �1, �2, representing respectively the
entire n-qubit maps generated from the chosen error channels,
and the predicted MATEN from our method. We present the
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FIG. 5. Average testing correlations and full state fidelities between the actual noise model and predicted noise model for two-qubit (left)
and four-qubit (right) fully connected QUBO problems with all J = 1 and all h = 0, as a function of the weight of the applied nonlocal channel,
or c in Eq. (31). Solid lines depict the average over 100 runs; shading depicts one standard deviation above and below the average.

results from the characterization of this noise model in Fig. 5.
For these experiments, we fix our problem Hamiltonian to a
fully connected QUBO instance with all J = 1 and all h = 0.
Evolution and expectation values are evaluated using density
matrix simulation.

From these simulations we see that, as expected, when
c = 0 and there is only local noise, the model works extremely
well. However, as more nonlocal noise is added into the sys-
tem, the ability to accurately predict the expectation values
of Pauli observables begins to falter. At c = 1, we typically
see a sharp downturn of correlations, as at this point we are
not injecting any purely local noise into our system, thus
weakening the accuracy of the MATEN.

3. Sampling noise

In addition to the above tests, we also experimented with
adding in sampling noise to our noisy simulations. To ac-
complish this, we choose random Gaussian perturbations with
mean zero and standard deviation of 1/

√
numshots to add

to all expectation value measurements, simulating the effect
of sampling error on the evaluation of expectation values.
Given this form of noise, we repeated the analysis from above,
running QAOA with cost Hamiltonian given by Eq. (6) with
two qubits and all h = 0, J = 1. We varied the number of
shots on the x axis, and the results of this setup are shown
in Fig. 6.

From the simulations we can see that sampling noise
diminishes the ability of the method to accurately fit the
noisy measurements to ideal measurements, as well as pre-
dict the value of noisy measurements. The stochastic noise
causes expectation values to fluctuate between measurements,
thus essentially introducing a nonconstant noise model. This
may cause poor performance as our method depends on
having the same error channels for all angles and measure-
ment bases.

Additionally, we note that poor performance may arise if
errors are angle dependent, leading to an error model that
is nonconstant between different angles in a similar manner
to sampling noise. Errors can be extremely angle dependent
on quantum computers, especially for parametrized two-qubit

gates such as in [56], so this feature could be an important
limitation in the success of the method in the near term.

4. Larger systems: Phasing and mixing rotation error

Finally, in order to scale our simulations to larger system
sizes, we performed our characterization routine on 10-qubit
instances. For these runs, selecting and applying randomly
generated 10-qubit Kraus maps becomes numerically pro-
hibitive, so we switch to a simpler and more realistic noise
model. For these experiments, we assume that there is some
stochastic error, or deviation in the parameters for both the
phasing and mixing operators. In particular, the QAOA angles
are assumed to be normally distributed about the desired mean
value, with a nonzero standard deviation that defines the total
amount of noise. For a given phasing gate e−iγ ZiZ j , this noise
is introduced through the Kraus operators

A1 = √
1 − ωI, A2 = √

ωZiZ j, (32)

FIG. 6. Average testing correlations and Choi fidelities between
the actual noise model and predicted noise model for the two-qubit
QUBO problem with J = 1 and both h = 0, as a function of the num-
ber of shots used to estimate expectation values. Solid lines depict the
average over 100 runs; shading depicts one standard deviation above
and below the average.
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FIG. 7. Average testing correlations and Choi fidelities between the actual noise model and predicted noise model for ten-qubit ring (right)
and fully connected (right) QUBO problems with all J = 1 and all h = 0, as a function of the deviation ω of both the phasing and mixing
operators.

and for a mixing gate e−iβXi we apply

A1 = √
1 − ωI, A2 = √

ωXi. (33)

Here ω defines the amount of noise (related to the standard
deviation in the angles’ values). A derivation of these noise
models is shown in Appendix Sec. B 3. This model applies
the two-qubit dephasing noise layer [Eq. (32)] on each pair
(i, j) of qubits that the noiseless phase gates act, after the
dephasing unitaries and directly before the mixing layer. After
the mixing layer the one-qubit X noise is applied on each qubit
[Eq. (33)].

Under this noise model we can test our characterization
method on larger systems, and test against the assumption
that all noise is applied at the end of the circuit. We dis-
play the results for the method on ten-qubit-ring and fully
connected QUBO problems in Fig. 7. For these plots, no
matter the value of ω, we saw that we were able to perfectly
reproduce one-qubit correlations, so we chose to add in the
average of all two-qubit correlations as well. Additionally,
we report the average fidelity between the actual ten-qubit
noisy density matrix and the predicted density matrix using
the characterized noise model. From these results we find that
the fidelity drops rapidly, especially for the fully connected
case. Crucially, however, the one- and two-qubit correlations
remain very high, even as the ω grows. We note that on the
fully connected plot, the fidelity rises after ω ≈ .02. This is
likely explained by the fact that ω = 0.5 corresponds to the
maximally dephasing channel, which our model can capture
well. Thus we expect to see the fidelity drop initially as ω

grows, then rise back to 1 when ω = 0.5, and then follow a
symmetric pattern once ω > 0.5. From these results, however,
our main takeaway is that even in the presence of noise which
is not local and not strictly at the end of the circuit, the method
finds a suitable MATEN that is able to replicate single-qubit
expectation values perfectly and two-qubit expectation values
very well, even as we scale to large system sizes.

VI. CHARACTERIZATION OF RIGETTI ASPEN-11
DEVICE

In this section we apply the error characterization method
from Sec. III to the Aspen-11 Quantum Processing Unit

(QPU) from Rigetti Computing [57]. We run the characteri-
zation procedure for QAOA circuits with all qubits initialized
in the |+〉 (using simultaneous Pauli-X rotations on all
qubits, decomposed into

√
X and Pauli-Z rotations). We

then apply a phase-separation layer given by Hamiltonians
of the form in Eq. (6), with all hi = 1 (to break Z2 sym-
metry, and implemented via single-qubit Pauli-Z rotations)
and Ji j = δi+1, j (forming a line topology, and implemented
using parametrized CPHASE(γ ) two-qubit gates along with
Pauli-Z rotations); with two-qubit gates applied in two sepa-
rate layers, no single qubit is involved in multiple two-qubit
gates simultaneously. Finally, we apply a mixing layer via the
standard X mixer implemented by simultaneous parametrized
Pauli-X rotations on each qubit. For each experiment we
choose p, the number of layers, to be one. These gates were
coded into the Rigetti PYQUIL framework using native de-
vice gates (Pauli-X and -Z rotations, as well as CPHASE
gates), and were transpiled and scheduled using Rigetti’s
native_quil_to_executable method. We then perform 1000
measurements of each qubit simultaneously in the Pauli X ,
Y , and Z bases, by applying H , HS†, and I to the circuit,
respectively, and decomposed into native gates.

These experiments were run at N = 2 and N = 6 with
|S| = 100, where N is the number of qubits and |S| is the
number of different parameter settings used. For these experi-
ments, we run under three cases:

(a) 1q only: Remove all two-qubit (CPHASE) gates
(equivalent to setting all Ji j to zero). The intention of this is
to make sure that our method works when only single-qubit
gates are present, removing the main sources of crosstalk and
nonlocal noise, which could distort the results.

(b) 2q idle: Add back in two-qubit (CPHASE) gates, but
set the angles (γ ) of all two-qubit gates to zero (again equiva-
lent to setting all Ji j to zero). This ideally implements the same
circuit as the previous case, but two-qubit gates are physically
implemented in the circuit.

(c) 2q active: Lift the restriction of setting two-qubit gate
angles to zero, thus performing the method completely as
intended.

For these experiments, much like Sec. V A 2, we present
statistics on the correlations between predicted and observed
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TABLE I. Correlations between single-qubit Pauli observables
obtained by experiments vs derived MATEN approximation for
QAOA circuits on a linear chain QUBO instance for qubits 10 and
11 on the Rigetti Aspen-11 device

Qubit 1q only 2q idle 2q active

10 0.9961 0.9955 0.9757
11 0.9826 0.9862 0.9778

Pauli expectation values, given by

1
3 [r(〈X 〉 , 〈X̃ 〉) + r(〈Y 〉 , 〈Ỹ 〉) + r(〈Z〉 , 〈Z̃〉)], (34)

with the average Pearson correlation coefficient r(x, y) be-
tween the measured and predicted noisy expectation values
of 〈X 〉, 〈Y 〉, and 〈Z〉. This correlation thus tells us how ac-
curately the characterized MATEN predicts single-qubit Pauli
observables. These are shown for both the two- and six-qubit
cases in Table I.

For the two-qubit experiments, we see that the method is
able to predict expectation values of all Pauli observables with
a high correlation to the experimental values. This denotes that
in all three cases, the derived MATEN is able to accurately
predict expectation values of single-qubit Pauli observables,
even in the presence of two-qubit gates with arbitrary angles.

The six-qubit experiments are presented in Table II. Here,
we see that all metrics remain high for the “1q only” case, but
for the “2q idle” case for qubits 30, 36, and 37 we see a signif-
icant drop in regression score and average correlation. In the
“2q active” case, we see a further decline in the correlations
of qubits 30, 32, and 37. For this case, which matches most
closely the type of experiments we would like to characterize,
our method gives an average expectation value correlation of
0.414 ± 0.337. These values are far from the ideal values of
1, but the positive correlation values suggest that the method
does better than a random attempt at guessing 1-local chan-
nels. The wide variability in performance on various qubits
suggests that certain qubits may have more angle-dependent
noise, or may have larger sources of crosstalk, as analyzed in
Sec. V A. In particular, the correlations of qubit 30 plummet
from ≈0.65 in the “2q idle” case to ≈0.07 in the “2q active”
case. This correlation is much lower than we see even on the
right-hand side of Fig. 5 or anywhere in Fig. 7. This indicates
that the errors introduced by two-qubit gates are in a sense
worse than both of these cases. We suspect this may be due to
the fact that the added two-qubit gate, even with all angles set

TABLE II. Correlations between single-qubit Pauli observables
obtained by experiments vs derived MATEN approximation for
QAOA circuits on a linear chain QUBO instance for qubits 21, 36,
37, 30, 31, and 32 on the Rigetti Aspen-11 device.

Qubit 1q only 2q idle 2q active

21 0.9905 0.9871 0.9411
36 0.9944 0.6884 0.5983
37 0.7660 0.3097 0.1884
30 0.9455 0.6472 0.0735
31 0.9652 0.8864 0.6518
32 0.9952 0.9272 0.0297

to zero, may introduce some significant noise (e.g., crosstalk
between the two qubits) that is far from the intended phasing
operation, which the MATEN is not equipped to accurately
handle; i.e., the nonlocal channel displays a low value of χ00

beyond the protocol’s range. In the simulations we perform,
artificially added errors come in the form of randomly chosen
Kraus maps or over-rotations, but the error maps on a quantum
device may be of a specific, biased, more detrimental form.
Additionally, even with a two-qubit gate with angle set to zero,
it can be the case that a different unitary is applied from shot
to shot, approaching the case of Sec. V A 3, which is the only
source of noise we found to reduce correlations to such a low
number. Thus we suspect that this error or shot-dependent
noise may play a role in the extremely low correlations, as
we would not expect to be able to accurately characterize any
noise procedure that is changing over time.

We additionally note that for the six qubit experiments,
qubit 37 has significantly lower correlation than the other
qubits in the “1q only” case. Given the calibration data from
the experiment, as presented in Appendix A, it appears that
qubit 37 has an unusually low readout fidelity. While the
MATEN should in theory correct for arbitrary uncorrelated
readout errors, it may be the case that these errors are corre-
lated on the Aspen-11 device. We also note the CPHASE fi-
delity between qubit 30 and 37 is below 0.9. It may be the case
that the relatively poor performance on qubit 37 is due to er-
rors, such as large over-rotations, in the CPHASE gate, which
are shown in Fig. 7 to reduce the effectiveness of the MATEN.

VII. DISCUSSION

In this paper we introduce the dual-map framework for
computing the effects of error maps on expectation values
evaluated on a quantum computer. We then present a method
to compute a marginal approximation of the effective noise
(MATEN) of a parametrized quantum circuit that is efficient
in terms of the number of measurements needed to perform on
a quantum computer and is simple to implement. We demon-
strate that the method effectively computes a MATEN for
local noise at the end of a circuit, and demonstrate that it can
be effective even in the presence of nonlocal and inter-circuit
noise, especially when the noise is only weakly correlated,
i.e., the circuit’s fidelity is reasonably high with χ00 > 0.95.
We finally show that the method is effective in computing a
MATEN on a few qubits of Rigetti’s Aspen-11 quantum com-
puter. Lower values in extracted correlations of expectation
values can inform us that the system exhibits a fair amount
of angle-dependent (gate) noise, as well as errors that are
absent in the theoretical model, e.g., readout or leakage to
the noncomputational subspace. The latter can be modeled
in a similar fashion as qubits under our scheme, with the
difference that the χ process matrix now needs to represent
a qudit process. This, however, introduces an extra layer of
complexity, which we leave for future analysis.

The error characterization method can additionally be used
as a proxy for the fidelity of a gate, layer, or entire circuit, as
the values of the computed χ matrices for each qubit (specifi-
cally χ00) quantify the difference between the ideal and noisy
evolution. Furthermore, the returned χ can inform about dom-
inant sources of error, which can in turn point to particularly
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TABLE III. Qubit specification data for the Aspen-11 device from Rigetti Computing as of 2:45 p.m. PST, 1 April 2022. Only information
for qubits utilized in Sec. V is presented. RB, randomized benchmarking.

Qubit Qubit frequency (GHz) 1q RB fidelity T1 (μs) T2 (μs) Active reset fidelity Readout fidelity

10 5.1448 0.9979 ± 0.0002 19.1550 14.9876 0.9985 0.9610
11 3.7471 0.9986 ± 0.0001 134.3175 7.6476 0.9840 0.9280
17 3.8316 0.9979 ± 0.0006 44.0395 18.8874 0.9885 0.9390
21 3.4809 0.9971 ± 0.0011 63.8754 16.7968 0.9905 0.8865
24 5.2950 0.9985 ± 0.0002 6.4071 3.4892 0.9925 0.9865
25 3.8223 0.9989 ± 0.0003 19.2390 10.3975 0.9790 0.8970
26 5.1310 0.9981 ± 0.0002 22.1224 14.4986 0.9965 0.9595
30 4.2514 0.9982 ± 0.0006 38.1255 7.6651 0.9900 0.9365
31 3.7286 0.9953 ± 0.0004 53.8022 8.5207 0.9805 0.9150
32 5.3175 0.9976 ± 0.0002 29.1685 9.3002 0.9985 0.9565
36 5.1471 0.9985 ± 0.0002 26.8752 11.5777 0.9865 0.9635
37 3.8340 0.9991 ± 0.0002 50.3642 34.0851 0.9790 0.8695

effective strategies from error mitigation, leading to algorith-
mic improvements on NISQ devices. Once dominant sources
of error are determined, we leave these error-specific mitiga-
tion approaches as open problems for the reader.

The introduced dual-map framework can be used to under-
stand which error channels can be specifically detrimental for
a circuit. For instance, with QAOA, we show that depolarizing
noise simply flattens the energy landscape; thus it does not
affect the location of optimal parameters for the algorithm.
However, error sources such as amplitude damping may in-
troduce nontrivial behavior. The characterization procedure
we introduce can be used to characterize error in NISQ de-
vices, especially for shallow circuits in which the effective
noise channels are expected to be noncorrelated. Overall, the
dual-map picture for error channels provides a simple and
elegant method for researching the interplay between quantum
error and algorithms in the future, and our characterization
approach can significantly aid hardware-aware algorithm de-
sign on today’s devices. Finally, we expect that the future
generation of hardware will benefit more from the discussed
framework, as we expect to observe a substantial increase in
quantum control leading to higher fidelity circuits, which are
better approximated by the MATEN protocol.
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APPENDIX A: ASPEN-11 DEVICE CALIBRATION DATA

In this section we present supplementary experimental in-
formation for the qubits and gates used in the experiments
presented in Sec. V, collected at 2:45 p.m. Pacific Standard
Time on 1 April 2022 on Rigetti’s Aspen-11 device (see
Tables III and IV). All data are pulled directly from provided

Rigetti device specifications and calibration data. We use the
abbreviation RB for randomized benchmarking. Active reset
refers to the fidelity of resetting qubits to the |0〉 state by first
measuring a qubit in the computational basis and applying an
X gate if the qubit is measured as 1. No errors in T1, T2, qubit
frequency, and active reset/readout fidelities are provided by
Rigetti.

APPENDIX B: MORE ERROR MAPS

In this section we derive the effects of various other er-
ror channels on the Pauli Z and ZZ terms found in QUBO
problems, in the same style as Sec. II A. We first present the
following proof to aid in the analysis:

Theorem 1. For Z2-symmetric states, the expectation
value of a Pauli string P is zero if the number of Pauli Z’s
plus Pauli Y’s in P is odd.

Proof. We assume an operator O on N qubits that is of the
form

∏N
i=1 σpi , where pi represents the Pauli that acts on qubit

i: either X , Y , Z , or I . We can then define SX , SY , SZ to be the
set of qubits in which our operator is X , Y , and Z . We then
look at the expectation value of the most general operator of
this form,

〈�|O |�〉 =
〈
�|

∏
i∈SY

Zi

∏
j∈SY

Yj

∏
k∈SX

Xk |�
〉
. (B1)

TABLE IV. Two-qubit gate specification data for the Aspen-11
device from Rigetti Computing as of 2:45 p.m. PST, 1 April 2022.
Only information for two-qubit gates utilized in Sec. V is presented.

Edge CPHASE Fidelity

17 10 0.977337 ± 0.004702
10 11 0.990532 ± 0.005010
11 26 0.965611 ± 0.006795
25 26 0.966236 ± 0.008327
24 25 0.849931 ± 0.011106
21 36 0.930675 ± 0.009189
36 37 0.916244 ± 0.004991
37 30 0.885947 ± 0.006471
30 31 0.896984 ± 0.006994
31 32 0.891021 ± 0.007039
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Then noting that Y = −iZX , we write

− i

〈
�|

∏
i∈SZ

Zi

∏
j∈SY

Z jXj

∏
k∈SX

Xk |�
〉

= −i

〈
�|

∏
i∈SZ ∪SY

Zi

∏
k∈SX ∪SY

Xk |�
〉
. (B2)

We can then expand out |�〉 in terms of bit strings l ,

−i 〈�|
∏

i∈SZ ∪SY

Zi

∏
k∈SX ∪SY

Xk

∑
l

cl (|l〉 + | l〉). (B3)

We can then define |l∗〉 = ∏
k∈SX ∪SY

Xk |l〉 and write

−i 〈�|
∏

i∈SZ ∪SY

Zi

∑
l

cl (|l∗〉 + |l∗〉), (B4)

−i
∑

l

cl (

〈
�|

∏
i∈SZ ∪SY

Zi |l∗
〉
+ (

〈
�|

∏
i∈SZ ∪SY

Zi |l∗
〉
). (B5)

Then we can note the following two properties. First, since
� is Z2 symmetric, 〈�|l∗〉 = 〈�|l∗〉 by definition. Also, for
general state |l〉, we note that Zi |l〉 = |l〉 〈l| (−Zi ) |l〉 for i on
any qubit. Using the second property we have

− i
∑

l

cl (

〈
�|

∏
i∈SZ ∪SY

Zi |l∗
〉

+
( 〈

�|
∏

i∈SZ ∪SY

(−Zi ) |l∗〉 〈l∗| (−Z ) |l∗
〉 )

, (B6)

where |x〉 represents the inverse of |x〉, obtained by flipping all
qubits in the state. Rewriting and then using the first property,
we see

− i
∑

l

cl

( 〈
�|

∏
i∈SZ ∪SY

Zi |l∗
〉

+ (−1)SY +SZ

〈
�|

∏
i∈SZ ∪SY

|l∗
〉
〈l∗| (−Zi ) |l∗〉

)
(B7)

= −i
∑

l

cl

( 〈
�|

∏
i∈SZ ∪SY

Zi |l∗
〉

+ (−1)|SY |+|SZ |
〈
�|

∏
i∈SZ ∪SY

|l∗
〉
〈l∗| Zi |l∗〉

)
(B8)

= −i
∑

l

cl

( 〈
�|

∏
i∈SZ ∪SY

Zi |l∗
〉

+ (−1)|SY |+|SZ |
〈
�|

∏
i∈SZ ∪SY

|l∗
〉
〈l∗| Zi |l∗〉

)
(B9)

= −i
∑

l

cl

( 〈
�|

∏
i∈SZ ∪SY

Zi |l∗
〉

+ (−1)|SY |+|SZ |
〈
�|

∏
i∈SZ ∪SY

Zi |l∗〉
)

(B10)

= −i
∑

l

cl (1 + (−1)|SY |+|SZ |)
〈
�|

∏
i∈SZ ∪SY

Zi |l∗
〉
, (B11)

where we use the first property again in the second-to-last
step. Now we can clearly see that if |SY | + |SZ | is odd this
inner product will vanish for all l . �

We will reference this theorem in the following analyses.

1. Generic single-qubit channel

The action of the dual of a generic single-qubit channel
defined by χ in 1 on Z and ZZ is as follows:

E#(Z ) = pZZ + pY Y + pX X + pI I, (B12)

E#(ZZ ) = p2
Z ZZ + p2

Y YY + p2
X XX + p2

I I

+ PZ PY (ZY + Y Z ) + PZPX (ZX + XZ )

+ PZ PI (ZI + IZ ) + PY PX (Y X + XY )

+ PY PI (Y I + IY ) + PX PI (XI + IX ), (B13)

where pZ = p0 + p3 − p1 − p2, pY = 2(t23 + v02), pX =
2(t13 − v02), and pI = 4t03.

Thus, the action on QAOA Hamiltonians of the form given
in Eq. (6) is

H ′ =
∑

i

hi(pZZi + pY Yi + pX Xi + PI I ) (B14)

+
∑
i< j

Ji j
(
p2

Z ZiZ j + p2
Y YiYj + p2

X XiXj + p2
I I

)

+
∑
i, j

Ji, j (PZPY ZiYj + PZ PX ZiXj + PZ PI ZiI

+ PY PXYiXj + PY PIYiI + PX PI XiI ). (B15)

From here various assumptions can be made. If all h = 0,
which is the case for MaxCut and strictly 2-local QUBO
problems, we can eliminate all terms with odd number of
Z + Y terms from Theorem 1 in this Appendix. We could
also assume that all but pZ are small, meaning that the noise
channel is relatively close to the identity, which is a condition
that would be satisfied on quantum hardware with low levels
of noise. This would allow us to eliminate all terms quadratic
in pX , pY , and pZ . If we make these two assumptions we
reduce to

H ′ = p2
Z H + pZ pY

∑
i, j

Ji jZiYj . (B16)

This corresponds to a simple rescaling of the Hamiltonian,
plus an additional, nontrivial term, which is examined in Ap-
pendix Sec. B 2.

2. Constant mixing over-rotations

Take a very simple model, where the phase is applied
correctly but the mixer is applied as HM = ∑

i β̃iXi, where
βi = β + δβi, i.e., a small over- or under-rotation in the x
direction. This means the mixing unitary is of the form U ′

MUM ,
where UM = e−iβ

∑
i Xi and U ′

M = e−i
∑

i δβiXi .
This locally rotates the Hamiltonian, H ′ = U ′†

M HU ′
M . Now

we use e−iθX ZeiθX = cos(2θ )Z − sin(2θ )Y .
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Assuming the standard form H = ∑
i< j Ji jZiZ j ,

H ′ =
∑
i< j

Ji j cos(2δβi ) cos(2δβ j )ZiZ j

+
∑
i< j

Ji j cos(2δβi ) sin(2δβ j )ZiYj

+
∑
i< j

Ji j sin(2δβi cos(2δβ j )YiZ j

+
∑
i< j

Ji j sin(2δβi sin(2δβ j )YiYj . (B17)

Let us average the fluctuations 〈cos 2δβi cos 2δβ j〉 =
cos2(2δβ ), etc. This gives the noise-averaged Hamiltonian

H ′ = cos2(2δβ )H + sin(4δβ )
∑
i, j

Ji j

2
ZiYj

+ sin2(2δβ )
∑
i< j

Ji jYiYj, (B18)

where in the middle sum, we now sum over all i and all j.
We see that first, the spectrum is flattened by a factor of

cos2(2δβ ), but second, the terms in Y modify it in a nontrivial
way. Let us look at a perturbation to order δβ:

H ′ = H + 2δβ
∑
i, j

Ji jZiYj + O(δβ2). (B19)

The first-order correction to any energy level is

∑
i, j

Ji j〈E |ZiYj |E〉 = 0, (B20)

using that |E〉 is just some z bit string.
This suggests we must go to second-order perturbation,

looking at terms of the form

〈E1|Yj |E2〉, (B21)

where E2 is a single bit flip from E1. Since the magnitude
of the change depends on the energy difference E2 − E1, the
correction depends strongly on the spectrum of the original
problem.

Since the eigenstates of classical Hamiltonians are com-
putational basis states, just like in the Hamming weight
Hamiltonian, the shifted eigenstates are as before. We can then
again calculate

〈H ′〉 =
∑

n

En

∣∣∣∣〈m| (
|n〉 − iε

∑
k Xk |n〉√

1 + Nε2
)

∣∣∣∣
2

(B22)

= 1

1 + Nε2

(
Em + ε2

∑
n

En

∣∣∣∣∣〈m|
∑

k

Xk |n〉
)∣∣∣∣∣

2

. (B23)

We now note that the inner product is 1 if and only if n is a bit
flip away from m and if k is the index of the bit that is flipped.

We can also calculate the energy difference between Em and
En in this case. Here we compute without loss of generality
the case where we let k be the vertex of highest index:

Em − En =

⎛
⎜⎜⎝∑

i< j
j 	=k

Ji j 〈m|ZiZ j |m〉 +
∑
i 	=k

Jik 〈m|ZiZk|m〉

⎞
⎟⎟⎠

−

⎛
⎜⎜⎝∑

i< j
j 	=k

〈m|XkZiZ jXk|m〉

+
∑
i 	=k

Jik 〈m|XkZiZkXk|m〉
)

. (B24)

Then we use the fact that XkZkXk = −Zk and that Xk com-
mutes through ZiZ j . We can then cancel and add terms, giving
us

2
∑
i 	=k

Jik 〈m|ZiZk|m〉 . (B25)

Then we can easily rearrange to see that En = Em −
2

∑
i 	=k Jik 〈m|ZiZk|m〉. We can then plug this expression back

in for En in Eq. (B22):

1

1 + Nε2

(
Em + ε2

(∑
k

Em − 2
∑
i 	=k

Jik 〈ZiZk〉
))

(B26)

= 1

1 + Nε2

(
Em + ε2NEm − 4

∑
i<k

Jik 〈ZiZk〉
)

(B27)

= Em

(
1 + (N − 4)ε2

1 + Nε2

)
(B28)

≈ Em(1 − 4ε2 + 4Nε4 + O(ε6)). (B29)

So for this case over-rotations also just scale the old eigen-
values.

3. Nonconstant mixing over-rotations

We may consider that instead of having perfect angles, they
demonstrate small stochastic fluctuations. We will exploit a
model based on the von Mises distribution of angles (i.e.,
normal distribution on a circle) and we are looking for the
maps

Eα
U (ρ) =

∫ 2π

0

eκ cos(ε )

2π I0(κ )
U (α + ε)ρU †(α + ε)dε, (B30)

where 1/κ is variance, I0(κ ) is a modified Bessel function, and
U (α + ε) is our mixer of phase operator set to angle α with
fluctuation ε.

The integral for the mixer leads to the following map:

Eβ
M (ρ) = 1

2

(
1 + I2(κ )

I0(κ )
cos(2β )

)
ρ

+ 1

2

(
1 − I2(κ )

I0(κ )
cos(2β )

)
XρX

− iI2(κ )

I0(κ )

sin(2β )

2
[X, ρ], (B31)
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while for a single gate of phase (assuming that we have a cost
Hamiltonian H = ∑

Ji jZiZ j), the single ZZ (Ji jγ ) gate (for
Ji j = {+1,−1}) is given by

Eγ ,J
P (ρ) = 1

2

(
1 − I2(κ )

I0(κ )

)
A1(γ , J )ρA†

1(γ , J )

+ 1

2

(
1 + I2(κ )

I0(κ )

)
A2(γ , J )ρA†

2(γ , J ), (B32)

where

A1(γ , J ) = Diag[(1,−e2iγ J ,−e2iγ J , 1)],

A2(γ , J ) = Diag[(1, e2iγ J , e2iγ J , 1)]. (B33)

The mixer error map can also be looked at as a composition
of a perfect rotation by β, then an application of Eβ

M (ρ) with
β = 0. In this case we get a self-dual channel of the form

Eβ
M (ρ) = 1

2

(
1 + I2(κ )

I0(κ )
cos(2β )

)
ρ

+ 1

2

(
1 − I2(κ )

I0(κ )
cos(2β )

)
XρX. (B34)

This maps

Z → I2(κ )

I0(κ )
Z. (B35)

And the analysis follows local depolarizing noise. We note
that in the limit of high variance, κ → 0, and I2(κ )

I0(κ ) → 0, so
we have complete disorder in Z (Z → 0). In the limit of zero
variance, κ → ∞, and I2(κ )

I0(κ ) → 1, so there is no effect of the
channel (Z → Z ).

4. Pauli channel

An interesting class of noisy channel is the so-called Pauli
channel, that has form

E (ρ) =
3∑

k=0

pkσkρσk, (B36)

where σ0 = 1, and for k = 1, 2, 3 we get Pauli X , Y , and Z ,
respectively. pk � 0 and

∑
k pk = 1. One may interpret that a

given noisy channel (e.g., bit flip corresponding to X , happens
with a respective probability). One can set p1 = p2 = p3 =
(1 − p)/4 and p0 = (1 + 3p)/4 and get depolarizing channel
as in Eq. (8).

The action of the dual of a Pauli channel on Z is

E#(Z ) = (p0 + p3 − (p1 + p2)) × Z. (B37)

This then reduces to depolarizing noise where we set p =
p0 + p3 − (p1 + p2). The results are similar for other Pauli
matrices, with the difference that for the Pauli k matrix (1 = x,
2 = y, 3 = z), we will have p0 + pk − (pi + p j ), where i, j
are the coefficients standing in front of remaining matrices.

5. Phase damping

Phase damping has also two Krauses, with A1 the same as
for the amplitude damping case analyzed in Sec. II A 2 and A2

given in

A2 =
(

0 0
0

√
γ

)
. (B38)

In this case, the error maps Z to itself with no scaling
or shifting, so the error channel has no effect on classical
Hamiltonians.
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