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Dynamic quantum-enhanced sensing without entanglement in central spin systems
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We propose a dynamic quantum sensing scheme by using a quantum many-spin system composed of a central
spin interacting with many surrounding spins. Starting from a generalized Ising ring model, we investigate the
error propagation formula of the central spin, and it indicates that Heisenberg scaling can be reached while
the probe state only needs to be a product state. Particularly, we derive an analytical form of the dynamic
quantum Fisher information in a limit case, which explicitly exhibits the Heisenberg scaling. By comparing
with numerical results, we demonstrate that the general case can be well approximated by the analytical result
when the coupling strength among the surrounding spins is much weaker than the coupling strength between the
central and surrounding spins. This analytic result guides us to find the appropriate probe state and the proper
measurement time to achieve the Heisenberg scaling in realistic situations. Furthermore, we investigate various
effects which are important in practical quantum systems, including the central spin Zeeman term, the anisotropy
of the hyperfine interaction and the inhomogeneity of the hyperfine coupling strength. Our result indicates that
the dynamic quantum-enhanced sensing scheme seems feasible in realistic quantum central spin systems, like
semiconductor quantum dots.

DOI: 10.1103/PhysRevA.106.012604

I. INTRODUCTION

Quantum sensing [1,2] and quantum metrology [3–5]
are becoming the frontiers of quantum technologies nowa-
days. Specifically, theoretical research on quantum parameter
estimation utilizing quantum properties has attracted great
attention in recent years. On one hand, most of the research
on quantum metrology has been the employment of entangled
probe state to achieve the sub-shot-noise limit [6–10]. On
the other hand, since the entangled probe state is extremely
difficult to generate and very prone to decoherence [11–14],
many techniques to realize the quantum-enhanced metrol-
ogy without entanglement have also been proposed [15–17].
Particularly, the quantum effects of quantum many-body sys-
tems are employed to realize metrology schemes without
entanglement. For example, the quantum phase transition was
proposed to realize quantum-enhanced parameter estimation
[18–21]. In addition, the nonlinear many-body Hamiltonian
was also been employed to enhance the measurement preci-
sion, even reaching beyond the conventional Heisenberg limit
[22–27].

The central spin model, which consists of a central spin
interacting with many surrounding spins, can be used to
describe realistic quantum many-spin systems, such as the
semiconductor quantum dots [28,29], the nitrogen-vacancy
center in the diamond [30,31], and so on. Recently, these
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solid-state central spin systems were widely investigated in
quantum information and quantum computation [29,32], as
well as quantum metrology and quantum sensing [33–35].
Particularly, in Ref. [33,34], the central spin model was pro-
posed to achieve the quantum-enhanced sensing. However,
this sensing scheme was still based on the generation of the
entangled probe state. The nonlinear interaction between the
central spin and the surrounding spins implies that it is possi-
ble to realize the quantum-enhanced sensing of the magnetic
field without entanglement. Recently, a dynamic framework
for criticality-enhanced quantum sensing in the quantum Rabi
model was proposed [20]. This work inspired us to look for
a dynamic scheme for the realization of quantum-enhanced
sensing without resorting to the entanglement. Particularly, we
shall explore a dynamic routine to sense the magnetic field in
a central spin model. We discover that the Heisenberg scaling
can be achieved in our sensing scheme, while neither the
entangled probe state nor the quantum criticality is required.
A similar model known as the ZZXX model was studied by
the authors of Ref. [36] via the numerical calculation of the
quantum Fisher information, in which the authors concluded
that the Heisenberg scaling cannot be reached when only the
central spin was measured [36]. However, in this work we
demonstrate that the Heisenberg scaling can still be reached
dynamically by only measuring the central spin, when an
appropriate probe state and measurement time is applied.
Specifically, we can obtain an explicit analytic form of the
dynamic quantum Fisher information for a limited case of our
studied central spin model, which correctly predicts the dy-
namics of the ZZXX model when the number of surrounding
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spins becomes large enough. In addition, we investigate more
realistic central spin systems and our result indicates that
quantum-enhanced magnetometry using our dynamic sensing
framework seems feasible. In particular, our scheme has the
great advantage that neither the entangled probe state nor
quantum criticality is required.

The rest of paper is organized as follows. In Sec. II, we first
describe the formalism for the calculation of quantum metrol-
ogy and introduce our model system. In Sec. III, we study
both the local and global quantum Fisher information for the
central spin systems and derive the analytical expression of
the dynamic quantum Fisher information in a limited case.
In Sec. IV, we discuss the effects related to a more realistic
central spin system. A conclusion and summary are given in
the last section.

II. FORMALISM AND MODEL

Before the study of concrete models, first, we give a brief
review of the basics of quantum metrology for the conve-
nience of the following calculations. The quantum fidelity
between two quantum states ρ̂1 and ρ̂2 is defined as

F (ρ̂1, ρ̂2) = Tr(
√√

ρ̂1ρ̂2

√
ρ̂1). (1)

In particular, when the quantum state is continuously depen-
dent on parameter λ, we can define the fidelity susceptibility
[37], which is equivalent to the quantum Fisher information
[38]

Fλ = −4
∂2F[ρ(λ), ρ(λ + δλ)]

∂δ2
λ

∣∣∣∣
δλ=0

. (2)

Specifically, when the quantum state is a pure state, namely,
ρ(λ) = |�(λ)〉〈�(λ)|, we can calculate the quantum Fisher
information as follows:

Fλ = 4

(
〈�(λ)|

←−
∂

∂λ

−→
∂

∂λ
|�(λ)〉 − |〈�(λ)|

−→
∂

∂λ
|�(λ)〉|2

)
. (3)

Furthermore, for a unitary parameter imprint process [3,39]

|�(λ)〉 = e−iHλt |�0〉, (4)

where Hλ = H0 + λH1 is a general parameter-dependent
Hamiltonian, the quantum Fisher information is given by

Fλ = 4(〈�0|G2
λ|�0〉 − |〈�0|Gλ|�0〉|2). (5)

Here, the transformed local generator

Gλ ≡ ieiHλt ∂

∂λ
e−iHλt

can be calculated as follows [40]:

Gλ =
∫ t

0
eiHλsH1e−iHλsds = −i

∞∑
n=0

(it )n+1

(n + 1)!
[Hλ, H1]n, (6)

where the commutation relation is defined as [Hλ, H1]n+1 =
[Hλ, [Hλ, H1]n], with [Hλ, H1]0 = H1.

The quantum Fisher information sets a bound to the esti-
mation sensitivity, which is called the Cramér-Rao bound [38]

�δλ
(Â, λ) � F

− 1
2

λ . (7)

Here, the standard derivation of the measurement value is
calculated via the error propagation formula

�δλ
(Â, λ) =

√
〈Â2〉ρ(λ) − 〈Â〉2

ρ(λ)∣∣ ∂〈Â〉ρ(λ+δλ)

∂δλ

∣∣
δλ=0

∣∣ , (8)

where Â is the observable to be measured in the experiment.
We begin with a generalized central spin model [41], which

is described by the Hamiltonian of the Ising ring in a trans-
verse magnetic field interacting with a central spin [42]

H = −J
N∑

i=1

σ x
i σ x

i+1 − h
N∑

i=1

σ
y
i + Aσ z

0

N∑
i=1

σ z
i . (9)

Here, σ
α=x,y,z
0 are the operators of the central spin, σ

α=x,y,z
i=1,...,N

are the operators of spins in the Ising ring, J is the strength of
the Ising coupling, and A is the coupling strength between the
central spin and surrounding spins in the Ising ring. Different
from the usual central spin model studied by the authors of
Ref. [41], here we apply the transverse magnetic field along
the y axis instead of the z axis coupled with the central spin. In
this work, the strength of the transverse magnetic field h is the
parameter to be estimated. When the magnetic field is applied
along the z axis it becomes the problem of sensing the mag-
netic field using the standard transverse Ising Hamiltonian,
which was proved in Ref. [43] that the quantum-enhanced
metrology cannot be realized if the probe state is restricted
to be a product state. To achieve the quantum-enhanced sen-
sitivity, it is crucial to apply the magnetic field along the
appropriate direction to make sure that the interaction term
(of the central spin coupled with the surrounding spins) does
not commute with the Zeeman term.

III. LOCAL AND GLOBAL QUANTUM FISHER
INFORMATION

A. Local quantum Fisher information

We shall first consider the case with only the central spin
being measured. To evaluate the performance of utilizing this
parameter-dependent Hamiltonian as the parametrization gen-
erator, we will first calculate the error propagation formula
when the expectation value of the central spin is measured.
Specifically, the initial state (or the probe state) is chosen to
be a product state

|�0〉 = 1√
2

(|↑〉 + |↓〉) ⊗ |
n〉, (10)

where |↑(↓)〉 is the central spin state and |
n〉 is the collective
state of the spins in the Ising ring. The time evolution of the
system is governed by |�(t )〉 = e−iHt |�0〉 and the central spin
expectation value can be expressed as〈

σ x
0 (t )

〉 = 1
2 Re(〈
n|eiH+t e−iH−t |
n〉), (11)

where

H± = −J
N∑

i=1

σ x
i σ x

i+1 − h
N∑

i=1

σ
y
i ± A

2

N∑
i=1

σ z
i . (12)
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Furthermore, we have the relation

e−iH±t |
n〉 = e−iθ
∑N

i=1 σ x
i e−iH (±)

eff t eiθ
∑N

i=1 σ x
i |
n〉, (13)

where θ = arctan(2h/A) and

H (±)
eff = −J

N∑
i=1

σ x
i σ x

i+1 ±
√

h2 + A2

4

N∑
i=1

σ z
i . (14)

We now consider a specific product probe state given
by |
n〉 = |+,+, . . . ,+〉 ≡ |N/2, Mx = N/2〉 with |+〉 =
1/

√
2(|↑〉n + |↓〉n), namely, all spins in the Ising ring are

polarized along the x axis. Now, we have

〈
n|eiH+t e−iH−t |
n〉

= e−iθN

〈
N

2
, Mx=N

2

∣∣∣∣eiH (+)
eff t e2iθ

∑N
i=1 σ x

i e−iH (−)
eff t

∣∣∣∣N

2
, Mx=N

2

〉
.

(15)

Next, we discuss two important limiting situations. If
J �

√
h2 + A2/4, then H (+)

eff = H (−)
eff ≈ −J

∑N
i=1 σ x

i σ x
i+1, and

approximately, |
n〉 = |N/2, Mx = N/2〉 is the eigenstate
of H (+)

eff and H (−)
eff with eigenenergy ε0. This leads to

〈
n|eiH+t e−iH−t |
n〉 ≈ 1, which indicates that no information
on the parameter can be retrieved by monitoring the central
spin expectation value. Meanwhile, for the opposite limit-
ing situation with J �

√
h2 + A2/4, approximately, H (+)

eff ≈√
h2 + A2/4

∑N
i=1 σ z

i and H (−)
eff ≈ −

√
h2 + A2/4

∑N
i=1 σ z

i . If
we choose the evolution time t = t0 = π/

√
h2 + A2/4, then

we have

〈
n|eiH+t e−iH−t |
n〉
= e−iθN 〈
n|eiπ

∑N
i=1 σ z

i e2iθ
∑N

i=1 σ x
i eiπ

∑N
i=1 σ z

i |
n〉

= e−iθN

〈
N

2
, Mx = −N

2

∣∣∣∣e2iθ
∑N

i=1 σ x
i

∣∣∣∣N

2
, Mx = −N

2

〉

= e−2iθN . (16)

Using Eq. (11), the expectation value of the central spin is
given by

〈
σ x

0 (t0)
〉 = 1

2
cos(2θN )

= 1

2
cos

[
2 arctan

(
2h

A

)
N

]
. (17)

By substituting this result into the error propagation formula
in Eq. (8), we obtain

E−1
h =

〈[
σ x

0 (t0)
]2〉 − 〈

σ x
0 (t0)

〉2∣∣ ∂〈σ x
0 (t0 )〉
∂h

∣∣2

= (A2 + 4h2)2

16A2N2
,

(18)

which indicates the Heisenberg scaling with respect to N , i.e.,
the number of spins in the Ising ring.

Since here the measurement is only done on the cen-
tral spin, now to estimate the precision bound of this local
measurement, we need to calculate the local quantum Fisher
information corresponding to the reduced density matrix of

the central spin. We can calculate this quantity by using the
formula for the quantum Fisher information of one qubit [44]

F 0
h =

{
|∂hV|2 + (V·∂hV)2

1−|V|2 , if |V| < 1,

|∂hV|2, if |V| = 1,
(19)

where V = (2〈σ x
0 (t )〉, 2〈σ y

0 (t )〉, 2〈σ z
0 (t )〉) is the spin vector on

the Bloch sphere. Following the same procedure for deriving
Eq. (17), we have

〈
σ

y
0 (t0)

〉 = 1

2
sin

[
2 arctan

(
2h

A

)
N

]
, (20)

and 〈σ z
0 (t0)〉 = 0. Then, by substituting these expectation val-

ues and their derivatives into Eq. (19), we get

F 0
h = Eh = 16A2N2

(A2 + 4h2)2
, (21)

which happens to be the same form as the reciprocal of the
error propagation formula in Eq. (8). This indicates that σ x

0 is
indeed the optimal observable to saturate the sensitivity bound
for this specific probe state and local measurement.

We can compare our dynamic sensing scheme with
the conventional Ramsey scheme [namely to directly uti-
lize the Zeeman term in Eq. (9) to estimate the magnetic
field] by explicitly taking into account the measurement
time t = π/

√
A2/4 + h2. For the Ramsey scheme, the max-

imum quantum Fisher information with the optimal product
probe state is F prod

h = Nt2 = Nπ2/(A2/4 + h2), while for the
Greenberger-Horne-Zeilinger (GHZ) entangled probe state
F GHZ

h = N2t2 = N2π2/(A2/4 + h2). When the magnitude of
the magnetic field is small (h ∼ 0), we obtain F prod

h ∼ 4π2

A2 N ,

F GHZ
h ∼ 4π2

A2 N2 and F 0
h ∼ 16

A2 N2. Clearly, despite a difference
in the prefactor, both our dynamic sensing scheme and the
Ramsey scheme with entangled probe state show Heisenberg
scaling with N (the number of surrounding spins). For realistic
quantum systems, the sensing time for the Ramsey scheme is
restricted by the decoherence. Usually, the interacting quan-
tum many-body systems possess a shorter coherence time than
the isolated quantum systems. However, the N enhancement
can easily compensate for the disadvantage in the coherence
time when the quantum system consists of a large number of
composites. Therefore, when the measurement time is compa-
rable to the coherence time, our dynamic sensing scheme will
exhibit a significant advantage compared to the conventional
Ramsey scheme in a quantum many-body system.

To investigate the effect of the finite Ising coupling
strength, we numerically calculate the local quantum Fisher
information as a function of N for different values of J . The
result is plotted in Fig. 1(a) and it indicates that the analytical
result for the case of J = 0 can give a good approximation for
the general case when the coupling strength among the sur-
rounding spins (J) is much weaker than the coupling strength
between the central and surrounding spins (A). As the Ising
coupling strength J increases, the Heisenberg scaling dete-
riorates. This implies that it is better to measure a magnetic
field with large amplitude (which can be realized by adding
a large reference magnetic field) to satisfy the condition J �√

h2 + A2/4 for the optimal sensitivity.
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FIG. 1. (a) The scaling of the local quantum Fisher information
with respect to N for different Ising coupling strength J . The dashed
line corresponds to the analytic result for J = 0 in Eq. (21), while the
squares correspond to J = 0.1 and the stars correspond to J = 0.2,
respectively. (b) The scaling of the global quantum Fisher informa-
tion with respect to N for different Ising coupling strength J . The
dashed line corresponds to the analytic result for J = 0 in Eq. (35),
while the squares correspond to J = 0.1 and the stars correspond to
J = 0.2, respectively. The other parameters in both figures are set to
be A = 1, h = 1.

B. Global quantum Fisher information

As discussed above, the calculation of local quantum
Fisher information reveals that the case of J = 0 can realize
the quantum-enhanced sensing without entanglement. Now
we will focus on the case of J = 0 and use Eqs. (5) and (6)
to deduce the analytic form of the global quantum Fisher
information. In comparison with the local quantum Fisher in-
formation, the global one gives the ultimate sensitivity bound
for all possible measurements, namely, not restricted to mea-
surements only on the central spin.

Before we calculate the dynamic quantum Fisher informa-
tion for the specific case with J = 0, we have to calculate the
transformed local generator using Eq. (6). The Hamiltonian of
the system now becomes

H = −h
N∑

i=1

σ
y
i + Aσ z

0

N∑
i=1

σ z
i ≡ −hIy + ASzIz. (22)

Here, since the Hamiltonian does not contain the Ising terms
any longer, we used the collective spin operator Iα=x,y,z ≡∑N

i=1 σ
α=x,y,z
i , and redefined the central spin operator Sz ≡ σ z

0 .
For convenience, we may call the central spin the electron spin
and the surrounding spin the nuclear spin in the following
sections.

We now use Eq. (6) to calculate the transformed local
generator. For the even commutation terms, we have

[H, H1]2n = −A
(
A2S2

z + h2
)n−1(

hSzIz + AS2
z Iy

)
, (23)

while for the odd terms, we have the commutation relation as
follows:

[H, H1]2n+1 = iA
(
A2S2

z + h2
)n

SzIy. (24)

Then, the transformed local generator to estimate h is calcu-
lated as follows:

Gh = ieiHt ∂

∂h
e−iHt

= − t Iy − A
sin(�t ) − �t

�3

(
hSzIz + AS2

z Iy
)

+ A
cos(�t ) − 1

�2
SzIx, (25)

where, since the central spin S = 1/2, we have the oscillation
frequency � = √

A2S2
z + h2 =

√
A2/4 + h2.

Using Eq. (5), it is easy to verify that the maximized
quantum Fisher information is [40]

Fmax = (Emax − Emin)2, (26)

where Emax and Emin are the maximal and minimal eigenvalues
of Gh, respectively. Here, for convenience, we denote the
transformed local generator in Eq. (25) as

Gh ≡ αIy + βSzIz + γ SzIx. (27)

Since [Gh, Sz] = 0, we can separately find the eigenvalues in
the Sz = 1/2 subspace and the Sz = −1/2 subspace. The cal-
culated result of the maximized quantum Fisher information
is

Fmax = (4α2 + β2 + γ 2)I2, (28)

where I = N/2 and it clearly shows the Heisenberg scaling.
Generally, we have the relation

Eh � F 0
h � Fmax. (29)

The first relation is simply due to the Cramér-Rao bound. The
second relation results from the fact that the local quantum
Fisher information is obtained by tracing out the degree of
freedom of the nuclear spins, which unavoidably leads to the
loss of information on the parameter.

To achieve this maximized quantum Fisher information,
the probe state in Eq. (5) should be [45]

|�0〉 = 1√
2

(|Emax〉 + |Emin〉). (30)

The eigenstate corresponding to the maximal eigenvalue is

|Emax〉 = |↑〉 ⊗ (e−iIzφe−iIyθ |I, Mz = I〉), (31)

and the eigenstate corresponding to the minimal eigenvalue is

|Emin〉 = |↑〉 ⊗ (e−iIzφe−iIyθ |I, Mz = −I〉), (32)

with θ = arctan(
√

4α2+γ 2

β
) and φ = arctan( 2α

γ
), where |I, Mz〉

is the eigenstate of Iz. This probe state |�0〉 is generally an
entangled state, however, what interests us most is whether
the Heisenberg scaling still maintains when the probe state is
restricted to be a product state [46].

Similar to the dynamical sensing scheme in Ref. [20], we
emphasize on the discussion of the dynamic quantum Fisher
information at a specific sensing time t = t0 = 2π/�. Now
the transformed local generator in Eq. (25) becomes

Gh =
(

π

2

A2

�3
− 2π

�

)
Iy + 2πAh

�3
SzIz ≡ α0Iy + β0SzIz. (33)
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FIG. 2. The effect of the electronic Zeeman term on the perfor-
mance of the dynamic sensing scheme. In all figures, the solid lines
correspond to the Hamiltonian that take into account the electronic
Zeeman term, while the dashed lines corresponds to the analytic
result that neglect this term. The left column [(a), (c), (e)] corre-
sponds to N = 8 and the right column [(b), (d), (f)] corresponds
to N = 40. The time evolution of the central spin expectation value
〈Sx (t )〉 is compared in (a) and (b), with A = 1 and h = 1. The time
evolution of the global quantum Fisher information is compared in
(c) and (d), with A = 1 and h = 1, where the vertical dashed line in
these figures corresponds to the measurement time t0 deduced from
the analytic result. In (e) and (f), we plot the local quantum Fisher
information for the central spin as a function of the external field h,
while the coupling strength A = 1 and the measurement time t = t0.

Here, we consider a specific product probe state

|�0〉 = 1√
2

(|↑〉 + |↓〉) ⊗ |I, Mz = I〉, (34)

where |I, Mz = I〉 = | ↑n,↑n, . . . ,↑n〉. It is easy to verify
〈�0|Gh|�0〉 = 0, and using Eq. (5) we obtain

Fh = 4
(〈�0|G2

h|�0〉
) = 2α2

0I + β2
0 I2. (35)

This again obviously manifests the Heisenberg scaling with
respect to the number of nuclear spins (I = N/2).

We now make a brief discussion on the specific mea-
surement time t0 that is needed in our dynamic sensing
scheme. Using the analytic form of the transformed local
generator Gh in Eq. (25), we can calculate the dynamic
quantum Fisher information as a function of evolution time
for a fixed nuclear spin number N , Fh(t ) = 4(〈�0|G2

h|�0〉 −
|〈�0|Gh|�0〉|2), with the probe state |�0〉 in Eq. (34). As is
shown in Figs. 2(c) and 2(d), since Fh shows as a smooth func-
tion of t , the slight mistimings from the specific measurement
time t0 (indicated by the dashed vertical lines) will not lead
to a significant sensitivity reduction. Meanwhile, since the

measurement time is independent on the nuclear spin number
N , it facilitates the experiment implementation of the dynamic
sensing scheme.

It needs to be mentioned that the probe state [Eq. (34)] used
to achieve the Heisenberg scaling in Fh is different from the
probe state [Eq. (10)] used to calculate the error propagation
formula in the previous subsection. This is due to the fact
that the global quantum Fisher information discussed in this
subsection corresponds to the ultimate bound that the mea-
surement on the observable can be done globally, not limited
to the central spin only.

Similar to the discussions for the local quantum Fisher
information, here we also numerically investigate the effect of
finite Ising coupling strength (J �= 0) to the global quantum
Fisher information. In Fig. 1(b), we illustrate the scaling of
the global quantum Fisher information with respect to N for
different Ising coupling strength J . Compared to the local
quantum Fisher information in Fig. 1(a), the scaling of the
global quantum Fisher information is less sensitive to the
strength of Ising coupling and the analytic result for J = 0
in Eq. (35) approximates very well with the numerical result
when the coupling strength between the nuclear spins is much
weaker than the coupling strength among the surrounding
spins. This is reasonable since the local quantum Fisher in-
formation corresponds to the reduced state of the central spin,
while the finite Ising coupling will accelerate the decoherence
of the central spin, the decoherence will unavoidably lead
to loss of information on the parameter. Meanwhile, since
the global quantum Fisher information corresponds to the
quantum state of the composite system (central spin and sur-
rounding spins), the Ising coupling between the nuclear spins
may not lead to loss of the parameter information encoded in
the total quantum state.

IV. REALIZATION OF THE PROTOCOL IN REALISTIC
QUANTUM SYSTEMS

A. Effect of the electronic Zeeman term

In the above section, the coupling between the central spin
and the surrounding spins may be implemented by the inter-
action of the light with two-level atoms, where the interaction
of the central spin with the field is neglected. However, it
becomes necessary to take into account the electronic Zeeman
term if we want to implement our dynamic sensing scheme
using solid-state spin systems, like semiconductor quantum
dots. By taking into account the electronic Zeeman term, the
Hamiltonian of the system now becomes

H = −h

(
σ

y
0 +

N∑
i=1

σ
y
i

)
+ Aσ z

0

N∑
i=1

σ z
i

≡ −h(Sy + Iy) + ASzIz, (36)

which corresponds to the ZZXX model numerically inves-
tigated by the authors of Ref. [36]. In this subsection we
will show that, for the dynamic sensing scheme proposed in
this paper, the dynamics and the dynamic quantum Fisher
information corresponding to this Hamiltonian, can actually
be well approximated by the Hamiltonian in Eq. (22), where
the electronic Zeeman term is neglected.

012604-5



DING, LIU, ZHENG, AND CHEN PHYSICAL REVIEW A 106, 012604 (2022)

As shown in Fig. 2, the performance of this approximation
(by neglecting the electronic Zeeman term) is actually depen-
dent on N , the number of nuclear spins. This is reasonable
since, for our dynamic sensing scheme, the central spin is
initialized along the x axis and then it will precess about
the effective magnetic field, from the view of semiclassical
picture. This effective magnetic field consists of the magnetic
field h along the y axis and the nuclear field Bnuc ∝ A〈Iz〉 along
the z axis. As the nuclear spin number N increases, the nuclear
field Bnuc becomes significantly larger than the magnetic field
h and the approximated analytic result becomes even closer
to the exact numerical result. Thus, in a realistic solid-state
central spin system, which contains a large number of nuclear
spins, the analytic result obtained by neglecting the electronic
Zeeman term can be safely utilized in our dynamic sensing
scheme. In other words, when the dynamic sensing scheme by
employing the Hamiltonian in Eq. (36) is applied, our analytic
result can be used to determine the appropriate probe state,
to devise the proper measurement strategy, or to estimate the
overall sensitivity.

B. Effect of the anisotropy of the hyperfine interaction

In many realistic quantum central spin systems, the XX
term of the hyperfine interaction may not be neglected, which
is described by the so-called XXZ central spin model [47].
The Hamiltonian for such a general central spin system with
homogeneous coupling is as follows:

H = h ·
(
σ0 +

N∑
k=1

σk

)
+

N∑
k=1

[
�

2
(σ+

0 σ−
k + σ−

0 σ+
k ) + Aσ z

0σ z
k

]

= h · (S + I) + �

2
(S+I− + S−I+) + ASzIz, (37)

where � is the hyperfine coupling strength of the XX term
and I± = Ix ± iIy, and so on. When � = A, namely, no
anisotropy in the hyperfine coupling, we can check that [h ·
(S + I), H] = 0. It is easy to verify that Gh = n · (S + I) with
n = h/h, which indicates that no quantum enhancement can
be obtained when the probe state is restricted to be only a
product state. Therefore, the anisotropy in the hyperfine inter-
action is necessary to achieve the quantum-enhanced sensing
without entanglement for our dynamic sensing scheme. Fur-
thermore, when � �= A and the magnetic field is applied along
the z axis, it is easy to verify that Gh = Sz + Iz and again
no quantum enhancement is possible when the initial state is
restricted to be a product state. Thus, to obtain the quantum-
enhanced sensing without entanglement, first, there should be
anisotropy in the hyperfine coupling; second, the magnetic
field to be estimated cannot be applied along the z axis.

We numerically calculate the scaling of the dynamic quan-
tum Fisher information with respect to the nuclear spin num-
ber N for various values of � in Fig. 3. The result indicates
that increasing the anisotropy in the hyperfine coupling will
lead to a better performance of our dynamic sensing scheme.

C. Effect of the inhomogeneity of the hyperfine
coupling strength

For realistic solid-state quantum central spin systems, like
semiconductor quantum dots, the hyperfine coupling strength
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FIG. 3. The effect of the anisotropy of the hyperfine interaction
on the performance of the dynamic sensing scheme is investigated.
The local quantum Fisher information for the central spin is plotted
in (a), while the global quantum Fisher information is plotted in
(b). In both figures, the solid line corresponds to the analytic result
when the electronic Zeeman term is neglected and the hyperfine
anisotropy � = 0. The dashed lines in both figures correspond to the
standard quantum limit, which is the ultimate limit when � = A = 0
in Eq. (37) and the probe state is restricted to be the product state.
In both figures, the circles correspond to � = 0, A = 1 in Eq. (37),
while the squares correspond to � = 0.1, A = 1 and the stars corre-
spond to � = 0.2, A = 1, respectively.

between the central electron spin and surrounding nuclear
spins is usually inhomogeneous. The Hamiltonian describing
such a system is

H = −h

(
σ

y
0 +

N∑
k=1

σ
y
k

)
+

N∑
k=1

Akσ
z
0σ z

k , (38)

where Ak is the coupling strength between the central electron
spin and the kth nuclear spin. Due to the inhomogeneity of
the coupling strength (Ak �= A), the collective nuclear spin
operator cannot be used any longer and we have to resort to
numerics to research the performance of the dynamic sensing
scheme.

Here, we employ the Chebyshev method (by expanding
the time evolution operator in terms of Chebyshev polyno-
mials [48]) to calculate the dynamics of this inhomogeneous
central spin system and retrieve the scaling of the dynamic
quantum Fisher information with respect to N . The result
is shown in Fig. 4 and it indicates that the performance of
such an inhomogeneous sensor can be well approximated by
the homogeneous one as long as the coupling strength in
the homogeneous case is set to be A = ∑

k Ak/N . Crucially,
the Heisenberg scaling still exists for the inhomogeneously
coupled central spin system.

D. Realistic semiconductor quantum dot system

We now elaborately consider a practical solid-state quan-
tum central spin system, namely, the semiconductor quantum
dots, which were widely researched in the area of quantum
computation [29,32] and quantum sensing [33–35] in recent
years. The detailed Hamiltonian describing such a quantum
many-spin system is as follows [29,49]:

H = HD + HZ + HHF, (39)
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FIG. 4. The performance of the inhomogeneity of the hyper-
fine coupling strength on the performance of the dynamic quantum
sensing is investigated. (a). The solid line corresponds to the time
evolution of the global quantum Fisher information for N = 16
nuclear spins with inhomogeneous hyperfine coupling, while the
dashed line corresponds to the homogeneous case. The vertical
dashed line corresponds to the measurement time. (b). The global
quantum Fisher information as a function of the nuclear spin number
N . The dashed line corresponds to the analytic result of the homoge-
neous case, while the squares correspond to the numerical result of
the inhomogeneous case.

with

HD = γ 2
n

2

N∑
j=1

N∑
k=1

[
I j · Ik

r3
jk

− 3(I j · r jk )(Ik · r jk )

r5
jk

]
,

HZ = h ·
(

γeS + γn

N∑
k=1

Ik

)
,

HHF =
N∑

k=1

Ak

[
δ

2
(S+Ik− + S−Ik+) + SzIkz

]
, (40)

where S is the electronic spin operator and Ik is the spin
operator of the kth nuclei in the quantum dot. HD describes the
dipole-dipole interaction between nuclear spins, where r jk is
the position vector from the jth nuclei to the kth nuclei and γn

is the gyromagnetic ratio of the nuclear spin. HZ corresponds
to the electronic Zeeman term and nuclear Zeeman terms,
where γe is the gyromagnetic ratio of the electron spin. HHF

describes the hyperfine interaction between the electron spin
and nuclear spins, where δ stands for the anisotropy in the
hyperfine interaction. The hyperfine coupling strength Ak ∝
|φ(xk )|2, where |φ(xk )|2 is the electron density at the site xk

of the kth nuclear spin.
The dipole-dipole interaction between nuclear spins in

the quantum dot resembles the role of the Ising coupling in
Eq. (9). Typically, in semiconductor quantum dots, the hyper-
fine coupling strength between the electron spin and nuclear
spins is several orders of magnitude stronger than the strength
of the nuclear dipole-dipole coupling [49,50]. Similar to the
discussion on the Ising coupling in the previous section, this

indicates that the effect from the nuclear dipolar coupling to
the overall sensitivity of the dynamic sensing scheme can be
negligible. Another point that needs to be mentioned is the
difference in the gyromagnetic ratio between the electron spin
and the nuclear spins, namely, γe �= γn. However, the discus-
sions in Sec. IV A still apply despite the difference in the
gyromagnetic ratio. This is because for typical semiconductor
quantum dots, the number of nuclear spins N ∼ 104–106 in a
single quantum dot, and the effective nuclear field experienced
by the electron spin suppresses the magnetic field. In addition,
if our dynamic sensing scheme is utilized to sense rota-
tion, then the Zeeman term becomes HZ = � · (S + ∑N

k=1 Ik ),
where � is the rotational vector (corresponding to the pseudo-
magnetic field generated due to the rotation [35,51–53]). It is
clear that HZ is independent of the gyromagnetic ratio of the
electronic or nuclear spins for the rotation sensing. Thus, in
realistic semiconductor quantum dots, the electronic Zeeman
term can be safely neglected to analyze the performance of
our dynamic sensing scheme.

V. CONCLUSION

In summary, by studying the Ising ring model interacting
with a central spin, we show that the Heisenberg scaling in
the error propagation formula can be reached by only measur-
ing the central spin dynamics. While the dynamic quantum
Fisher information for the general case can be numerically
calculated, we can obtain an analytical form of the dynamic
quantum Fisher information to estimate the magnetic field
in a limit case, which gives a good approximation for the
general case as long as J �

√
h2 + A2/4 is fulfilled. This

analytic result explicitly manifests that the Heisenberg scal-
ing can be reached with an appropriate product probe state
and the proper measurement time. Furthermore, we gradu-
ally investigate more realistic central spin models analytically
and numerically and our results indicate that the Heisenberg
scaling can still be achieved in practical quantum central
spin systems, like semiconductor quantum dots. Our dynamic
sensing scheme possesses the great advantage that neither the
entangled probe state nor quantum phase transition is required
to obtain the quantum enhancement. Our theoretical result
paves the way for the implementation of quantum-enhanced
magnetometry without entanglement in practical quantum
many-spin systems.
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