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Unifying the Sørensen-Mølmer gate and the Milburn gate with an optomechanical example
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The Sørensen-Mølmer gate and Milburn gate are two geometric phase gates, generating nonlinear self-
interaction of a target mode via its interaction with an auxiliary mechanical mode, in the continuous- and
pulsed-interaction regimes, respectively. In this paper we aim at unifying the two gates by demonstrating that the
Sørensen-Mølmer gate is the continuous limit of the Milburn gate, emphasizing the geometrical interpretation
in the mechanical phase space. We explicitly consider imperfect gate parameters, focusing on relative errors in
time for the Sørensen-Mølmer gate and in phase angle increment for the Milburn gate. We find that, although
the purities of the final states increase for the two gates upon reducing the interaction strength together with
traversing the mechanical phase space multiple times, the fidelities behave differently. We point out that the
difference exists because the interaction strength depends on the relative error when taking the continuous limit
from the pulsed regime, thereby unifying the mathematical framework of the two gates. We demonstrate this
unification in the example of an optomechanical system, where mechanical dissipation is also considered. We
highlight that the unified framework facilitates our method of deriving the dynamics of the continuous-interaction
regime without solving differential equations.
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I. INTRODUCTION

Utilizing the geometric phase [1,2] in quantum compu-
tation was first proposed [3–6] and experimentally realized
[7,8] in the platform of trapped ions, making use of the ac-
cumulated phase that equals the enclosed area of the closed
loop traversed in a phase space satisfying the basic quantum-
mechanical commutator [X̂ , P̂] = i [9]. Due to its ability
to generate an effective interaction between noninteracting
subsystems [10], the idea has been widely applied for sim-
ulating qubit gates in a variety of physical systems, including
quantum optics [11] and superconducting circuits [12]. The
geometric phase has also been exploited in optomechanical
systems, where a bosonic optical field mode interacts with a
mechanical oscillator via radiation pressure [13]. The effec-
tive nonlinear self-interaction induced by the geometric phase
facilitates generation of the nonclassical field [14] and oscil-
lator [15] states and even the detection of potential quantum
gravitational effects [16].

Among the first proposals of the geometric phase gate,
the Sørensen-Mølmer gate [4] works in the continuous-
interaction regime while the Milburn gate [3] is in the
pulsed-interaction regime. In both cases, the collective vi-
brational motion of the ions is only virtually excited, thus
relaxing the requirement of vibrational ground-state cooling.
However, this is true only if the mechanical-phase-space tra-
jectory forms a closed loop. It has been pointed out in Ref. [5]
that, in the weak-field coupling limit, the internal state of the
ions is independent of the state of the collective vibrational
motion for any interaction time. In the mechanical-phase-
space picture, this can be understood as follows. In the limit
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of an infinitesimal circle, we can hardly distinguish between
open and closed loops. The total enclosed area is kept finite by
traversing the phase space infinitely many times. Three natural
questions follow. Given that, in the Sørensen-Mølmer gate,
the interaction time is subject to an error, which cannot be
directly measured and compensated, the mechanical-phase-
space trajectory is no longer closed. In this case, will the
transformation of reducing the size of the phase-space loop to-
gether with traversing the phase space multiple times improve
the gate performance? Will the same method help improve
the performance of the Milburn gate? How are the behaviors
of the two gates connected with each other?

In this paper we explicitly study these questions men-
tioned above. We consider the Sørensen-Mølmer gate as a
continuous-interaction model between a target mode and an
auxiliary mechanical oscillator mode, in the form described
in Ref. [5] but without restricting it to a trapped ion system.
We consider the Milburn gate as a series of pulsed interactions
between a target mode and an auxiliary mechanical oscillator
mode. We illustrate geometric interpretations of the two gates
in the mechanical phase space. We explicitly show how the
Sørensen-Mølmer gate is equivalent to the continuous limit
of the Milburn gate. We then consider imperfect gates, with a
relative time error for the Sørensen-Mølmer gate and a phase
error for the Milburn gate. We study the transformation of
decreasing the size of the loop together with traversing the
phase space multiple times. The purity of both gates increases,
but the fidelities of the two gates behave differently. We show
that the difference in the fidelity is because the continuous
limit of the pulsed scheme involves an error-dependent in-
teraction strength. Finally, we illustrate the analysis using an
optomechanical system as an example [17–19], including the
dissipation of the mechanical oscillator. We derive analytical
solutions of the system in the pulsed-interaction regime and
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further obtain the results in the continuous-interaction regime
by taking the continuous limit without solving differential
equations. The results enrich our understanding of the unifi-
cation of the two interaction regimes.

II. ORIGINAL GATES

We briefly recapitulate the original Sørensen-Mølmer
gate and the Milburn gate in a trapped ion system.
The Sørensen-Mølmer gate [5] uses bichromatic laser
fields to excite the ions, which are slightly detuned
from the upper and lower sidebands of a collective
center-of-mass vibrational mode of the ions. In the
Lamb-Dicke regime, the interaction Hamiltonian corresponds
to a unitary time-evolution operator in the form of
Û (t ) = exp[−iA(t )Ĵ2

y ] exp[−iF (t )Ĵyx̂] exp[−iG(t )Ĵy p̂],
where Ĵy is the collective spin operator, x̂ ( p̂) is the position
(momentum) operator of the collective vibrational mode. The
pair (F (t ), G(t )) traverses a circular loop in the mechanical
phase space. At times when the loop is closed, only the first
term in Û (t ) is left and A(t ) equals the enclosed area of
the circle. The gate is thus independent of the state of the
vibrational mode. The Milburn gate [3] uses bichromatic
laser fields on resonance with the two sidebands of the
vibrational motion of the ions. By properly choosing the
phases of a sequence of laser pulses, the gate becomes
Û = exp(iκxx̂Ĵz ) exp(iκp p̂Ĵz ) exp(−iκxx̂Ĵz ) exp(−iκp p̂Ĵz ) =
exp(−iκxκpĴ2

z ). It corresponds to a closed rectangle in the
mechanical phase space. Similar to the Sørensen-Mølmer
gate, the gate is independent of the vibrational motion.

III. GENERALIZATION OF THE MILBURN GATE

The original Milburn gate [3] describes a series of four
pulsed interactions, forming a closed rectangle in the me-
chanical phase space. Here we generalize it to an arbitrary
number of pulses, without the requirement of closing the
mechanical-phase-space trajectory. We consider the case of
equal interaction strength for each pulse and equal phase angle
difference between adjacent pulses,

Ûp = exp

(
iλÔ

1√
2

(b̂ + b̂†)

)
exp

(
iλÔ

1√
2

(b̂eiθ + b̂†e−iθ )

)

× exp

(
iλÔ

1√
2

(b̂ei2θ + b̂†e−i2θ )

)
× · · ·

× exp

(
iλÔ

1√
2

(b̂ei(Np−1)θ + b̂†e−i(Np−1)θ )

)

= exp[iÔ(c1x̂m − c2 p̂m)] exp(iÔ2c3), (1)

where Ô is an operator for the target mode, Np is the num-
ber of pulses, λ is the dimensionless interaction strength,
b̂ (b̂†) is the annihilation (creation) operator on the auxil-
iary mechanical mode, and θ is the phase angle increment.
The second equality is a closed-form expression resulting
from the Baker-Campbell-Hausdorff formula [20], where
c1 = ∑Np−1

n=0 cos(nθ ), c2 = ∑Np−1
n=0 sin(nθ ), and x̂m and p̂m are

the dimensionless position and momentum operator of the
mechanical mode, respectively, with x̂m = (b̂ + b̂†)/

√
2 and

p̂m = i(b̂† − b̂)/
√

2. The explicit expressions of c1, c2, and c3

are shown in Appendix A.
We associate geometric meanings with the coefficients c1,

c2, and c3, as shown in Fig. 1. Each pulse in Eq. (1) is depicted
as a thick black vector

−−−→
ViVi+1 with length λ. The phase angle

increment θ is the angle between two adjacent vectors. All
the start and end points of the vectors lie on a circle, with its
center labeled as R. The red dotted vector

−−−−→
V1VNp+1 connects

the start point of the first vector and the end point of the last
vector. Its component on the X axis is c1 and its component
on the −P axis is c2; c3 is the difference between the two
areas. The first is Np times the area of the triangle �ViVi+1R.
The second is the signed area of the triangle �V1RVNp+1. We
define the net swept angle θnet as θnet = Npθ − 2Mπ , with M a
non-negative integer so that 0 � θnet < 2π . If θnet < π (>π ),
the positive (negative) sign is taken. These two situations are
plotted in Figs. 1(a) and 1(b), respectively, for the simple
case of M = 0. Note that if the mechanical-phase-space
trajectories displayed here by the thick black vectors are rot-
ated counterclockwise around the coordinate center by
90◦, they become the same as the phase-space trajectory
defined by the unitary transformation of operators Û †x̂mÛ =
exp[−i(c1x̂m − c2 p̂m)]x̂m exp[i(c1x̂m − c2 p̂m)] = x̂m + c2 and
Û † p̂mÛ = exp[−i(c1x̂m − c2 p̂m)] p̂m exp[i(c1x̂m − c2 p̂m)] =
p̂m + c1.

IV. SØRENSEN-MØLMER GATE AS THE CONTINUOUS
LIMIT OF THE MILBURN GATE

The continuous regime can be derived by taking the con-
tinuous limit of the pulsed regime. To be specific, we define
the rescaled interaction strength k = λ/

√
2θ and take the lim-

its θ → 0 and Np → ∞ while keeping the product Npθ = φ

constant, with the angle φ proportional to the interaction time
φ = ωmt , where ωm is the frequency of the mechanical mode.
The resulting gate becomes

Ûc = exp[iÔ(d1x̂m − d2 p̂m)] exp(iÔ2d3), (2a)

d1 =
√

2k sin ωmt, (2b)

d2 =
√

2k(1 − cos ωmt ), (2c)

d3 = k2(ωmt − sin ωmt ). (2d)

This is in the form of a continuous interaction given by the
Sørensen-Mølmer gate [5]. The coefficients d1, d2, and d3 also
have geometric meanings, as shown in Fig. 2. The continuous
interaction is represented by the thick black arc with the start
point L1 at the coordinate center and the end point L2 on a
circle with radius

√
2k whose center R is on the −P axis. The

angle swept by |L2R| from |L1R| is φ. The X (−P) component
of the red dotted vector

−−→
L1L2 equals d1 (d2); d3 is given by the

difference between the two areas. Suppose φ = 2πM + φnet,
where M is a non-negative integer and 0 � φnet < 2π . The
first area is the area of M circles plus the area of the circular
sector formed by the arc L1L2 and the two radii |L1R| and
|L2R|, with central angle φnet. The second area is the signed
area of the triangle �L1RL2, taking a positive (negative) sign
for φnet < π (>π ). Figure 2 shows the two cases for M = 0.
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(a) (b)

FIG. 1. Geometric explanation of the Milburn gate in the me-
chanical phase space for (a) θnet < π and (b) θnet > π . The X (−P)
component of the red dotted vector represents c1 (c2) and the area of
the yellow shaded region represents c3.

V. INCLUDING RELATIVE ERROR

Both the Sørensen-Mølmer gate and the Milburn gate have
the property that if the mechanical-phase-space trajectory
forms a closed loop, the gate operator becomes independent of
the mechanical oscillator mode, thus removing the necessity
of mechanical cooling. However, any error in parameters of
the gate will violate this condition, entangling the target mode
and the auxiliary mechanical mode. As shown in Figs. 1 and
2, the amount of entanglement is quantified by the length of
the red dotted vector, which is bound to the green dashed
circle. A straightforward strategy to suppress the amount of
entanglement is to reduce the interaction strength and in com-
pensation traverse the mechanical phase space multiple times,
an idea originating from the weak-field coupling regime in
Ref. [5]. However, the way the gate fidelity is affected by
this transformation is not straightforward. In this section we
first study the Sørensen-Mølmer gate when there is relative
error in controlling the interaction time. We then study the
Milburn gate when there is error in the phase angle increment
θ . Finally, we discuss a way of unifying the two results in one
mathematical framework.

A. Relative error in interaction time
for the Sørensen-Mølmer gate

It is straightforward to deduce from the Sørensen-Mølmer
gate expression (2) that no entanglement between the target
mode and the mechanical mode is generated if ωmt = 2Kπ ,
with K a positive integer. For simplicity, we assume K = 1.
Generalization to other values of K is straightforward. Con-
sider the case that the interaction time t ′ cannot be controlled
precisely so that t ′ = (1 + η)2π/ωm. Here η characterizes the
relative error of the interaction time, |η| � 1. The gate can
be decomposed into Ûc,N=1(η) = V̂m,N=1V̂O,N=1Ûc,T , where
V̂m,N=1 is the error gate induced by entanglement with the
mechanical mode, V̂O,N=1 is the error gate induced by an
effective additional self-interaction, and Ûc,T is the target gate.
The explicit expressions are listed in Appendix A and also
correspond to Eqs. (3) below, taking N = 1. For |η| � 1,
V̂O,N=1 is approximately the identity operator. This can be
understood from Fig. 2. For simplicity, suppose η > 0; then
φnet = 2πη [Fig. 2(a)]. The yellow shaded area is proportional
to the exponent of V̂O,N=1, which is proportional to O(η2).

Consider reducing the interaction strength by a factor of
N , k → k/N . In order to reproduce the same target gate, the
interaction time needs to increase by a factor of N2, t ′ → N2t ′.

(a) (b)

FIG. 2. Geometric explanation of the Sørensen-Mølmer gate in
the mechanical phase space for (a) φnet < π and (b) φnet > π . The X
(−P) component of the red dotted vector represents d1 (d2) and the
area of the yellow shaded region represents d3.

The gate becomes

Ûc,N (η) = V̂m,NV̂O,NÛc,T , (3a)

V̂m,N = exp

(
i
√

2
k

N
Ô{sin(η2πN2)x̂m

− [1 − cos(η2πN2)] p̂m}
)

, (3b)

V̂O,N = exp

[
ik2Ô2

(
η2π − sin(η2πN2)

N2

)]
, (3c)

Ûc,T = exp(ik2Ô22π ), (3d)

with η the same relative error of the interaction time
as before. The target mode gets completely disentangled
from the mechanical mode for all values of |η| � 1 if the
limit N → ∞ is taken, where the gate turns out to be
Ûc,N→∞(η) = V̂O,N→∞Ûc,T , with V̂O,N→∞ = exp(ik2Ô2η2π ).
Note that V̂O,N→∞ is not an identity operator, indicating a
finite error in the self-interaction.

Whether reducing the interaction strength together with
increasing the interaction time improves the gate fidelity de-
pends on the comparison between the impact of V̂m,N=1 and
V̂O,N→∞. For instance, if the mechanical mode is initially in
a high-temperature thermal state, V̂m,N=1 dominates V̂O,N→∞.
The transformation improves the fidelity. In contrast, the
purity of the target mode always increases after the trans-
formation, regardless of the relative impact of V̂m,N=1 and
V̂O,N→∞.

B. Error in phase angle increment for the Milburn gate

The Milburn gate (1) forms a regular polygon in the me-
chanical phase space if θ = 2π/Np, under which condition
the target mode disentangles from the mechanical mode. The
target gate is therefore

Ûp,T = exp

[
iλ2Ô2 Np

4
cot

(
π

Np

)]
. (4)

Note that, for simplicity, we have assumed that the mechanical
phase space is traversed once.

We consider an error in controlling the phase angle incre-
ment θ . This is also an error in controlling time if the phase
angle increment is implemented by leaving the mechanical
oscillator mode to evolve freely for a certain amount of time,
as in a pulsed optomechanical system, which we will discuss
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later [19]. Suppose the phase angle increment is θ ′ = (1 +
ξ )2π/Np, where ξ is the relative error satisfying |ξ | � 1. The
mechanical-phase-space trajectory becomes open, indicating
entanglement between the two modes. Similar to the idea in
the Sørensen-Mølmer gate, the entanglement decreases after

reducing the interaction strength λ → λ/N together with in-
creasing the number of pulses Np → N2Np, for N a positive
integer. Note that θ ′ is not changed by this transformation.
The mechanical phase space is traversed multiple times and
the gate becomes

Ûp,N (ξ ) = exp(iψ̂m,N ) exp(iψ̂O,N )Ûp,T , (5a)

ψ̂m,N = λ

N
Ô

{[
1

2
+ 1

2
cos

(
N2ξ2π − 2π

Np
− ξ

2π

Np

)
+ 1

2
sin

(
N2ξ2π − 2π

Np
− ξ

2π

Np

)
cot

(
π

Np
+ ξ

π

Np

)]
x̂m

−
[

1

2
cot

(
π

Np
+ ξ

π

Np

)
+ 1

2
sin

(
N2ξ2π − 2π

Np
− ξ

2π

Np

)

− 1

2
cos

(
N2ξ2π − 2π

Np
− ξ

2π

Np

)
cot

(
π

Np
+ ξ

π

Np

)]
p̂m

}
, (5b)

ψ̂O,N = λ2Ô2

{
Np

4

[
cot

(
π

Np
+ ξ

π

Np

)
− cot

(
π

Np

)]
− sin(N2ξ2π )

8N2 sin2
(

π
Np

+ ξ π
Np

)
}

. (5c)

To check whether the transformation of reducing the inter-
action strength together with increasing the number of pulses
improves the gate performance, we compare the error gates
of the original gate (N = 1) and the limit N → ∞. Here
exp(iψ̂m,N→∞) is an identity operator, but exp(iψ̂m,N=1) is not.
Therefore, the purity of the target mode always increases as N
increases. Taylor expansion of ψ̂O,N=1 in terms of ξ , keeping
up to the linear term, leads to

ψ̂O,N=1 ≈ −λ2Ô2 πξ

2 sin2
(

π
Np

) . (6)

Note that this is different from the case of the Sørensen-
Mølmer gate, where the effective additional self-interaction
is zero to the first order of the relative error. It is because
here both the central angle and the radius of the circle change
with the phase angle increment θ ′ [Fig. 1(a)]. Similarly, Taylor
expansion of ψ̂O,N→∞ gives

ψ̂O,N→∞ ≈ −λ2Ô2 πξ

4 sin2
(

π
Np

) . (7)

The effective additional self-interaction is thus also reduced
by the transformation. As a result, the fidelity of the Milburn
gate is expected to improve under this transformation.

C. Unifying the two schemes

A natural question arises here. Given that the Sørensen-
Mølmer gate is the continuous limit of the Milburn gate, as
demonstrated in Sec. IV, why do the fidelities of the two
gates behave differently in the presence of relative error and
upon the transformation of decreasing the interaction strength
together with traversing the phase space multiple times?

After examining the continuous limit of the Milburn gate
[see the paragraph above Eq. (2)], we point out that Eq. (3) is
indeed the continuous limit of Eq. (5). To be specific, if we
replace the interaction strength λ in Eq. (5) with

λ =
√

2k(1 + ξ )
2π

Np
(8)

and take the limit Np → ∞, we get Eq. (3) after renaming
ξ as η. Note that in Eq. (8), λ explicitly depends on the
relative error ξ . This dependence results in the difference
between exp(iψ̂O,N=1) and V̂O,N=1 and the difference between
exp(iψ̂O,N→∞) and V̂O,N→∞. Indeed, if we insert Eq. (8) into
the error estimations for the Milburn gate [Eqs. (6) and (7)]
and expand to first order in ξ , we recover the error estima-
tion for the Sørensen-Mølmer gate. In Appendix A we use a
diagram to show how the expressions in the two regimes are
related to each other via equalities and limits.

Equation (8), together with the original rescaling rela-
tion λ = √

2kθ above Eq. (2), connects the pulsed-interaction
regime with the continuous-interaction regime. This uni-
fication will be further illustrated with an example in
optomechanics.

VI. OPTOMECHANICAL MODEL AS AN EXAMPLE

We have already discussed the general abstract form of the
Milburn gate and the Sørensen-Mølmer gate. We focused on
the presence of a relative error in the gate implementation.
For the Sørensen-Mølmer gate, we considered the error in
the gate implementation time, while for the Milburn gate,
we considered the error in the phase angle increment. We
analyzed the performance of the gates if we decrease the
interaction strength and traverse the mechanical phase space
multiple times. The latter refers to increasing the interaction
time for the Sørensen-Mølmer gate and increasing the num-
ber of pulses for the Milburn gate. In this section we apply
our results to an optomechanical system (see Fig. 3), where
the Sørensen-Mølmer gate corresponds to the continuous-
interaction regime and the Milburn gate corresponds to the
pulsed-interaction regime. We will also show that the phase
angle increment in the Milburn gate is also related to an
evolution time. Additionally, we take the dissipation of the
mechanical oscillator into account. By deriving the analytical
solutions, we further comment on the relations between the
Milburn gate and the Sørensen-Mølmer gate.
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(a)

(b)

(i) optomechanical interaction (ii) mechanical evolution

FIG. 3. The optomechanical model is illustrated as a Fabry-Pérot
cavity here. The optical field circulates inside the cavity (red circle,
described by the annihilation operator â), one end mirror of which
is movable and modeled as a mechanical oscillator (annihilation
operator b̂). The optical field exerts a radiation pressure on the
mechanical oscillator, while the mechanical oscillator modifies the
optical path of the field. (a) In the continuous-interaction regime,
the optical field stays in the cavity for multiple mechanical periods.
The optomechanical interaction happens simultaneously with the
free evolution of the mechanical oscillator (double-headed arrow)
and the possible mechanical dissipation (dashed arrow, γ as the
dissipation rate). (b) In the pulsed-interaction regime, there are two
separate steps that are repeated periodically. (i) The first step is the
optomechanical interaction. It is on a much shorter timescale than
the mechanical period; therefore, in this step both the mechanical
oscillator free evolution and dissipation are neglected. (ii) In the
second step, the optical field exits the cavity to enter a delay line
(illustrated as the blue circuit). The mechanical oscillator, at the same
time, evolves freely for a fraction of the mechanical period, together
with the possible mechanical dissipation. The two steps are then
repeated.

A. Unitary dynamics

We consider an example of an optomechanical system to
analytically quantify the performance of the gates under the
transformation described above. An optomechanical system
consists of a Fabry-Pérot cavity with a movable mirror [13].
The light field inside the cavity interacts with the mechanical
oscillation of the movable mirror via radiation pressure. The
Hamiltonian in the frame rotating with the field frequency is
[17,18]

Ĥ = h̄ωmb̂†b̂ − h̄g0â†â
b̂† + b̂√

2
, (9)

where g0 is the optomechanical interaction strength and â (â†)
is the annihilation (creation) operator of the field.

If the cavity photon decay rate κ is small, the field is kept
in the cavity for multiple mechanical periods and the system is
in the continuous-interaction regime [see Fig. 3(a)]. The time-
evolution operator is thus calculated to be [21]

Û (om)
c,1 (t ) = e−iĤt/h̄

= exp
(

i
g0

ωm
â†â{sin(ωmt )x̂m − [1 − cos(ωmt )] p̂m}

)

× exp

(
i

g2
0

2ω2
m

(â†â)2[ωmt − sin(ωmt )]

)

× exp(−iωmt b̂†b̂). (10)

The last term induces a uniform rotation in the mechanical
phase space. It has no effect if the mechanical mode is initially
in a thermal state, which is the case we will focus on. Here
Û (om)

c,1 (t ) is in the form of the Sørensen-Mølmer gate with di-

mensionless interaction strength k = g0/
√

2ωm and Ô = â†â.
As in Sec. V A, suppose that the target gate corresponds

to the interaction time t = 2π/ωm and there is a relative
error in the actual interaction time so that t ′ = (1 + η)t . We
investigate the change in gate performance as we reduce the
interaction strength k → k/N and increase the interaction
time t ′ → N2t ′. The initial state of the field is assumed to be
a coherent state |α〉 f . The mechanical oscillator is initialized
to a thermal state with mean phonon number nth. Following
the discussion in Sec. V A, the purity of the final field state is
improved by taking a large value of N . The fidelity depends
on the comparison between V̂m,N=1 and V̂O,N→∞. We consider
the change of the mean value of the field quadrature operator
induced by these two error gates, which is the lowest-order
contribution. Suppose α is real without loss of generality. For
V̂m,N=1,

〈V̂ †
m,N=1(âe−iϕ + â†eiϕ )V̂m,N=1〉
= 2α cos ϕ exp{−(2nth + 1)k2[1 − cos(η2π )]}, (11)

inducing a decay of the field quadrature amplitude. For
V̂O,N→∞,

〈V̂ †
O,N→∞(âe−iϕ + â†eiϕ )V̂O,N→∞〉
= 2αe−α2[1−cos(4πηk2 )] cos[ϕ − α2 sin(4πηk2) − 2πηk2],

(12)

resulting in both a decay in amplitude and a change in phase.
For practical optomechanical parameters of solid-state sys-
tems [13], the amplitude decays in both cases are negligibly
small. It is thus expected that the change in the effective
self-interaction induced by V̂O,N→∞ dominates the effect
of V̂m,N=1. The transformation of reducing the interaction
strength together with increasing the interaction time reduces
the fidelity of the field state.

Figure 4 shows an example of the gate performance under
the transformation. We choose the amplitude of the coher-
ent state α = 100, the dimensionless interaction strength k =
0.001, and the thermal state with mean phonon number nth =
100. Figure 4(a) depicts the Q function of the field state,
Q(β ) = f 〈β|ρ f |β〉 f /π . Figure 4(a i) is for the target state.
It represents a self-Kerr interaction on a coherent state, in-
ducing rotation and a small amount of squeezing [18,22].
Figure 4(a ii) is for the field state at time t ′ = (1 + η)2π/ωm

with η = 0.05. Entanglement with the thermal mechanical
mode smears out the peak of the Q function, while the cen-
ter of the peak remains unchanged. Figure 4(a iii) is for
t ′ = N2(1 + η)2π/ωm and dimensionless interaction strength
k/N with η = 0.05 and N = 4. The extra rotation induced by
V̂O,N=4 is clear. Figure 4(a iv) is for the limit N → ∞ with
η = 0.05. The field becomes disentangled from the mechan-
ical oscillator, so the peak of the Q function is concentrated.
However, the extra rotation means the overlap with the target
state is smaller than that for N = 1. Figure 4(b) plots the
fidelity of the final field state compared with the target state, as
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(a)

(b)

(c)

(i) (ii) (iii) (iv)

FIG. 4. Performance of the Sørensen-Mølmer gate (continuous
optomechanical interaction) for α = 100, k = 0.001, and nth = 100.
(a) The Q function of the optical field for (i) the target state and
(ii)–(iv) states with relative error in the interaction time η = 0.05
for different values of N : (ii) N = 1, (iii) N = 4, and (iv) N → ∞.
(b) Fidelity of the final field state compared with the target state as
a function of η for different values of N . (c) Purity of the final field
state as a function of η for different values of N . For (b) and (c), the
blue dotted line is for N = 1, the red dashed line is for N = 4, the
orange dot-dashed line is for N = 10, and the green solid line is for
N → ∞.

a function of the relative error in interaction time η, for N = 1
(blue dotted line), N = 4 (red dashed line), N = 10 (orange
dot-dashed line), and N → ∞ (green solid line). The fidelity
is defined as the overlap between the state of the field and the
target state, which is

Fc = f 〈α|e−i2πk2 (â†â)2
ρ f ei2πk2(â†â)2 |α〉 f . (13)

As discussed before, the fidelity is reduced by the transforma-
tion due to the resultant error in the effective self-interaction.
Note that N = 10 already approaches the limit N → ∞. Fig-
ure 4(c) plots the purity of the final field state as a function
of η, for the same values of N as in Fig. 4(b). The purity is
defined as

Pc = Tr
(
ρ2

f

)
. (14)

The purity is already largely improved for N = 10 and will
reach 1 for any interaction time in the limit N → ∞. The

(a)

(b)

(c)

(i) (ii) (iii) (iv)

FIG. 5. Performance of the Milburn gate (pulsed optomechanical
interaction) for α = 100, λ = 0.001, Np = 6, and nth = 100. (a) The
Q function of the field for (i) the target state and (ii)–(iv) states with
relative error in the phase angle increment ξ = 0.05 for different
values of N : (ii) N = 1, (iii) N = 4, and (iv) N → ∞. (b) Fidelity
of the final field state as a function of ξ for different N . (c) Purity of
the final field state as a function of ξ for different N . The legend is
the same as in Fig. 4.

analytical expressions for the Q function, fidelity, and purity
are shown in Appendix B.

If the cavity photon decay rate is large (κ > ωm), the
optomechanical system is in the pulsed-interaction regime
[16,17,19]. To be specific, the field enters the cavity and
interacts with the mechanical oscillator only for a very short
time. After that the field exits the cavity via a delay line such
that both the field and the mechanical oscillator evolve freely
without the optomechanical interaction [16]. Then the field
reenters the cavity from the delay line to interact with the
mechanical oscillator, which is a repetition of the initial step
[see Fig. 3(b)]. This process in the frame rotating with the field
frequency is described by the unitary evolution operator

Û (om)
p,1 (Np,�t )

= exp[iλâ†â(b̂† + b̂)/
√

2] exp(−iωm�t b̂†b̂)

× exp[iλâ†â(b̂† + b̂)/
√

2]

× exp(−iωm�t b̂†b̂) × · · · × exp[iλâ†â(b̂† + b̂)/
√

2].

(15)
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Here λ = 2πg0/κ is the effective coupling strength. The term
exp[iλâ†â(b̂† + b̂)/

√
2] is repeated Np times. It describes

the pulsed interaction between the field and the mechanical
oscillator, where the free evolution of the mechanical oscil-
lator is neglected due to the short time duration. The term
exp(−iωm�t b̂†b̂) is repeated Np − 1 times. It describes the
free evolution of the mechanical oscillator in between two
pulsed interactions with the field, with �t describing the time
interval between the two pulsed interactions. Note that �t �
2π/κ . It is straightforward to show that Û (om)

p,1 (Np,�t ) =
Ûp exp[−iωm(Np − 1)�t b̂†b̂], where Ûp is in the form of the
Milburn gate (1) with Ô = â†â, and θ = 2Kiπ + ωm�t , with
Ki an integer. For simplicity, we will assume that Ki = 0. The
term exp[−iωm(Np − 1)�t b̂†b̂] has no effect on the dynamics
if the initial state of the mechanical oscillator is a thermal
state.

Figure 5 shows the behavior of the pulsed optomechan-
ical interaction, taking the initial field state as a coherent
state |α = 100〉 f , effective coupling strength λ = 0.001, and
thermal phonon number nth = 100. The target gate is formed
by Np = 6 and θ = 2π/Np, corresponding to the mechanical-
phase-space trajectory as a regular hexagon. As discussed
in Sec. V B, suppose there is a relative error in the phase
angle increment, θ ′ = (1 + ξ )θ , which corresponds to a small
error in controlling the time interval �t between two pulsed
interactions. We consider the change in the gate performance
when reducing λ to λ/N , increasing Np to N2Np, and keep-
ing θ ′ unchanged. The results in Fig. 5 clearly support the
arguments in Sec. V B. The term exp(iψ̂m,N ) entangles the
optical field with the mechanical oscillator, causing a blurred
peak of the Q function [Figs. 5(a ii)–5(a iv)] and reducing
the purity [Fig. 5(c)]. Its effect reduces as N increases. The
term exp(iψ̂O,N ) represents an extra self-Kerr interaction,
resulting in a rotation of the Q-function peak. The amount
of rotation decreases as N increases [Fig. 5(a)], leading to a
higher fidelity [Fig. 5(b)].

It is worth pointing out that for both the Sørensen-Mølmer
gate (Fig. 4) and the Milburn gate (Fig. 5), when N is finite,
the fast oscillation of the fidelity and purity as a function of
the relative error implies that the corresponding curve does
not stay above (or below) the curve of N = 1 for all values of
the error. However, in the limit N → ∞, the fast oscillation is
smoothened. The two curves only intersect at the point with
zero error. We can thus unambiguously define whether the

gate performance is improved by the transformation indepen-
dent of the value of the error.

B. Including the mechanical dissipation

Now we take into account an additional factor, which is the
dissipation of the mechanical oscillator. This is relevant in the
following way. An important property of both the Sørensen-
Mølmer gate and the Milburn gate is that, under unitary
dynamics, the state of the field is periodically disentangled
from the mechanical oscillator. Therefore, the properties of
the mechanical oscillator will not affect the state of the field
at these times. However, the nonunitary dynamics of the me-
chanical oscillator will break the periodic disentanglement of
the two modes, which is worth investigation.

The mechanical dissipation is included via the master
equation in Lindblad form [14]

dρ(t )

dt
= − i

h̄
[Ĥu, ρ(t )] + γ

2
(2b̂ρ(t )b̂† − b̂†b̂ρ(t ) − ρ(t )b̂†b̂),

(16)
where ρ(t ) is the joint state of the optical field and the me-
chanical oscillator, Ĥu is the Hamiltonian corresponding to
the unitary dynamics, and γ is the rate of the mechanical
dissipation. In writing down the master equation, we have
assumed that the mechanical oscillator is in contact with a
vacuum bath. For simplicity, we only consider the case where
the initial state is a product state of the optical field in a
coherent state and the mechanical oscillator in a vacuum state,
namely,

ρ(0) = |α〉 f 〈α| ⊗ |0〉m〈0|. (17)

As before, we assume α is real.
Let us start from the Milburn gate, which is the pulsed-

interaction regime. The unitary dynamics without dissipation
is described by Eq. (15). The mechanical dissipation only
affects the steps where the mechanical oscillator evolves
freely [see Fig. 3(b)], namely, the exp(−iωm�t b̂†b̂) terms in
Eq. (15). This is because the interaction time in the step of
the pulsed optomechanical interaction [Fig. 3(b i)], 2π/κ , is
much smaller than the mechanical oscillator free evolution
time �t [Fig. 3(b ii)]. Making use of the transformation of
the coherent state basis in the presence of the mechanical
dissipation terms in Eq. (16) [23], the state of the system after
Np pulsed optomechanical interactions and Np − 1 intervals
containing mechanical dissipation is calculated to be

ρNp = e−α2
∞∑

l1,l2=0

αl1+l2

√
l1!l2!

ANp−1(l1, l2)RNp (l1, l2)|l1〉 f 〈l2| ⊗ |il1�Np〉m〈il2�Np |, (18a)

�Np = λ√
2

1 − e(−iωm�t−γ�t/2)Np

1 − e−iωm�t−γ�t/2
, (18b)

D = 1 − 2e−γ�t/2 cos(ωm�t ) + e−γ�t , (18c)

ANp−1(l1, l2) = exp

[
− λ2

4
(l1 − l2)2(1 − e−γ�t )

1

D

(
Np − 1 + e−γ�t (1 − e−(Np−1)γ�t )

1 − e−γ�t

− 2

D

{
e−γ�t/2 cos(ωm�t ) − e−γ�t − e−(γ /2)Np�t cos(Npωm�t )

+ e−(γ /2)(Np+1)�t cos[(Np − 1)ωm�t]
})]

, (18d)
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RNp (l1, l2) = exp

[
i
λ2

2

(
l2
1 − l2

2

)( (Np − 1)e−γ�t/2 sin(ωm�t )

D

− 1

D2

{
e−γ�t sin(2ωm�t ) − e−(γ /2)(Np+1)�t sin[(Np + 1)ωm�t]

− 2e−(3/2)γ�t sin(ωm�t ) + 2e−(γ /2)(Np+2)�t sin(Npωm�t )

− e−(γ /2)(Np+3)�t sin[(Np − 1)ωm�t]
})]

, (18e)

where the optical field state is expressed in the Fock-state
basis and the mechanical oscillator state is expressed in the
coherent state basis. Note that the exponent of ANp−1(l1, l2) is
purely real, while the exponent of RNp (l1, l2) is purely imagi-
nary. The state of the optical field is given by taking the partial
trace over the mechanical oscillator,

ρ f ,Np = Trm(ρNp ). (19)

As considered in Sec. VI A, we assume that there is a small
error in controlling the interval time between two pulsed op-
tomechanical interactions, namely, �t = (1 + ξ )2π/Npωm,
with the relative error |ξ | � 1. We look into the performance
of the gate if we reduce the interaction strength by a fac-
tor of N , λ → λ/N , and increase the number of pulses by
a factor of N2, Np → N2Np, without changing �t . We use
the fidelity of the gate and the purity of the optical state to
characterize the gate performance. The expressions are given
in Appendix C. To visualize the results, we choose the initial
coherent state amplitude of the optical field as α = 100, the
effective optomechanical coupling strength λ = 0.001, the
number of pulses Np = 6, and the rescaled mechanical dissi-
pation rate γ /ωm = 0.02. The fidelity and purity as a function
of the relative error ξ for different values of the factor N are
plotted in Fig. 6. We can see that, for the chosen parameters,
increasing the factor N improves both the fidelity and the
purity, even after the dissipation of the mechanical oscillator
is considered. For the fidelity of the gate, the presence of
mechanical dissipation slightly smooths the oscillation of the
fidelity as a function of the error ξ . For the purity of the final
optical state, the presence of mechanical dissipation reduces
the purity for each value of ξ and also smooths the oscillation
of the purity as a function of ξ . Note that as we have taken

the initial state of the mechanical oscillator as a vacuum state,
the purity is much closer to 1 compared with the case in
Sec. VI A. We have also chosen not to show the Q function,
as the difference between different values of N turns out to be
invisible.

The Sørensen-Mølmer gate, or equivalently the
continuous-optomechanical-interaction regime, can be
derived by taking the continuous limit of the Milburn
gate, making use of the idea of Trotterization that is implicitly
applied in Ref. [14]. To be specific, we first set both the
pulsed-interaction time 2π/κ and the interval time �t
to a small time step dt . Then we take the limits dt → 0
and Np → ∞, keeping the continuous-interaction time
t ≡ Npdt finite. These two steps transform the system from
the pulsed-interaction regime to the continuous-interaction
regime. In other words, the continuous-interaction regime
is described by inserting the Hamiltonian in Eq. (9) into Ĥu

in the master equation (16). The continuous-time dynamics
is decomposed into a series of infinitesimal time steps, each
one with length dt . Within each dt , the optomechanical
interaction, the mechanical oscillator free evolution, and the
mechanical dissipation happen simultaneously [see Fig. 3(a)].
However, as dt is infinitesimal, the three processes can be
separated into two sequential steps. The first one only contains
the optomechanical interaction. The second one contains both
the mechanical oscillator free evolution and the mechanical
dissipation. This separation leads to a structure similar to the
Milburn gate [see Fig. 3(b)]. Note that the difference with
the Milburn gate is that, for the Milburn gate, the time for
the mechanical oscillator free evolution and the mechanical
dissipation, labeled as �t , is finite.

For the continuous-interaction regime, the state of the sys-
tem at time t is calculated by taking the continuous limit of
the Milburn gate,

ρ(t ) = e−α2
∞∑

l1,l2=0

αl1+l2

√
l1!l2!

At (l1, l2)Rt (l1, l2)|l1〉 f 〈l2| ⊗ |il1�t 〉m〈il2�t |, (20a)

�t = g0√
2
(
iωm + γ

2

) (1 − e−(iωm+γ /2)t ), (20b)

At (l1, l2) = exp

{
g2

0

4ω2
m + γ 2

(l1 − l2)2

[
e−γ t − 1 − γ t + 4γ 2e−γ t/2

γ 2+4ω2
m

(
eγ t/2− cos ωmt + 2ωm

γ
sin ωmt

)]}
, (20c)

Rt (l1, l2) = exp

[
i

2g2
0

4ω2
m + γ 2

(
l2
1 − l2

2

)(
ωmt − e−γ t/2 4ω2

m − γ 2

4ω2
m + γ 2

sin ωmt − 4ωmγ

4ω2
m + γ 2

(1 − e−γ t/2 cos ωmt )

)]
, (20d)
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(a)

(b)

FIG. 6. Performance of the Milburn gate (pulsed optomechanical
interaction) including the dissipation of the mechanical oscillator
described by the Lindblad master equation, for α = 100, λ = 0.001,
Np = 6, nth = 0, and γ /ωm = 0.02. (a) Fidelity of the final field state
as a function of ξ for different N . (b) Purity of the final field state as
a function of ξ for different N . Solid lines are for the cases with
mechanical dissipation. For comparison, dot-dashed lines are for the
cases without mechanical dissipation. The case of N = 1 is plotted in
red and marked with triangles. The case of N = 3 is plotted in green
and marked with circles. The case of N = 10 is plotted in blue and
marked with squares.

where, as before, the optical field is expanded in the Fock-state
basis and the mechanical oscillator is expanded in the coherent
state basis. Similar to before, we consider that there is a small
relative error in the evolution time, t = (1 + η)2π/ωm for
|η| � 1, causing the gate to be imperfect. We analyze how the
gate performance changes if we reduce the optomechanical-
interaction strength g0 → g0/N together with increasing the
interaction time to t = N2(1 + η)2π/ωm for an integer N .
The analytical expressions are given in Appendix C. We show
an example of the results by choosing the parameters in the
following way. The amplitude of the initial coherent state of
the field is α = 100, the dimensionless interaction strength is
k = g0/

√
2ωm = 0.001, and the rescaled mechanical dissipa-

tion rate is γ /ωm = 0.02. In Fig. 7 we plot the fidelity of the
gate and the purity of the final optical state, as a function of
the relative error η, for several values of N . For the chosen
parameters, including mechanical dissipation does not change
the qualitative responses of the gate to different values of
N . Specifically, increasing the value of N only improves the
purity of the final optical field [Fig. 7(b)], not the fidelity
of the gate [Fig. 7(a)]. For each value of N , the comparison
between the situations with and without mechanical dissi-
pation is similar to the case of the Milburn gate. Including
mechanical dissipation smooths the oscillations of the fidelity
as a function of the relative error η. For the purity of the final
optical state, mechanical dissipation has two effects. One is to

(a)

(b)

FIG. 7. Performance of the Sørensen-Mølmer gate (continuous
optomechanical interaction) including the dissipation of the me-
chanical oscillator, described by Eq. (16), for α = 100, k = 0.001,
nth = 0, and γ /ωm = 0.02. (a) Fidelity of the final field state as a
function of η for different N . (b) Purity of the final field state as a
function of η for different N . The legend is the same as in Fig. 6.

reduce the purity for each value of η. The other is to smooth
the oscillation of the purity as a function of η.

The unification of the pulsed-interaction scheme and the
continuous-interaction scheme is clearly demonstrated in the
example of an optomechanical system. On the one hand, we
obtain the result for the continuous-interaction case [Eq. (20)]
by taking the continuous limit of the pulsed interaction [see
Eq. (18)]. This does not involve solving differential equations,
as opposed to the method in Ref. [14]. On the other hand,
the different behaviors of the two gates in the presence of the
relative error in time, as plotted in Figs. 6 and 7, where the me-
chanical dissipation is included, can be unified by including
the relative error in the Milburn gate interaction strength (8).
We further comment on this in Appendix C, where analytical
expressions are provided.

VII. CONCLUSION

Both the Sørensen-Mølmer gate and the Milburn gate are
geometric phase gates on a target mode via interaction with
one auxiliary mechanical oscillator mode. We have shown
that the Sørensen-Mølmer gate is the continuous limit of the
Milburn gate, including a geometrical explanation in the me-
chanical phase space. Both gates have the property that if the
mechanical-phase-space trajectory is closed, the two modes
disentangle, and thus the mechanical mode is only virtually
involved. However, the performances of the gates are reduced
in the presence of error in the gate parameters. We explicitly
considered the error in time for the Sørensen-Mølmer gate and
in the phase angle increment for the Milburn gate. The trans-
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FIG. 8. Relations between the expressions in the pulsed-interaction regime and the continuous-interaction regime.

formation of decreasing the interaction strength together with
increasing the number of loops traversed in the mechanical
phase space can reduce the entanglement between the target
mode and the mechanical oscillator mode, thus increasing
the purity of the target mode. It increases the fidelity of the
Milburn gate, but the fidelity of the Sørensen-Mølmer gate
depends on the competition between thermal effect of the me-
chanical mode and error-induced additional self-interaction.
We pointed out that the difference is because the interaction
strength becomes dependent on the relative error when taking
the continuous limit and once this dependence is taken into
account, the behaviors of the two gates are understood in a
single platform. We quantitatively illustrated this unification
via an optomechanical system, where in addition we included

the effect of the mechanical oscillator dissipation to empha-
size the application of our unified framework.

ACKNOWLEDGMENTS

This work was supported by the KIST Open Research Pro-
gram, the QuantERA ERA-NET within the EUs Horizon 2020
program, the UK Hub in Quantum Computing and Simulation
with funding from UKRI EPSRC Grant No. EP/T001062/1,
and the EPSRC (Grant No. EP/R044082/1) and the Royal
Society. Y.M. was supported by the EPSRC Centre for Doc-
toral Training on Controlled Quantum Dynamics at Imperial
College London (Grant No. EP/L016524/1) and funded by
the Imperial College President’s Ph.D. Scholarship.

APPENDIX A: ANALYTICAL EXPRESSIONS OF THE SØRENSEN-MØLMER GATE AND MILBURN
GATE NOT INCLUDED IN THE MAIN TEXT

The explicit expressions of c1, c2, and c3 in Eq. (1) are

c1 = λ

[
1

2
+ 1

2
cos[(Np − 1)θ ] + 1

2
sin[(Np − 1)θ ] cot

(
θ

2

)]
, (A1a)

c2 = λ

[
1

2
cot

(
θ

2

)
{1 − cos[(Np − 1)θ ]} + 1

2
sin[(Np − 1)θ ]

]
, (A1b)

c3 = 1

2
λ2 Np sin θ − sin(Npθ )

4 sin2
(

θ
2

) . (A1c)

The expression of the Sørensen-Mølmer gate with relative error η in interaction time, for N = 1 (see Sec. V A), is

Ûc,N=(η) = V̂m,N=1V̂O,N=1Ûc,T , (A2a)

V̂m,N=1 = exp (i
√

2kÔ{sin(η2π )x̂m − [1 − cos(η2π )] p̂m}), (A2b)

V̂O,N=1 = exp{ik2Ô2[η2π − sin(η2π )]}, (A2c)

Ûc,T = exp(ik2Ô22π ). (A2d)

In Fig. 8 we show how the expressions in the main text are connected to each other. The double-line arrow refers to an equality,
while the single-line arrow refers to a limit. This figure represents the unified mathematical framework of the two gates.
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APPENDIX B: ANALYTICAL EXPRESSIONS OF THE Q FUNCTION, FIDELITY, AND PURITY FOR UNITARY EVOLUTION
OF THE OPTOMECHANICAL EXAMPLE

For the continuous-interaction regime, the Q function of the field state at time t ′ = N2(1 + η)2π/ωm is (for real α)

Qc(β ) = 1

π

∞∑
l1,l2=0

e−α2−|β|2 αl1+l2β∗l1β l2

l1!l2!
�c(l1, l2)Mc(l1, l2), (B1a)

�c(l1, l2) = exp

(
i

k2

N2

(
l2
1 − l2

2

)
[(1 + η)2πN2 − sin(η2πN2)]

)
, (B1b)

Mc(l1, l2) = exp

(
− k2

N2
(l1 − l2)2(2nth + 1)[1 − cos(η2πN2)]

)
. (B1c)

The fidelity is

Fc =
∞∑

l1,l2=0

e−2α2 α2(l1+l2 )

l1!l2!
exp

[−i2πk2
(
l2
1 − l2

2

)]
�c(l1, l2)Mc(l1, l2). (B2)

The purity is

Pc =
∞∑

l1,l2=0

e−2α2 α2(l1+l2 )

l1!l2!
M2

c (l1, l2). (B3)

For the pulsed-interaction regime, the Q function of the field for the phase angle increment θ ′ = (1 + ξ )2π/Np is

Qp(β ) = 1

π

∞∑
l1,l2=0

e−α2−|β|2 αl1+l2β∗l1β l2

l1!l2!
�p(l1, l2)Mp(l1, l2), (B4a)

�p(l1, l2) = exp

(
i
λ2

N2

(
l2
1 − l2

2

)N2Np sin[(1 + ξ )2π/Np] − sin(N22πξ )

8 sin2[(1 + ξ )π/Np]

)
, (B4b)

Mp(l1, l2) = exp

(
− λ2

N2
(l1 − l2)2(2nth + 1)

1 − cos(ξ2πN2)

8 sin2[(1 + ξ )π/Np]

)
. (B4c)

The fidelity is

Fp =
∞∑

l1,l2=0

e−2α2 α2(l1+l2 )

l1!l2!
exp

[
−iλ2(l2

1 − l2
2

)Np

4
cot

(
π

Np

)]
�p(l1, l2)Mp(l1, l2). (B5)

The purity is

Pp =
∞∑

l1,l2=0

e−2α2 α2(l1+l2 )

l1!l2!
M2

p(l1, l2). (B6)

APPENDIX C: ANALYTICAL EXPRESSIONS OF FIDELITY AND PURITY FOR THE OPTOMECHANICAL EXAMPLE
INCLUDING MECHANICAL DISSIPATION

For the continuous-interaction regime, the fidelity for interaction time t = N2(1 + η)2π/ωm is

F̃c =
∞∑

l1,l2=0

e−2α2 α2(l1+l2 )

l1!l2!
exp

[−i2πk2
(
l2
1 − l2

2

)]
Pc(l1, l2)Mc(l1, l2), (C1a)

Pc(l1, l2) = exp

[
i

4k2ω2
m

4ω2
m + γ 2

(
l2
1 − l2

2

)(
(1 + η)2π − 1

N2
e−(γ /ωm )π (1+η)N2 4ω2

m − γ 2

4ω2
m + γ 2

sin(η2πN2)

− 1

N2

4ωmγ

4ω2
m + γ 2

[
1 − e−(γ /ωm )π (1+η)N2

cos(η2πN2)
])]

, (C1b)

Mc(l1, l2) = exp

{
− k2

N2
(l1 − l2)2 4ω2

m

4ω2
m + γ 2

[
1 − cos(η2πN2)e−(γ /ωm )π (1+η)N2 + γ

ωm
π (1 + η)N2

− 2γ 2

γ 2 + 4ω2
m

e−(γ /ωm )π (1+η)N2

(
e(γ /ωm )π (1+η)N2 − cos(η2πN2) + 2ωm

γ
sin(η2πN2)

)]}
. (C1c)
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The purity is

P̃c =
∞∑

l1,l2=0

e−2α2 α2(l1+l2 )

l1!l2!
M2

c (l1, l2). (C2)

Note that here we have chosen nth = 0.
For the pulsed-interaction regime, the fidelity for phase angle increment θ = (1 + ξ )2π/Np is

F̃p =
∞∑

l1,l2=0

e−2α2 α2l1+2l2

l1!l2!
exp

[
− iλ2

(
l2
1 − l2

2

)Np

4
cot

(
π

Np

)]
Pp(l1, l2)Mp(l1, l2), (C3a)

D = 1 − 2e−γ (1+ξ )2π/2Npωm cos

(
(1 + ξ )

2π

Np

)
+ e−γ (1+ξ )2π/Npωm , (C3b)

Pp(l1, l2) = exp

(
i

λ2

2N2

(
l2
1 − l2

2

){ 1

D (N2Np − 1)e−γ (1+ξ )2π/2Npωm sin

(
(1 + ξ )

2π

Np

)
− 1

D2

[
e−γ (1+ξ )2π/Npωm sin

(
(1 + ξ )

4π

Np

)

− e−(γ /2)(N2Np+1)(1+ξ )2π/Npωm sin

(
N22πξ + (1 + ξ )

2π

Np

)
− 2e−(3/2)γ (1+ξ )2π/Npωm sin

(
(1 + ξ )

2π

Np

)

+ 2e−(γ /2)(N2Np+2)(1+ξ )2π/Npωm sin(N22πξ ) − e−(γ /2)(N2Np+3)(1+ξ )2π/Npωm sin

(
N22πξ − (1 + ξ )

2π

Np

)]})
, (C3c)

Mp(l1, l2) = exp

[
− λ2

4N2
(l1 − l2)2

(
1

D (1 − e−γ (1+ξ )2π/Npωm )

{
N2Np − 1 + e−γ (1+ξ )2π/Npωm (1 − e−(N2Np−1)γ (1+ξ )2π/Npωm )

1 − e−γ (1+ξ )2π/Npωm

− 2

D

[
e−γ (1+ξ )2π/2Npωm cos

(
(1 + ξ )

2π

Np

)
− e−γ (1+ξ )2π/Npωm − e−(γ /2)N2Np(1+ξ )2π/Npωm cos(N22πξ )

+ e−(γ /2)(N2Np+1)(1+ξ )2π/Npωm cos

(
N22πξ − (1 + ξ )

2π

Np

)]}

+ 1

D [1 − 2e−γ N2Np(1+ξ )2π/2Npωm cos(N22πξ ) + e−γ N2Np(1+ξ )2π/Npωm ]

)]
. (C3d)

The purity is

P̃p =
∞∑

l1,l2=0

e−2α2 α2l1+2l2

l1!l2!
M2

p(l1, l2). (C4)

The unification of the two gates in the presence of the mechanical dissipation can be shown in the following way. We insert
Eq. (8) into Pp(l1, l2) and take the limit Np → ∞ to arrive at Pc(l1, l2). Similarly, we insert Eq. (8) into Mp(l1, l2) and take the
limit Np → ∞ to arrive at Mc(l1, l2). The conversion from the purity P̃p to P̃c is therefore straightforward. For the fidelity F̃p, in
addition to the transforms of Pp(l1, l2) and Mp(l1, l2), we replace λ in the exponential factor exp[−iλ2(l2

1 − l2
2 ) Np

4 cot( π
Np

)] with√
2k(2π/Np). Note that this does not include the relative error ξ , as the exponential factor comes from the target state. Taking

the limit Np → ∞ brings F̃p to F̃c.
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