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We develop techniques to probe the dynamics of quantum information and implement them experimentally
on an IBM superconducting quantum processor. Our protocols adapt shadow tomography for the study of time-
evolution channels rather than of quantum states and rely only on single-qubit operations and measurements.
We identify two unambiguous signatures of quantum information scrambling, neither of which can be mimicked
by dissipative processes, and relate these to many-body teleportation. By realizing quantum chaotic dynamics
in experiment, we measure both signatures and support our results with numerical simulations of the quantum
system. We additionally investigate operator growth under this dynamics and observe behavior characteristic of
quantum chaos. As our methods require only a single quantum state at a time, they can be readily applied on a
wide variety of quantum simulators.
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I. INTRODUCTION

Scrambling is fundamental to our current understanding of
many-body quantum dynamics in fields ranging from ther-
malization and chaos [1–4] to black holes [5–7]. This is the
process by which initially local information, such as charge
imbalance in a solid, becomes hidden in increasingly nonlocal
degrees of freedom under unitary time evolution. Scrambling
accounts for both the fate of information falling into black
holes [5,8] and the apparent paradox of equilibration under
unitary dynamics: Information about the initial state is not
truly lost, but rather becomes inaccessible when one can only
measure local observables, as is the case in traditional experi-
mental settings.

Today, the experimental settings we have access to offer
a much higher degree of control and programmability than
those that were available when these questions were first ad-
dressed. New kinds of quantum devices can be constructed
by assembling qubits that are individually addressable, such
as those made from trapped ions [9–12], superconducting
circuits [13–17], or Rydberg atoms [18–23]. Such noisy
intermediate-scale quantum (NISQ) devices [24] allow a
wider range of interactions to be synthesized and crucially
permit measurements of highly nonlocal observables, mak-
ing the distinction between nonunitary information loss and
unitary information scrambling more than a purely academic
one. As well as providing further motivation for theoretical
work on quantum chaos and scrambling, these technological
developments present an opportunity for complementary ex-
perimental studies, which promise to be of increasing utility
as the size and complexity of the systems continue to grow
beyond what can be simulated classically [25,26].

A variety of experimental protocols to probe quantum
chaos have already been put forward and implemented, with

early approaches based on measuring the growth of quan-
tum entanglement. For example, if two copies of the system
can be prepared simultaneously, then certain quantifiers of
entanglement can be extracted from joint measurements on
the two copies [27–31]. More recently, focus has shifted to-
wards probing scrambling rather than entanglement growth,
primarily via so-called out-of-time-order correlators (OTOCs)
[7,32–35], which can be measured when the dynamics can
be time reversed [36–40]. However, the link between OTOC
decay and scrambling is predicated on the assumption that
the dynamics is unitary [41]; this is invariably not the case in
NISQ devices, which are by definition noisy. Moreover, with
system sizes being somewhat limited at present, protocols that
are qubit efficient (i.e., not requiring multiple copies of the
system at once) will be required to make progress in the near
term.

Emphasizing its practical implementation in an IBM su-
perconducting quantum computer, in this work we show how
scrambling can be quantified in NISQ devices using only
single-qubit manipulations and individual copies of a quantum
state at a time. To achieve this, we first generalize the tech-
nique of shadow tomography [42] to study dynamics. We then
prove that certain well-established physical quantities are (i)
accessible using this technique and (ii) provide unambiguous
signatures of scrambling. Crucially, the signatures that we
identify remain meaningful even when the system’s dynamics
is nonunitary; this allows us to verifiably detect scrambling on
a real noisy quantum device.

The quantities that we identify satisfying the above two
criteria are related to operator-space entanglement (OE), also
known as entanglement in time [43–46]. While entanglement
quantifies quantum correlations between degrees of freedom
at one instant in time, OE pertains to correlations that are con-
veyed across time, which is of direct relevance to scrambling.
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This has proved to be an extremely useful tool in analytical
and numerical studies of chaotic quantum dynamics [45,47–
54], allowing one to construct measures of chaos in a dynam-
ical, manifestly state-independent way.

Here we establish a link between OE and the ability of
a system to transmit information from one qubit to another
via a process known as many-body teleportation, or Hayden-
Preskill teleportation after the authors of Ref. [5]. This process
was originally considered in the context of the black hole in-
formation paradox [8] and is now a central part of the theory of
scrambling. We put forward two OE-based quantities [Eqs. (2)
and (3)] and show that each can be related to the fidelity
of Hayden-Preskill teleportation. In particular, we argue that
both quantities have a threshold value which when exceeded
gives a guarantee that the quantum communication capacity
from one qubit to another is nonzero, i.e., quantum states
can be reliably transmitted at a finite rate using the quantum
system as a communication channel, even when the dynamics
is nonunitary.

Beyond establishing these quantities as meaningful mea-
sures of scrambling, we demonstrate their practical utility by
showing that both are directly measurable in experiment. The
scheme we introduce allows one to measure the necessary
information-theoretic quantities with minimal experimental
overhead. This is made possible by extending ideas originally
developed to measure entanglement in an instantaneous state.
In that context, it has been demonstrated that measurements
of the state in randomly selected bases can be used to extract
certain entanglement measures [42,55,56], without requiring
joint access to multiple copies of the state per experiment.
To generalize from state entanglement to OE, we propose to
prepare initial states in random bases, which are then time
evolved under the dynamics of interest, before being measured
in random bases (see Fig. 2). By postprocessing the classical
data generated by this sequence of operations in a way anal-
ogous to that proposed in Ref. [42], we are able to construct
estimators of the quantities in question. We do so explicitly
using data from an IBM quantum computer, giving us access
to spatially resolved measures of information delocalization,
revealing the light-cone structure in the system’s dynamics.

In addition to these probes of many-body teleportation, our
protocol can be used to obtain a fine-grained description of
operator spreading [34,57–59]. Specifically, shadow tomogra-
phy of the dynamics gives us access to certain combinations of
the operator spreading coefficients studied in Ref. [58], which
gives a complementary perspective on scrambling.

Other quantities related to operator entanglement, namely,
out-of-time-order correlators [7,32–35], have been measured
in previous experiments [36–40] and indeed are in principle
measurable using shadow tomography and related methods
[60,61]. However, these cannot be used as an unambiguous di-
agnostic of scrambling, since dissipation and miscalibrations
can give rise to the same signal as that of a true scrambler
[41]. In contrast, the quantities (2) and (3) measured here
constitute a positive verifiable signature of scrambling, which
cannot be mimicked by noise. We note that related signatures
of teleportation have been observed before using multiple
copies of the system evolving in a coordinated fashion [62,63].
A key innovation in our work is to quantify the fidelity of
teleportation without actually performing teleportation. As a
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FIG. 1. (a) Representation of the operator state ρop(t ) [Eq. (1)].
Each qubit in Qout is prepared in a maximally entangled state (black
dots) with the corresponding qubit Qin, before being time evolved
under the channel Nt . (b) Illustration of the Hayden-Preskill pro-
tocol [5]. An unknown quantum state |ψ〉 is used as an input to
a small subregion A, while the remaining qubits B are prepared in
a maximally entangled state with a set of ancillas B′ (circled). If
the channel is perfectly scrambling then |ψ〉 can be reconstructed
using the ancillas combined with a subset of output qubits C of the
same size as A, regardless of which qubits are in C (qubits in D are
discarded). Formally, the final state of the ancillas combined with
the outputs C depends on the input state to A through the channel
N A→B′C

t (see the text for details).

consequence, our method can probe scrambling with half as
many qubits and without needing to match the time evolution
between two separate systems, which may not be possible
when the dynamics is not known a priori.

As well as superconducting qubits, the protocol we use
here is implementable using presently available techniques in
a variety of other platforms including those based on Rydberg
atom arrays [18,20–22], trapped ions [11,12], and photonics
[26,64–66]. We compare the protocol to previous approaches
used to diagnose scrambling and discuss the tradeoffs between
sample efficiency, verifiability, and the required degree of
experimental control.

This paper is organized as follows. In Sec. II A we in-
troduce the concept of operator-space entanglement as well

|0〉 U1

Nt

V1 |b̂1〉
|0〉 U2 V2 |b̂2〉
|0〉 U3 V3 |b̂3〉
|0〉 U4 V4 |b̂4〉

FIG. 2. Illustration of experimental protocol to measure
operator-space entanglement of a quantum channel Nt in a system
with N = 4 qubits. The single-qubit unitaries Uj and Vj are drawn
independently at random from the discrete gate sets described in
the text. Once the measurement outcomes b̂ j are known, one can
construct a snapshot of the doubled state ρop(t ) using Eq. (7) and
then repeat M times with different unitaries.
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as the Hayden-Preskill protocol for many-body teleportation
[5] and describe how the two are related. We then introduce
the key quantities (2) and (3) that we will use to quantify
Hayden-Preskill teleportation in Sec. II B as well as show-
ing how OE allows one to track the growth of operators
under Heisenberg time evolution. Section III describes our
shadow tomographic protocol that can be used to estimate
the above quantities. Results from implementing this protocol
on an IBM superconducting quantum processor are given in
Sec. IV. We discuss our results and present our conclusions in
Sec. V.

II. PROBING SCRAMBLING USING
OPERATOR-SPACE ENTANGLEMENT

A. Operator-space entanglement
and the Hayden-Preskill protocol

The evolution of a quantum system Q with Hilbert space
HQ from time 0 to time t can be described by a channel Nt

such that the density matrix evolves as ρQ(t ) = Nt [ρQ(0)].
The usual notion of entanglement in a state can be generalized
to channels, which is known as operator-space entanglement.
Formally, this is done by reinterpreting Nt as a state on a
doubled Hilbert space [67,68], on which conventional entan-
glement measures can be defined. This is perhaps most simply
understood when the dynamics is unitary Nt [ρQ] = Utρ

QU †
t ,

as detailed in Ref. [45]. Fixing a basis of product states {|a〉}
for Q, a pure doubled state (existing in operator space) is
constructed as |Ut 〉op = |HQ|−1/2 ∑

ab 〈b|Ut |a〉 |a〉in ⊗ |b〉out,
where |HQ| is the Hilbert space dimension and the in and out
labels refer to the inputs and outputs of the unitary, respec-
tively. In words, the components of |Ut 〉op are the |HQ|2 matrix
elements of the unitary Ut . From here onward we specialize to
N-qubit systems, so |HQ| = 2N .

This construction has an alternative interpretation: |Ut 〉op
is the state that results from evolving a maximally entangled
state |�〉 = 2−N/2 ∑

a |a〉in ⊗ |a〉out under the unitary Iin ⊗ Ut ,
i.e., one half of the maximally entangled pair is evolved under
Ut . This also makes it clear how to generalize to nonunitary
evolutions: |Ut 〉op is replaced by a mixed state

ρop(t ) = (idin ⊗ Nt )[|�〉 〈�|]. (1)

This construction is illustrated in Fig. 1(a). We use the more
generally applicable density matrix ρop(t ), rather than the
pure state |Ut 〉op, in the following. Note that correlation func-
tions with respect to the doubled state Tr[(Oin ⊗ Oout )ρop(t )]
map to infinite-temperature two-time correlation functions
2−N Tr[OT

inOout (t )] (where time evolution of operators in the
Heisenberg picture is given by Oout (t ) = N †

t [Oout] and the
transpose is taken with respect to the basis {|a〉}).

Evidently, at t = 0 (Nt=0 = id) a given input qubit with
index jin is maximally entangled with the corresponding out-
put qubit jout = jin only. This reflects the trivial observation
that information is perfectly transmitted from jin to jout = jin
under Nt=0. If Nt exhibits scrambling, then we expect that
locally encoded information will begin to spread out as the
output qubits evolve such that jin becomes entangled with
many other output qubits. At late times, one will no longer be
able to extract these correlations from any small output region

C; instead, the information about the initial state of a given
qubit will be encoded across many output qubits.

This intuition can be quantified in terms of particular
measures of operator-space entanglement. These are con-
structed by evaluating familiar quantities associated with state
entanglement on ρop(t ). In the doubled space, one can di-
vide the input qubits into A and its complement B, and the
outputs into C and its complement D. (A and C need not
correspond to the same physical qubits.) Reduced density
matrices can then be formed, e.g., ρAC (t ) = TrB∪Dρop(t ). Two
important information-theoretic quantities are the von Neu-
mann entanglement entropy S(AC) = −TrρAC (t ) log2 ρAC (t )
and the mutual information I (A : C) = S(A) + S(C) − S(AC)
(all logarithms are base 2 and we leave the t dependence
of entropies and mutual information implicit). The mutual
information quantifies the degree to which the initial state
of qubits in A is correlated with the final state of qubits in
C (this includes both classical and quantum correlations). In-
deed, I (A : C) is closely related to the capacity of the channel
for classical communication from a sender A to a receiver C
[69,70].

Given that the reduced density matrices ρAC (t ) will typi-
cally be highly mixed, it is also useful to examine quantities
that have been devised to probe mixed state entanglement. The
logarithmic negativity EA:C := log2 Tr|ρAC (t )TA | (where TA de-
notes a partial transpose on A and |O| :=

√
O†O for operators

O) is useful for this purpose: When applied to a bipartite
state it can be used to bound the distillable entanglement
between A and C [71,72], which unlike mutual information
excludes classical correlations. Here we will consider the
operator-space generalization of negativities, which have been
connected to scrambling in the context of random unitary
circuits and holographic channels [73].

As argued by the authors of Ref. [45], for unitary chaotic
channels the correlations between regions A and C of size
O(1) will be small, whereas I (A : CD) will be maximal,
indicating that the input state A can only be reconstructed
if one has access to all the outputs CD. They propose the
tripartite information I3(A : C : D) = I (A : C) + I (A : D) −
I (A : CD) as a diagnostic of scrambling (for scramblers
I3 is large and negative), illustrating one way in which
operator-space entanglement measures can be used to detect
scrambling.

A complementary way to diagnose scrambling is to quan-
tify correlations between A and BC that are present in ρop(t ),
where again A and C are of size O(1). This approach is related
to the Hayden-Preskill teleportation problem [5], a thought
experiment that was initially devised to understand the fate
of information in black holes. There one asks if it is possible
to recover the initial state of a small set of qubits A using a
set of ancillas B′ that are initially maximally entangled with
B, combined with a subset of output qubits C [see Fig. 1(b)].
If Nt is scrambling, then the initial state of A becomes non-
locally encoded across the entire system. When this occurs,
teleportation can be achieved (i.e., the initial state of A can be
recovered from B′C) regardless of which qubits are chosen in
C, as long as |C| � |A| [62].

Intuitively, we expect that for teleportation to be successful,
there must be strong correlations between A and BC in the
state ρop(t ). This can in principle be diagnosed using the
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quantities introduced above, namely, I (A : BC) and EA:BC .
More formally, we can capture the dependence of the
final state of B′C on the initial state A using the
channel N A→B′C

t [ρA] = TrD{(Nt ⊗ idB′ )[ρA ⊗ �BB′ ]}. The fi-
delity of teleportation in the Hayden-Preskill protocol is
then determined by the potential for information trans-
mission through N A→B′C

t , which can be quantified in an
information-theoretic way using an appropriate channel ca-
pacity [74]. As an example, the classical capacity of
N A→B′C

t is closely related to I (A : BC) [69,70]. Similarly,
the quantum channel capacity (the maximum rate at which
quantum states can be reliably transmitted using multi-
ple applications of the channel) can be bounded by EA:BC

[75]. This illustrates the connection between information
transmission in the Hayden-Preskill protocol and the de-
gree of correlations between A and BC in the operator
state ρop(t ).

The experiment of Ref. [62] provided an explicit demon-
stration of scrambling by executing a particular decoding
procedure for the Hayden-Preskill protocol. This requires one
to construct a doubled state and manipulate the ancillas B′. In
contrast, in this paper we quantify the correlations between A
and BC without ever performing the teleportation explicitly.
This avoids us having to construct a doubled state or execute
a decoding procedure.

B. Rényi measures of scrambling and operator growth

While the von Neumann entropy and quantities derived
thereof have strong information-theoretic significance, they
are not directly measurable in experiments without recourse to
full tomography of ρop(t ), which is computationally expensive
[76]. This is due to the need to take the operator logarithm of
ρ. Instead, one can generalize to Rényi entropies S(m)(AC) :=
(1 − m)−1 log2 Tr{[ρAC (t )]m} (m = 2, 3, . . .), which unlike
S(AC) only depend on integer moments of the density matrix
and hence can be computed in terms of mth moments of
correlation functions of ρAC (t ). This observation forms the
basis of a number of protocols which use randomized mea-
surements to extract the Rényi entropies of an instantaneous
state [42,55], as well as integer moments of the density matrix
after partial transposition [77]. Later, we will employ similar
arguments to show that the analogous quantities in operator
space can also be directly measured. Before doing so, we first
discuss how these quantities can be used to probe quantum
chaotic dynamics and information scrambling, making use of
the insight described in the preceding section.

We have argued how I (A : BC) can be related to the fidelity
of the Hayden-Preskill protocol. A natural generalization of
I (A : BC) that is constructed in terms of integer moments of
ρop is the Rényi mutual information

I (m)(A : BC) := S(m)(A) + S(m)(BC) − S(m)(ABC). (2)

When evaluated on arbitrary states this simple generalization
of the mutual information does not satisfy all the same proper-
ties as I (A : BC), including non-negativity [78–80]. However,
in Appendix A we show that when evaluated on operator states
(1) (for which the reduced density matrix on A is maximally
mixed), I (m)(A : BC) is non-negative [46] and equal to zero if
and only if A and BC are uncorrelated, as one would desire for

any measure of correlation. Additionally, for m = 2 the Rényi
mutual information is related to the recovery fidelity F for
the decoding protocol used in Ref. [62] by F = 2I (2) (A:BC)−2|A|
[41] and can also be expressed in terms of particular sums of
two-point correlation functions or OTOCs [45,46].

Given the above, we expect that the quantity (2) will be
sensitive to the temporal correlations that are conveyed by
channels that exhibit scrambling. Moreover, while mutual in-
formation captures classical and quantum correlations on an
equal footing, one can still use I (m)(A : BC) to detect the trans-
mission of purely quantum information. Specifically, we argue
that the channel N A→B′C

t , which describes the Hayden-Preskill
setup, must have a nonzero quantum communication capacity
if I (m)(A : BC) exceeds the threshold value of |A|, which is the
maximum value that can be obtained in a classical system. The
full proof of this statement is given in Appendix A. In brief,
we show that violation of the classical limit can only occur
if there is entanglement between A and BC in the operator
state ρop(t ). Given multiple uses of the channel, one can distill
this entanglement into Einstein-Podolsky-Rosen (EPR) pairs,
which can then be used for noiseless quantum communica-
tion. This confirms that N A→B′C

t can in principle be used to
reliably transmit quantum information and thus the quantum
capacity is nonzero. Note that the converse is not necessarily
true, i.e., there exist channels for which the quantum capacity
is nonzero but I (m)(A : BC) � |A|.

We can also consider quantities related to negativity that
only involve integer moments of the density matrix. Let us
first define moments of the partially transposed operator state
pm,X :Y := Tr{[ρXY (t )TX ]m}, where X and Y are nonoverlap-
ping sets of input and output qubits and again TX denotes a
partial transpose on X . We will consider the quantity

RA:BC := p2
2,A:BC

p3,A:BC
. (3)

This particular ratio was proposed as a measure of mixed
state entanglement in Ref. [77], where it was shown that
bipartite states ρAB satisfying RA:B > 1 must be entangled. In
Appendix A we argue that RA:BC > 1 is a sufficient (but not
necessary) condition for the quantum communication capacity
of N A→B′C

t to be nonzero provided A is a single qubit (which
is the case throughout this paper).

The above arguments demonstrate how the Rényi
generalizations of mutual information and negativity can
be related to the Hayden-Preskill teleportation fidelity.
A complementary way to probe aspects of chaos in
quantum dynamics is to consider the time evolution of
operators in the Heisenberg picture O(t ) = N †

t [O] [57,58].
Operator-space Rényi entropies for m = 2 (equivalently,
operator-space purities Tr[ρAC (t )2] ≡ 2−S(2) (AC)) can be
related to the structure of operator growth. To see this, let us
use Pauli strings σμ = ⊗

j σ
μ j

j as a basis of operators, where
μ = (μ1, . . . , μN ) and μ j ∈ {I, X,Y, Z}. Adopting the
notation of Ref. [58], operator spreading coefficients cμν (t )
can then be defined via an expansion of time-evolved Pauli
strings σμ(t ) = N †

t [σμ], namely, σμ(t ) = ∑
ν cμν (t )σν . It is

straightforward to show that operator-space purity can be
expressed succinctly in terms of operator spreading
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coefficients as

Tr[ρAC (t )2] = 1

2|A|+|C|
∑
ν∈A

∑
μ∈C

|cμν (t )|2, (4)

where the sums are over Pauli strings ν and μ that act as
identity on qubits outside of A and C, respectively. In words,
we identify operator-space purity as the norm of the part of
the evolved operator σμ(t ) that has support on A, averaged
over all initial operators σμ with support on C.

Equation (4) clarifies how operator purities encode the
spatial structure of operator spreading. One concise way to
represent this information is in terms of the k-locality of the
evolved operator σμ(t ), i.e., one can ask what proportion of
the Pauli strings that make up σμ(t ) act nontrivially on at most
k qubits. Intuitively, local operators with support on a small
number of qubits will grow under chaotic time evolution,
leading to more weight on operators that have a wider support.
This contrasts with integrable systems, where σμ(t ) spreads
out in space without becoming more complex in terms of
k-locality.

A natural way to measure k-locality of the evolved operator
σμ(t ) is to compute the norm of the part of the operator that is
made up of Pauli strings acting on exactly k qubits

Dμ

k (t ) :=
∑

ν:|σν |=k

|cμν (t )|2, (5)

where we use |σν | to denote the number of nonidentity factors
in the string σν . If one takes an average of Dμ

k (t ) over all
nonidentity Pauli strings μ with support in some region C,
the resulting quantity can be expressed in terms of operator
purities

DC
k (t ) := 1

2|C| − 1

∑
μ∈C;μ �=I×N

Dμ

k (t ), k � 1

= 2|C|(−1)k

2|C| − 1

∑
A⊆S
|A|�k

(−2)|A|
(

N − |A|
N − k

)
Tr[ρAC (t )2]. (6)

We prove the second equation in Appendix B. The above
quantity allows one to track how operators initially located
within C increase in complexity (in the sense of k-locality)
with time. Later, we will use DC

k (t ) as a means to quantify this
aspect of operator growth on a quantum device.

In the following section, we demonstrate that the quantities
described above, which depend only on integer moments of
the operator state ρop(t ), can be directly measured in exper-
iment without using full tomography. Moreover, this can be
done without ever explicitly constructing the doubled state,
which would require simultaneous access to identical copies
of the system.

III. SHADOW TOMOGRAPHIC MEASUREMENT
OF OPERATOR-SPACE ENTANGLEMENT

The method we use to measure operator-space Rényi en-
tropies is based on classical shadow tomography [42]. There
one performs projective measurements in different randomly
selected bases on a target state ρ, each of which gives a
particular snapshot of ρ. The ensemble of snapshots (known

as the shadow of ρ) has an efficient classical representation,
which allows one to calculate estimators of expectation values
Tr[Oρ] and nonlinear moments Tr[Aρ⊗m] through classical
processing of shadow data.

Here we propose to build up a shadow of the doubled state
ρop(t ) by preparing random states, evolving them under Nt ,
and performing measurements in independently chosen ran-
dom bases. For our purposes, the random states and bases will
be related to the computational basis by single-qubit rotations,
since these can be implemented accurately on current devices;
however, generalizations to global rotations are also possible
[42,81].

The specific protocol is illustrated in Fig. 2. Output ro-
tations Vj applied immediately prior to measurement are
sampled independently from a uniform distribution over the
discrete set of gates {I, HX , HY }, where HX,Y are X and Y
Hadamard gates. This effectively implements one of the three
possible Pauli measurements for each qubit. The gates Uj

applied prior to time evolution are chosen such that the dis-
tribution of initial input states Uj |0〉 is uniform over the six
states {|±σ 〉 : σ = X,Y, Z}, where |+σ 〉 (|−σ 〉) is the eigen-
state of the Pauli operator σ with eigenvalue +1 (−1). A total
of M runs are performed and for now we assume that a new
set of independent gates are generated for each run.

The data associated with a particular run are the gates Uj

and Vj , along with the measurement outcomes b̂ j ∈ {0, 1}.
These can be used to construct a snapshot of ρop(t ) (we use
a hat to denote random variables, allowing us to distinguish
this estimator from the true operator state),

ρ̂op(t ) =
N⊗

j=1

(
3U T

j |0〉 〈0|U ∗
j − I

)
in

× ⊗
N⊗

j=1

(3Vj |b̂ j〉 〈b̂ j |V †
j − I)out. (7)

Using the arguments of Ref. [42], along with the definition
of ρop(t ) and the property of the maximally entangled state
(O ⊗ I) |�〉 = (I ⊗ OT ) |�〉, one can show that the above
is an unbiased estimator of ρop(t ), i.e., E[ρ̂op(t )] = ρop(t ),
where the expectation value is over both random unitaries
Uj and Vj and measurement outcomes b̂ j . [See Appendix C.
Equation (7) is consistent with other similar proposals that
have appeared recently [82,83].] A different snapshot is ob-
tained from each of the M runs and we write the snapshot
obtained from the rth run as ρ̂ (r)

op (t ).
For each ρ̂ (r)

op (t ), an independent unbiased estimator of a
given correlation function Tr[OinOout (t )] can be constructed
by computing Tr[(Oin ⊗ Oout )ρ̂ (r)

op (t )] on a classical com-
puter. For sufficiently large M, the average over all estimators
gives an accurate prediction of the correlation function. Es-
timators for nonlinear functionals, such as the moments
pm,:AC = Tr[ρAC (t )m] appearing in the Rényi entropies, can
be constructed using so-called U statistics [84], as one does
in conventional shadow tomography. For instance, to esti-
mate p2,:AC , one can average Tr[ρ̂AC,(r1 )(t )ρ̂AC,(r2 )(t )] over
all M(M − 1) ordered pairs of independent snapshots r1 �=
r2, where ρAC,(r)(t ) := TrB∪Dρ̂ (r)

op (t ). The snapshot (7) can
also be partially transposed beforehand to obtain pm,A:C .
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FIG. 3. (a) Qubit layout and connectivity of ibm_lagos. Purple
circles represent the five qubits used for the experiments detailed in
the text. (b) Circuit design for the chaotic unitary Nt , with t = 4 time
steps shown. Each single-qubit gate (colored boxes) is independently
sampled from the four gates W1,...,4 (see the text for details).

Conveniently, the same set of shadow data can be used to ob-
tain multiple quantities simply by postprocessing in different
ways.

The size of the statistical errors that arise from this
process will depend on the particular quantity being esti-
mated, the channel Nt in question, and the sample count
M. Worst-case upper bounds on the number of samples Mε

required to achieve an error ε in state shadow tomogra-
phy have been derived in Refs. [42,77], and these can be
carried over to the present setting, at least for single-qubit
rotations. For the moments pm,:AC = Tr[ρAC (t )m] (with or
without partial transposition) in the small-ε limit, one has
Mε � O(2|AC|/ε2). In the Supplemental Material [85] we
argue that when ρAC (t ) is highly mixed (which is com-
mon for operator-space states), a potentially tighter upper
bound of O(2|AC| log2 3−S(∞) (AC)/ε2) applies, where S(∞)(AC) =
− log2 max eig ρAC (t ) is the max entropy. While this is expo-
nential in the number of qubits in AC, the scaling is highly
favorable over the O(2|AC|rank(ρAC )2/ε2 log2(1/ε)) number
of runs required for full tomography using the same resources
(i.e., only single-qubit rotations) [87]. In general, while these
bounds are expected to have the correct scaling behavior, the
prefactors involved are typically not tight [42].

IV. SIMULATING AND DETECTING QUANTUM CHAOS

We now present results of simulations of quantum chaotic
dynamics performed on a cloud-based IBM superconducting
quantum processor, using the method described above to ac-
cess operator-space measures of scrambling. The system in
question, ibm_lagos [88], has seven qubits, arranged as illus-
trated in Fig. 3(a). In the main text we present results where
five contiguous qubits are used to simulate a one-dimensional
chaotic system using entangling gates arranged in a brickwork
pattern [Fig. 3(b)]. Appendix D contains details of similar
results that involve all seven qubits in the device, for which
an alternative spacetime pattern of gates is needed.

A. Setup

The brickwork circuit is made up of entangling two-qubit
gates, which we choose to be CNOT gates, combined with
single-site unitaries. Each single-site gate is independently
sampled from a uniform distribution over a discrete set of
four gates {Wc : c = 1, . . . , 4}. In terms of the native gates

of the quantum device (
√

X , X , and Rθ = e−iθZ/2), these
are W1 = Rπ/4

√
XR†

π/4, W2 = Rπ/4XR†
π/4, W3 = √

XRπ/4

√
X ,

and W4 = √
X R†

π/4

√
X . In a given time step t = 1, 2, . . .,

CNOT gates are applied to pairs of qubits (2 j − 1, 2 j) for
odd t (the first index is control and the second is target) and
to (2 j, 2 j + 1) for even t . All qubits are then subjected to
single-site unitaries Wcj,t . This circuit is illustrated in Fig. 3(b).
The indices c j,t have been sampled once for each j, t , and this
configuration is used in all the data presented in this paper,
i.e., we do not average over different single-qubit unitaries.
This defines a time-dependent evolution channel Nt=1,2,... that
exhibits chaos.

In practice, for the quantum processor we use, running the
same circuit many times is much faster than running many
randomly generated circuits once each. For this reason, we
alter the shadow protocol slightly: A random computational
basis state |ψ〉 = ⊗N

j=1 |â j〉 is used in place of the initial
|0⊗N 〉 (this can be done with a fixed circuit by preparing
|0⊗N 〉 and applying Hadamard gates to each qubit, followed
by projective measurements of all qubits). The full circuit is
sampled MS times for a fixed choice of Uj and Vj , generat-
ing different â j and b̂ j each time. The whole procedure is
repeated for MU different independently chosen bases. While
the sampling errors in the final outcomes of observables are
suboptimal for a fixed total number of runs MSMU compared
to the usual shadows protocol [42], we are able to reach a
much higher total run count this way, thus achieving higher
accuracy. We discuss the necessary alterations to the postpro-
cessing methods and the influence on the scaling of errors in
the Supplemental Material [85].

Other than the channel Nt itself, the full circuit involves
single-qubit unitaries and measurements. To compensate for
the imperfect measurement process, we run periodic calibra-
tion jobs, the data from which are used to apply measurement
error mitigation techniques as described in, e.g., Ref. [89]. In
principle, one could also employ a version of shadow tomog-
raphy that counteracts the effects of errors in the unitaries Uj

and Vj [90]; however, the single-qubit gate errors in ibm_lagos
are on the order of 10−4, so we assume that these unitaries are
implemented perfectly.

The full shadow tomography protocol is executed on
ibm_lagos with MS = 8192 and MU = 900 for t varying from
0 to 15. The values obtained from this data set are affected
by both imperfections in Nt realized in the quantum device
(noise) and the sampling error (i.e., the statistical fluctuations
arising from the stochastic nature of shadow tomography). To
help distinguish these two sources of error, we also generate
another set of shadow data by running noise-free numeri-
cal simulations of the full circuits (Fig. 2) where all gates
are perfectly accurate, and the measurement outcomes are
sampled stochastically. This data set generates values that
are affected by sampling error only. The same two sets of
shadow data (which we label “Simulation” and “ibm_lagos”)
are used to calculate all the different physical quantities de-
scribed in the following. We also compute the exact value
of each quantity for noiseless Nt , against which the shadow
tomographic estimates will be compared. Throughout, we fix
A and C to be individual qubits A = {1} and C = { jC}, where
jC = 1, . . . , N .
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ibm_lagos

(a)

(b)

FIG. 4. Rényi mutual information [Eq. (2)], with A = {1} and
C = { jC}. (a) Dashed lines indicate the exact value without noise
or sampling error and points are estimations obtained using shadow
postprocessing methods on data from numerical simulations of the
full circuit (Fig. 2) without noise. The deviations between these two
values can be used to estimate the typical size of the sampling errors
that arise from the shadow tomography protocol. (b) Results obtained
from ibm_lagos. Solid lines are to guide the eye. The region above
the threshold I (2)(A : BC) > 1 is shaded green (see Sec. II B for
details).

B. Results

First, the Rényi mutual information I (2)(A : BC) is plotted
in Fig. 4. At early times, the mutual information is large
only for jC = 1, reflecting the fact that the input A can only
be reconstructed if one has access to the same qubit at the
final time. At late times, the data from noiseless simulations
saturate to comparable values for all choices of jC , close to
the value I∗ = 1.1945 . . . that would be expected if Nt were a
global Haar random unitary (see Appendix A), thus confirm-
ing that information has scrambled. (For jC = 5, this value is
reached at a time just beyond the maximum t simulated on
the quantum device.) The approach to this saturation value
follows a light-cone structure: Qubits that are further away
from A take a longer time to reach saturation. The results
from the quantum processor agree well with simulations at
early times. At later times we see an increasingly marked
reduction of I (2)(A : BC) for all jC . This is a consequence of
the cumulative effects of noise in the execution of the time
evolution Nt , which reduces the fidelity of information trans-
mission. For jC � 3, we find values of I (2)(A : BC) above the
threshold value of |A| = 1, which confirms that the quantum
communication capacity of N A→BC

t is nonzero (see the pre-
ceding section). Even though the threshold is not exceeded for
all qubits due to noise, the increase of I (2)(A : BC) confirms
that information does indeed propagate to all qubits to some
extent.

ibm_lagos

(a)

(b)

FIG. 5. Logarithm of the ratio RA:BC = p2
2,A:BC/p3,A:BC , where

A = {1} and C = { jC}. Data are presented as in Fig. 4 for results from
(a) simulation and (b) ibm_lagos. The region above the threshold
log2 RA:BC > 0 is shaded green (see Sec. II B for details).

The ratio of negativities RA:BC is plotted in Fig. 5. These
show a similar pattern to the mutual information: The early-
time values of RA:BC are large only for jC = 1, and as time
evolves the ratio tends towards saturation values that are
comparable for all values of jC , following a light-cone struc-
ture. From numerical simulations, we see that the threshold
RA:BC > 1 is achieved at earlier times than for the Rényi
mutual information, suggesting that this criterion is more sen-
sitive than the mutual information to the particular form of
operator-space entanglement generated by the dynamics. On
the other hand, the data from ibm_lagos show a more signifi-
cant suppression of the signal, suggesting that the quantity in
question may be more sensitive to noise.

Finally, in Fig. 6 we plot the cumulative sum
∑k

l=0 DC
l

[Eq. (6)], which measures the proportion of the time-evolved
operators σμ(t ) that act nontrivially on at most k qubits, av-
eraged over all nonidentity initial operators σμ with support
in C. Here we fix C = {3}, the central qubit in the chain.
Note that for unitary time evolution, the total operator weight∑

ν |cμν (t )|2 is conserved, which implies that
∑N

l=0 DC
l = 1.

At early times, the operators have only evolved a small
amount away from their single-qubit initial values and so
the operator weight is dominated by the low-k sectors. As
time evolves, an increasing amount of weight moves onto
operators with more extended support. Eventually, once the
system has fully scrambled, the evolved operators have weight
roughly evenly distributed over the whole space of operators
(excluding identity). The weights DC

k (t ) are then well approx-
imated by (4N − 1)−13k

(N
k

)
, which is the value that would be

obtained from a uniform distribution over all 4N − 1 nontriv-
ial operators. At these late times, the values obtained from
ibm_lagos are again lower than the exact values due to noisy
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ibm_lagos

(a)

(b)

FIG. 6. Evolution of the k-locality of time-evolved operators,
as quantified by DC

k [Eq. (6)]. Specifically, we plot the cumulative
weight

∑
l�k DC

l , which measures the total weight of the time-
evolved operator acting nontrivially on at most k qubits, averaged
over all nontrivial initial operators with support on C. We fix C = {3},
the central qubit in Fig. 3(a). The shaded areas and dashed lines
indicate the exact values without sampling error or noise. Markers
indicate shadow tomographic estimates calculated from the data sets
obtained from (a) noise-free simulations and (b) the quantum device.
The former are affected by sampling error only, while the latter are
affected by both sampling error and noise.

nonunitary processes. Indeed, given that the dynamics of the
quantum device is not perfectly unitary, the total operator
weight

∑
ν |cμν (t )|2 is expected to decrease with time, which

is reflected in the data for k = 5.

V. DISCUSSION AND OUTLOOK

Using a combination of randomized state preparation and
measurement, combined with the postprocessing techniques
introduced in Ref. [42], we have evaluated various operator-
space entanglement measures in a programmable quantum
simulator. We constructed quantities that probe the fidelity of
the Hayden-Preskill teleportation protocol [5], allowing us to
unambiguously confirm that the system exhibits scrambling.
Additionally, we used the same techniques to characterize
operator growth, which can also be used to diagnose quantum
chaos [57,58].

A related approach to diagnosing scrambling in exper-
iments is to measure the decay of OTOCs [36–40,61].
However, present day quantum simulators are inevitably
noisy, and dissipative effects can mimic this decay [41,91],
as can mismatch between forward and backward time evolu-
tion. Thus, OTOC decay is at present not a truly verifiable
diagnostic of scrambling to the same extent as many-body
teleportation.

Compared to previous proposals to measure operator-space
entanglement and teleportation fidelities [62,92], our method
has the advantage that no additional ancilla qubits are needed.
Not only does this reduce the hardware requirements in terms
of system size, it also removes the need to control the dy-
namics of ancillas, which would otherwise need to be kept
coherent and possibly time evolved in parallel [41]. Moreover,
other than the time evolution Nt itself, the only additional
gates required are single-qubit rotations, making the protocol
particularly straightforward to implement on a wide variety
of programmable quantum simulators. This simplicity is pos-
sible because our protocol does not require us to explicitly
perform the decoding procedure for the many-body teleporta-
tion problem; rather, we can infer the existence of correlations
between A and BC from statistical correlations between differ-
ent measurement, which in turn informs us that teleportation
is in principle possible.

In developing the protocol used here, we have focused on
keeping experimental requirements to a minimum. However,
other approaches that demand higher levels of experimen-
tal control may offer different advantages. In particular, one
consequence of using randomized state preparation and mea-
surement is the exponential scaling of the required number
of repetitions M with the size of the region on which the
Rényi entropy is evaluated; indeed, this sampling complex-
ity is provably optimal with the given resources [42]. This
is not an issue if one is interested in small regions within
a large system, which is the situation for many studies of
quantum thermalization, but may be problematic if one needs
to consider large AC. Indeed, the ideal probes of many-body
teleportation require access to an extensive number of inputs
AB. Note, however, that one could consider correlations be-
tween A and B′C, where B′ is a fixed size rather than the full
complement of A, which will be good measures of early-time
chaos; see also the modified OTOCs in Ref. [60].

One immediate generalization is to replace the random
local unitaries Uj and Vj with global Clifford gates [42]. As
argued in Ref. [55], the scaling of the required number of runs
will be better, albeit still exponential. The larger number of
gates required will make such a protocol more susceptible
to decoherence and so noise-robust techniques would be re-
quired [90].

If the evolution in question Nt is known in advance, then
further improvements to the scaling of M may be obtained
using ancillary qubits. Roughly speaking, in these approaches
the nonlocal correlations established during time evolution are
distilled into smaller regions using some decoding procedure
that requires knowledge of Nt ; these correlations can then be
verified in a sample-efficient way. For instance, fast decoders
for the Hayden-Preskill problem have been developed that use
a doubled system [93]. Note that as the system size increases,
so too will the complexity of these decoders, requiring in-
creasingly high levels of coherence and gate fidelity. Thus,
in current NISQ devices, there is a natural tradeoff between
sample complexity and the necessary level of control over the
system.

The quantities that one can directly access without using
full tomography of Nt or an ansatz for ρAC (t ) [94] are limited
to integer moments of the (doubled) density matrix ρop(t ).
While the Rényi entropies S(m)(AC) and partially transposed
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moments pm,A:C have less information-theoretic significance
than, e.g., the von Neumann entropy, their experimental rele-
vance makes it important to better understand their behavior
in chaotic systems, which we leave to future work.

Recently, a protocol to measure the spectral form factor, a
quantity that can be used to diagnose chaos in time-periodic
systems [95], has been proposed, which also uses randomized
state preparation and measurement [96]. There the initial and
final unitaries appearing in Fig. 2 are related via Uj = V †

j . It
would be interesting to consider other ways of introducing
correlations between different random unitaries in such pro-
tocols, which could give access to different properties of the
time-evolution channel.

Operator-space entanglement also plays an important role
in contexts beyond quantum chaos. For instance, the mu-
tual information between initial and final states can be used
as a probe of entanglement phase transitions in monitored
quantum circuits [97–100]. Analogous quantities can also be
used to detect quantized chiral information propagation at the
edge of anomalous Floquet topological phases [101–104]. The
protocol we employ here could therefore be used as a means
to verify experimental realizations of these phenomena.

Note added. Recently, Refs. [82,83] appeared, where sim-
ilar proposals to generalize shadow tomography to channels
were given.

In compliance with EPSRC policy framework on research
data, data obtained from numerical simulations and exper-
iments on ibm_lagos will be made publicly accessible via
Zenodo [105].
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APPENDIX A: PROPERTIES OF THE RéNYI
MUTUAL INFORMATION (2)

In this Appendix we prove the claims made in the main text
regarding properties of Rényi mutual information [Eq. (2)]
when the underlying state is an operator state ρop(t ), including
our claim that the quantum capacity of a channel must be
nonzero when the corresponding operator-space Rényi mu-
tual information exceeds its maximum classical value. We
will refer explicitly to the quantity I (m)(A : C) := S(m)(A) +
S(m)(C) − S(m)(AC), where A is a subset of inputs and C is
a subset of outputs [as in Fig. 1(b)]; however, our claims
continue to hold if A and C are replaced by subsets that contain
combinations of inputs and outputs, provided the reduced
density matrix on at least one of the subsets is maximally
mixed. For example, in the main text we consider I (m)(A :
BC), which falls under this category since the reduced density
matrix ρA = IA/2|A| is maximally mixed. For the purposes
of this Appendix, we leave all t dependence implicit. We

denote the Hilbert space dimensions of A and C by dA and dC ,
respectively.

While the definition of the Rényi mutual information that
we use here [Eq. (2)] generalizes the von Neumann mutual
information in a natural way, it is not always a good measure
of the correlations present in a given state. For example, in
certain cases it can even be negative [79,80]. [Because of this,
other related quantities have been proposed that are sometimes
referred to as Rényi mutual information [78]; here we will use
this term exclusively for the quantity (2).] However, when the
reduced density matrix for either A or C is maximally mixed,
as occurs in the cases under consideration, it was noted that
I (m)(A : C) is non-negative [46]. We argue that this can be
made stronger.

Theorem. For any density operator ρAC satisfying ρA :=
TrCρAC = IA/dA or ρC = IC/dC , the Rényi mutual informa-
tion satisfies

I (m)(A : C) � 0 ∀ m = 2, 3, . . . (A1)

with equality if and only if the density operator factorizes as
ρAC = ρA ⊗ ρC .

This theorem establishes I (m)(A : C) as a sensible measure
of how much ρAC fails to factorize and hence the degree to
which A and C are correlated. We only explicitly consider
integer m � 2 here, since these are the quantities that can be
measured experimentally.

We assume that ρA is maximally mixed; the alternative case
where ρC is maximally mixed then follows from the symmetry
of I (m)(A : C). Our proof relies on the observation∫

Haar
dU1 · · · dUmTr[(U1 ⊗ IC )ρAC (U1 ⊗ IC )† × · · ·

× (Um ⊗ IC )ρAC (Um ⊗ IC )†] = Tr

[(
IA

dA

)m

⊗ (ρC )m

]
,

(A2)

where the integration variables are unitary matrices {Ui ∈
U (dA)} acting on A and the integrals are taken over the Haar
measure. The above is a consequence of the standard identity∫

Haar dU UOU † = (Tr[O]/d )Id for d × d matrices O [106].
We seek to prove Tr[(ρAC )m] � Tr[(ρA)m ⊗ (ρC )m], which
will in turn imply (A1). Since the integration measure over
each Ui is normalized

∫
Haar dUi = 1 and ρA = IA/dA, we have

Tr[(ρAC )m] − Tr[(ρA)m ⊗ (ρC )m]

=
∫

Haar
dU1 · · · dUm{Tr[(ρAC )m]

− Tr[U1ρ
ACU †

1 · · ·UmρACU †
m]}, (A3)

where we leave the factors of IC implicit. The integrand on
the right-hand side is non-negative by the following lemma.

Lemma. If ρ is a complex Hermitian positive-semidefinite
matrix and {Ui} are unitary matrices of the same size, then

|Tr[U1ρU †
1 · · ·UmρU †

m]| � Tr[ρm] (A4)

with equality if and only if U1ρU †
1 = · · · = UmρU †

m.
Proof. We first note that |Tr[A]| � Tr[|A|] for all square

matrices A, where |A| := (A†A)1/2, with equality if and only
if A is Hermitian positive semidefinite. Setting A = A1 · · · Am

012441-9



MAX MCGINLEY et al. PHYSICAL REVIEW A 106, 012441 (2022)

where Aj = UjρU †
j , we then use a generalization of Hölder’s

inequality proved in Ref. [107],

Tr[|A1 · · · Am|] �
m∏

a=1

{Tr[(Aa)pa ]}1/pa (A5)

for any positive real numbers pa satisfying
∑

a(1/pa) = 1,
with equality if and only if A1 = · · · = Am. Equation (A4)
then follows by setting pa = m for a = 1, . . . , m so that
Tr[(Aa)pa ] = Tr[ρm]. �

This completes our proof that I (m)(A : C) is non-negative
for the states under consideration. The fact that I (m)(A : C)
vanishes for factorizable ρAC follows immediately from its
definition. Conversely, if I (m)(A : C) = 0, then the integrand
in (A3) must vanish everywhere, which implies that (U ⊗
IC )ρAC (U ⊗ IC )† = ρAC for all U ∈ U (dA). This can only be
true if ρAC ∝ IA ⊗ ρC , which completes our proof.

Having established the above theorem, we now provide the
proof of the claims we made in Sec. II B regarding the thresh-
old values for I (m)(A : BC) and RA:BC . In its most general form,
we have the following claim.

Claim. The quantum capacity of a channel N A→B is
nonzero if the operator-space Rényi mutual information sat-
isfies I (m)(A : B) > |A|. If the input Hilbert space dimension
|HA| = 2, then the same conclusion can be made whenever
the ratio of partially transposed moments RA:B := p2

2,A:B/p3,A:B

exceeds unity.
The statements made in the main text then follow from

applying the above to N A→B′C
t .

Proof. First, we consider the case where I (m)(A : B) > |A|.
Here we will rely somewhat on the notion of majorization;
see, e.g., Ref. [108] for a full introduction. An nX × nX Her-
mitian matrix X majorizes an nY × nY Hermitian matrix Y if
their traces are equal and the sum of the kth largest eigen-
values of X is greater than or equal to the sum of the kth
largest eigenvalues of Y for k = 1, 2, . . . , min(nX , nY ). This
relation is denoted by X � Y . A function f from matrices to
real numbers is called Schur convex if and only if X � Y ⇒
f (X ) � f (Y ).

Since A is maximally mixed, our starting point I (m)(A :
B) > |A| is equivalent to Tr[(ρAB)m] > Tr[(ρB)m], where ρAB

is the operator state for the channel N A→B [see Eq. (1)]
and ρB = TrAρAB. It is straightforward to show that the map
ρ �→ Tr[ρm] is Schur convex, which implies that ρAB � ρB. In
Ref. [109] it was shown that separable states satisfy ρAB � ρB,
and so the operator state must be bipartite entangled whenever
I (m)(A : B) > |A|. Moreover, in Ref. [110] a stronger result
was proved: Violation of the separability criterion ρAB � ρB

implies violation of the so-called reduction criterion [111].

States which violate the reduction criterion must possess dis-
tillable entanglement, meaning that many copies of the state
can be converted into a smaller number of pure EPR pairs
using local operations and classical communication [112].

The above implies that if the operator state ρAB satisfies
I (m)(A : B) > |A|, then pure EPR pairs can be distilled from
many copies of ρAB (each of which can be prepared from a sin-
gle use of the channel N A→B) using the protocol described in
Ref. [111], which requires a one-way classical communication
channel from sender A to receiver B. The ability to generate
EPR pairs from multiple uses of a channel assisted by one-
way classical communication is equivalent to being able to
reliably transmit the same number of qubits from A to B using
the same resources [113]. Since the quantum channel capacity
assisted by one-way classical communication is equal to the
unassisted capacity [113,114], we conclude that the quantum
capacity of any channel N A→B must be nonzero whenever the
operator state ρAB satisfies I (m)(A : B) > |A|.

For the ratio of partially transposed moments RA:B

[Eq. (3)], our argument follows a similar line. In Ref. [77]
it was shown that if a bipartite state ρAB satisfies RA:B > 1,
then the Peres criterion [115] must be violated, which is a
sufficient but not necessary condition for the existence of
bipartite entanglement in ρAB. Given that the Hilbert space
dimension |HA| = 2, violation of the Peres criterion implies
that the entanglement in ρAB is distillable [116]. Again using
the equivalence between generation of pure EPR pairs and
transmission of quantum states, we conclude that the quantum
capacity of N A→B must be nonzero.

Finally, it is helpful to evaluate I (m)(A : C) for the
case where the time evolution is a global Haar random
unitary, which is maximally chaotic. A simple estimate
for the average 〈I (m)(A : C)〉Ut (angular brackets denote
the expectation value over all unitary evolutions Ut with
respect to the Haar measure) can be obtained by ap-
proximating 〈log2 Tr[ρAC (t )m]〉Ut ≈ log2〈Tr[ρAC (t )m]〉Ut , the
right-hand side of which can be evaluated using standard
expressions for integrals over the Haar measure [106]. This
assumes that fluctuations of Tr[ρAC (t )m] between different
Haar random unitaries are small. For the simplest case of
m = 2, for a system of N q-level systems (q = 2 for our case
of qubits), we find

〈Tr[ρAC (t )2]〉Ut = 1

qN (q2N − 1)
[qN (q|BD| + q|AC|)

− (q|AD| + q|BC|)]. (A6)

This can be used to estimate the mean value of I (2)(A : BC),
which we argue in the main text probes the fidelity of the
Hayden-Preskill teleportation protocol

〈I (m)(A : BC)〉Ut ≈ |AC| log2 q − log2

(
q2N (q|A|−|C| + q|C|−|A| − q−|AC|) − q|AC|

q2N − 1

)
. (A7)

In the case of interest |A| = |C|, this becomes

〈I (m)(A : BC)〉Ut � |AC| log2 q − log2

(
q2N (2 − q−|AC|) − q|AC|

q2N − 1

)
. (A8)

012441-10



QUANTIFYING INFORMATION SCRAMBLING VIA … PHYSICAL REVIEW A 106, 012441 (2022)

The first term on the right-hand side is the maximum value for
the Rényi mutual information. The second term, describing
deviations from the maximum value, remains order one when
one takes |N | → ∞ while keeping |A| = |C| fixed. This is
consistent with the expectation that information about the
initial state of A can be recovered even if one only has ac-
cess to a vanishing fraction of outputs C (this corresponds
to the amount of Hawking radiation in the Hayden-Preskill
protocol [5]). Evaluating (A8) for the case N = 5, q = 2, and
|A| = |C| = 1 (the parameters used for the data plotted in
Fig. 4), we find I (2)(A : BC) ≈ 1.1945 . . ..

APPENDIX B: PROOF OF EQ. (6)

Here we prove the relationship between the quantities
DC

k (t ), which measure the k-locality of time-evolved opera-
tors that initially have support in C, and the operator purities
Tr[ρAC (t )2]. First, trace preservation implies that N †[I] = I,
which in turn gives cIν (t ) = δν,I , where I labels the identity
Pauli string. Thus, for k � 1, the restriction μ �= I in the sum
in the first line of (6) can be removed. Then we consider the
sum of operator purities over all subsets of qubits A of fixed
size |A| = r,

EC
r (t ) := 2|C|+r

2|C| − 1

∑
A⊆S;|A|=r

Tr[ρAC (t )2] (B1)

= 1

2|C| − 1

r∑
k=0

(
N − k

r − k

) ∑
μ∈C

∑
ν:|σν |=k

|cμν (t )|2 (B2)

=
r∑

k=0

(
N − k

N − r

)
DC

k , (B3)

where for convenience we alter the definition of DC
k for

k = 0 to be DC
0 = Tr[ρC (t )2]/(2|C| − 1), which differs from

the expression (6) in the inclusion of the term μ = I . The
above follows from counting the number of subregions A
that support a Pauli string that acts nontrivially on k qubits.
This establishes a linear relationship between the sums EC

r (t )
and the quantities of interest DC

k , which can be inverted. The
inverse of the lower triangular matrix [L]rk = (N−k

N−r

)
(r � k)

is simply given by [L−1]kr = (−1)k+r
(N−r

N−k

)
(k � r); this can

be proved using the relation
∑ j

m=i(−1) j+m
( j

m

)(m
i

) = δi j . This

gives DC
k = ∑k

r=0(−1)r+k
(N−r

N−k

)
EC

r (t ), which can be easily
manipulated to give Eq. (6).

APPENDIX C: JUSTIFICATION OF EQ. (7)

In this Appendix we prove that the quantity (7) is in-
deed an unbiased estimator of the operator state ρop(t ), i.e.,
E[ρ̂op(t )] = ρop(t ), where the expectation value is taken over
the joint distribution of unitaries Uj and Vj and outcomes
b̂ j . This can be done relatively straightforwardly using the
graphical equation shown in Fig. 7. First, suppose that one
could explicitly construct ρop(t ) in the experiment; then one
could perform conventional shadow tomography, where uni-
taries U and V are applied to Qin and Qout, respectively, with
outcomes â, b̂ ∈ {0, 1}×N . This is shown in Fig. 7(a). Using
the property of the maximally mixed state (OT

in ⊗ Iout ) |�〉 =

|â〉Qin

|b̂〉Qout

|Φ〉
UT

Nt V

=

rand

|b̂〉Q
|â〉Q U Nt V

(a) (b)

FIG. 7. (a) Conventional shadow tomography on the operator
state ρop(t ) = (idin ⊗ Nt )[�]. The distribution of unitaries U and V
and measurement outcomes â and b̂ are the same as that of (b) a hy-
brid classical-quantum process, where â are sampled from a uniform
distribution and then used as the input for a quantum circuit.

(Iin ⊗ Oout ) |�〉, one can push the unitary U = ⊗
j Uj acting

on Qin onto the other half of the doubled system. This makes
it clear that the distribution of measurements {â} on the input
qubits is uniform over {0, 1}×N . Thus, we can sample â using
a classical computer and use it as the input to a circuit that
only requires a single copy of the system [Fig. 7(b)]. The joint
distribution of â, b̂, U , and V will be exactly the same as
that of state shadow tomography on ρop(t ), which allows us
to construct an unbiased estimator of ρop(t ) in the usual way
[42].

Finally, we note that the variables â and U only appear
in the combination U |â〉 in both the circuit and the shadow
tomography estimator of the density matrix. Thus, we need
only ensure that the ensemble of inputs to the channel Nt

has the correct distribution. In our case U is distributed uni-
formly over products of single-qubit Clifford operations; we
can therefore replace U |â〉 with U |0⊗N 〉 without modify-
ing the appropriate distribution. This justifies the form of
Eq. (7).

APPENDIX D: RESULTS FOR N = 7 QUBITS

In this Appendix we describe a circuit model of dynamics
that uses all seven qubits of the quantum device ibm_lagos
and present results obtained from the shadow protocol.

To generate chaotic dynamics, we use a circuit design made
up of the same gates as the setup presented in the main text
[Fig. 3(b)], namely, CNOT gates and single-qubit gates inde-
pendently sampled from the discrete set {Wc : c = 1, . . . , 4}.
As before, each time step is made up of a layer of single-
qubit unitaries acting on all qubits followed by a layer of
CNOT gates. The arrangement of CNOT gates changes each
time step, repeating itself after a period of three steps, as
illustrated in Fig. 8. This ensures that entanglement can be
generated between any two qubits after a sufficient amount of
time.

After running the shadow tomography protocol with the
same parameters as before (NU = 900 and NM = 8192), the
Rényi mutual information I (2)(A : BC) is computed, where
we set A = {1}, the top left qubit in Fig. 8. We also gen-
erate a set of shadow data by simulating the full circuit
without noise on a classical computer, for comparison. The
results are presented in Fig. 9. Initially, correlations are only
present for jC = 1, whereas at later times these correlations
are distributed across the entire system, thus confirming that
information has been scrambled. As before, the values from
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t = 3n + 1

5 6 7

4

1 2 3

t = 3n + 2 t = 3n + 3

FIG. 8. Configuration of the CNOT layers in the model of chaotic
dynamics that uses all seven qubits of ibm_lagos. The pattern of
CNOT gates repeats every three time steps. Small orange circles
denote the control qubits and large orange circles with a plus are
the target qubits. Note that the numbering of the qubits (indicated in
the leftmost panel) differs from that used in the text.

ibm_lagos at later times are systematically below those from
classical simulations, due to noisy processes that disturb the
propagation of information.

The region ABC involves more qubits than that used for
the N = 5 setup described in the main text and so we expect
to incur larger statistical errors when computing the operator-
space Rényi entropies and in turn I (2)(A : BC). The size of
these errors can be estimated by looking at the deviation of
the values from noiseless classical simulations of the shadow
protocol, compared with the exact values of the mutual infor-
mation. Averaging across all times t and choices of jC , we
find a mean relative error in the value of Tr[ρ2

ABC] of 0.05 and
an absolute error in I (2)(A : BC) of 0.07. Evidently, even for

ibm_lagos

(a)

(b)

FIG. 9. Color plot of the second Rényi mutual information
I (2)(A : BC) for the circuit model of dynamics described in Ap-
pendix D, using all seven qubits of ibm_lagos. We fix A = {1} [the
bottom right qubit in Fig. 3(a)] and C = { jC}, where jC is varied.
(a) Results obtained from noiseless classical simulations of the time
evolution Nt and the shadow protocol. By averaging the deviation
of these data from the exact value of I (2)(A : BC) for the circuit in
question, we obtain an estimate of the statistical fluctuations due to
the shadow protocol of 0.07. (b) Data obtained from ibm_lagos.

regions as large as |ABC| = 8, it is possible to estimate Rényi
entropies and quantities derived thereof to a good accuracy
using a reasonable number of shots.
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