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State preparation and measurement errors are commonly regarded as indistinguishable. The problem of dis-
tinguishing state preparation errors from measurement errors is important to the field of characterizing quantum
processors. In this work, we propose a method to separately characterize state preparation and measurement
errors using a different type of algorithmic cooling protocol called measurement-based algorithmic cooling
(MBAC). MBAC assumes the ability to perform (potentially imperfect) projective measurements on individual
qubits, which is available on many modern quantum processors. We demonstrate that MBAC can significantly
reduce state preparation error under realistic assumptions, with a small overhead that can be upper bounded
by measurable quantities. Thus, MBAC can be a valuable tool not only for benchmarking near-term quantum
processors but also for improving the performance of quantum processors in an algorithmic manner.

DOI: 10.1103/PhysRevA.106.012439

I. INTRODUCTION

Quantum computers are believed to solve some problems
more efficiently [1,2], and sometimes exponentially more ef-
ficiently [3,4], than classical computers. On the other hand,
various types of noise make it hard to design and build
useful quantum computers and perform quantum algorithms.
The main types of noise include state preparation errors,
gate errors, dephasing and relaxation during computation, and
measurements errors, along also with qubit-correlated errors.
Among these, state preparation and measurement (SPAM)
errors are usually studied as a whole, because they are fun-
damentally hard to distinguish. For example, if one tries to
prepare a target state |0〉, immediately measures it, and gets
an outcome of |1〉, it is not clear whether the state preparation
or the measurement contributes more to the inconsistency.

Algorithmic cooling (AC), or more accurately heat-bath
AC [5], is a method that employs relaxation with a bath for
cooling spins. We show here that an extended form of AC,
which we call measurement-based algorithmic cooling, can be
a useful tool for distinguishing state preparation errors from
measurement errors. Most commonly, various AC algorithms
[6–15] work under the assumptions that the system consists
of qubits and that the state preparation noise is thermal. In
addition, it is commonly assumed that the system is an ensem-
ble of many identical subsystems, such as in NMR quantum
computing. In ensemble quantum computing, some AC algo-
rithms are sometimes performed prior to the standard quantum
computing process, as part of a prolonged state preparation
process. These algorithms redistribute the entropy among the
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qubits, so that the state of a subset of target qubits after AC is
more pure, as if they were put in a lower temperature than the
initial temperature of the original thermal state.

In the ensemble, a vital assumption is the limitation on
the quantum computing abilities: it is assumed that opera-
tions cannot be applied to individual qubits, but only to the
same qubits in each of the many parallel quantum computers.
Consequently, one is limited to ensemble measurements that
estimate expectation values of certain operators. On the other
hand, AC in other quantum computing systems can be less
restrictive: if projective measurements are allowed, a trivial
way to cool a qubit is to measure it. If the outcome is 0, the
system is in the |0〉 state immediately after the measurement,
corresponding to a zero temperature (discussed later). If the
outcome is 1, then one can perform a Pauli X gate to flip it to
|0〉, achieving the same result. However, there are two major
issues with this approach: first, in some existing gate-based
quantum computing architectures, the measurement process
only takes place at the final stage of the computation. No
computation can proceed on the measured qubit and a new
round of computation must be initiated. In other words, the
measurement “destroys” the system of interest, so this naive
cooling method is not so useful for doing further computa-
tions. Second, this method works only if measurement errors
are absent and there is a perfect correspondence between the
measurement result and the postmeasurement state; if this is
not true, we cannot safely deduce the postmeasurement state.

In this work, we propose an AC protocol under the assump-
tion that (potentially imperfect) measurements can be applied
on individual qubits, which resolves the above issues. We call
this alternative class “measurement-based AC” (MBAC) since
measurement is used as a resource to cool. The outline of
this paper is as follows. In Sec. II A we give a review of

2469-9926/2022/106(1)/012439(8) 012439-1 ©2022 American Physical Society

https://orcid.org/0000-0002-3096-931X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.012439&domain=pdf&date_stamp=2022-07-28
https://doi.org/10.1103/PhysRevA.106.012439


RAYMOND LAFLAMME, JUNAN LIN, AND TAL MOR PHYSICAL REVIEW A 106, 012439 (2022)

conventional AC protocols, which motivate the alternative
MBAC protocols. In Sec. II B we describe k-qubit MBAC
assuming ideal measurements on the ancillary qubits and
compare it with the optimal reversible AC scheme. In Sec. II C
we describe a procedure to separately characterize SPAM er-
rors using MBAC. In Sec. II D we relax the assumption made
in Sec. II B and analyze MBAC when the ancillary qubits have
finite measurement errors, and we derive a lower bound for its
performance. In Sec. II E we study the number of trials needed
to cool down a target qubit by a desired multiplicative factor,
and we illustrate the practical usefulness of MBAC despite its
probabilistic nature. Finally in Sec. III we conclude our paper
and point to some future research directions.

II. RESULTS

A. Review of conventional AC

We first describe AC protocols, notations, and goals, in
a way that leads more naturally to our alternative type of
AC, the MBAC. Below, we denote the Pauli matrices X , Y ,
and Z by σx, σy, and σz, and the 2 × 2 identity matrix by
σI . The ideal state preparation step should initialize a single
qubit to the |0〉 state. We assume that due to imperfect state
preparation processes, a bit-flip (equivalently, σx) error occurs
with probability δ, so that the actual initial state is described
by the following mixed state density matrix:

ρ = (1 − δ)|0〉〈0| + δ|1〉〈1|. (1)

This represents a state preparation error on the quantum pro-
cessor. Throughout this work we assume that 0 � δ < 1/2,
where δ = 0 corresponds to the pure state |0〉 and δ → 1/2
corresponds to the completely mixed state.

Algorithmic cooling procedures are designed to reduce δ

on the target qubit towards 0. The term “cooling” comes from
viewing ρ as a thermal state [16],

ρ = 1

Z
e−βĤ = 1

Z

(
e

h̄ω
2kBT 0

0 e− h̄ω
2kBT

)
, (2)

where Ĥ = − 1
2 h̄ωσz is the bare qubit Hamiltonian, kB is the

Boltzmann constant, T is an effective temperature, and Z is
the partition function so that ρ is normalized. From Eqs. (1)

and (2) we can identify δ = (e
h̄ω

kBT + 1)−1. Solving for T gives
kBT = h̄ω/ ln( 1

δ
− 1), so that T is closer to 0 when δ is

closer to 0, for a fixed ω. Therefore, reducing its effective
temperature increases its probability of being in the ground
state.

AC has two main variants, namely, the Schulman-Vazirani
reversible scheme [17] and the heat-bath scheme [5,6]. In the
reversible variant, the relaxation time is assumed to be infinite
or extremely large relative to the computing time. In the heat-
bath variant, one assumes that, in addition to computational
(or, target) qubits that relax very slowly, there are also ancil-
lary “reset” qubits that can relax back to thermal equilibrium
much faster (through interaction with a heat bath) than the
target qubits. We first review the heat-bath scheme using a
minimal example with m = 3 qubits [6], which inspires our
measurement-based protocol. We review the reversible variant
later in Sec. II B when we compare MBAC with conventional
AC.

FIG. 1. The circuit for three-qubit BCS aiming to cool down the
target spin st . Within the box is a SWAP gate, which is controlled by
spin s1.

Let us now assume that there is a target spin to be cooled
called st and two ancillary spins s1 and s2. Starting with the
system in a state ρ1 ⊗ ρt ⊗ ρ2 where all ρ ′s are described
by Eq. (1) with the same value of δ, we can apply a basic
compression subroutine (BCS) to reduce δ on st (see Fig. 1).
The BCS involves essentially two steps: first, a controlled-NOT

(CNOT) operation controlled by st and targeted on s1; second,
a controlled-SWAP (CSWAP) operation controlled by s1 and
targeted on st and s2. To see why this protocol works, first
consider the evolution of s1 and st after the CNOT gate. We
replace the noisy states of st and s1 by assuming an error
model is applied on pure qubit states. The error model is such
that a σx channel occurs independently on each qubit after
the preparation. Referring to Fig. 2, this corresponds to the
following four possibilities where U equals

(i) σI ⊗ σI , p = (1 − δ)2;
(ii) σI ⊗ σx, p = δ(1 − δ);
(iii) σx ⊗ σI , p = δ(1 − δ);
(iv) σx ⊗ σx, p = δ2,
with the corresponding probabilities listed after each case.

In the above the left error-operator is applied to s1 and the
right operator to st . From Fig. 2 and the mapping rule of Pauli
operators under the CNOT gate, the four cases can be written
equivalently where U ′ equals

(i) σI ⊗ σI , p = (1 − δ)2;
(ii) σx ⊗ σx, p = δ(1 − δ);
(iii) σx ⊗ σI , p = δ(1 − δ);
(iv) σI ⊗ σx, p = δ2.
Since s1 and st both start from |0〉, the CNOT gate does

nothing and can be removed. Thus, the output states are
(i) |0〉 ⊗ |0〉, p = (1 − δ)2;
(ii) |1〉 ⊗ |1〉, p = δ(1 − δ);
(iii) |1〉 ⊗ |0〉, p = δ(1 − δ);
(iv) |0〉 ⊗ |1〉, p = δ2.
It is now clear that s1 and st become correlated, since the

probability of them being in the same state (cases 1 and 2) is
higher than that of being in different states (cases 3 and 4), for
all 0 � δ < 1/2. When s1 is in |0〉, st is more likely to be in
|0〉 (case 1) than in |1〉 (case 4), so we keep this purified spin

s1

U

st

=
s1

U ′ = CUC†

st

FIG. 2. Two equivalent circuits where the order of two unitary
gates are exchanged, and the second gate on the right-hand side is
replaced by the original gate conjugated by the first gate. C stands
for the CNOT gate in this case.
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st discard

s1

FIG. 3. A circuit for two-qubit measurement-based algorithmic
cooling which increases the bias of the target qubit st . The double-
line notation means “controlled on classical outcome”; i.e., st is kept
for further computations when the measurement outcome is 0 and
discarded if the outcome is 1.

st in the second step of Fig. 1. When s1 is in |1〉, st is equally
likely to be in |0〉 or |1〉 (cases 2 and 3), which corresponds
to the completely mixed state and an effective temperature
T → ∞. In this case st has been heated up, so we can restore
its original state by swapping st and s2 in the second step of
Fig. 1. Overall, the density matrix of st becomes closer to |0〉
at the output end.

We can calculate the exact reduced state of st at the output
by taking an average over the aforementioned four cases (after
applying the CSWAP step). Denote the probability of being in
|1〉 for st after a BCS round as δ′

t . For cases 1 and 4, s1 is in
|0〉 so no SWAP gate is applied, and the probability of st being
in |1〉 is 0 and 1, respectively. For cases 2 and 3, st is swapped
with s2, so the probability of st being in |1〉 is restored to δ in
both cases. Averaging over these four cases yields

δ′
t = δ2 + 2δ2(1 − δ) = 3δ2 − 2δ3 � δ, ∀ 0 � δ < 1

2 . (3)

For small δ, it is reduced to order O(δ2). In the more general
case where the initial δ′s on each spin can be different, we
have

δ′
t = δ1δt + δ2δt + δ1δ2 − 2δ1δtδ2. (4)

If we further assume that the ancillas s1 and s2 can relax much
faster to their original states than st , so that we can effectively
repeat this BCS round (where st now has error δ′

t ), then st

can be further purified. In the limit of performing infinitely
many rounds, st arrives at the steady state, whose error can be
calculated by setting δ′

t = δt = δ∞
t in Eq. (4), which gives

δ∞
t = δ1δ2

1 − δ1 − δ2 + 2δ1δ2
. (5)

B. MBAC

Based on the previous analysis, one can see that the second
CSWAP gate (and consequently, s2 as well) is not needed if
we can learn the state of s1 after the first CNOT gate. If s1

is in |0〉, we know that st has a higher probability of being
in |0〉. If we discard the cases where s1 is in |1〉 and only
keep the ones where it is in |0〉, we can reduce the error δ

on the target qubit. The working principle behind this method
is similar to an error detecting code, where the effective noise
level is reduced by accepting the cases where no error occurs
and discarding those with an error occurring.

Referring to the circuit in Fig. 3, measuring |0〉 on s1

updates the state of st to

ρ ′
t = 〈0|1τ |0〉1

〈0|Trt [τ ]|0〉 , (6)

where, throughout this work, we use τ to denote the state of
the full system right before the measurement. Starting from
two states with initial error rates δ1 and δt , the final error rate
on st upon measuring |0〉 on s1 becomes

δ′
t = δ1δt

1 − δ1 − δt + 2δ1δt
. (7)

Then, taking δt = δ1 = δ again for simplicity, we see that in
the small-δ limit, the error is also reduced to O(δ2) to leading
order. Importantly, the target qubit st is not being measured,
which resolves the first issue we raised in Sec. I. Assuming
that the ancillary qubit s1 can maintain sufficiently long coher-
ence, we can store them in the quantum computer and measure
them at the end of the computation, along with other qubits.
We then postselect only those measurement outcomes where
s1 measures to 0. Interestingly, comparing with Eq. (5), we
see that applying the above protocol once achieves the same
polarization on st as applying infinitely many rounds of BCS,
if initially δt = δ2.

The above two-qubit protocol, which we call MBAC-2,
forms a basis for analyzing expanded versions of MBAC.
For conventional AC protocols there are two major ways to
expand them, either by using more ancillary qubits or by
repeating the protocol for multiple rounds. Since we have
assumed that the ancillary qubits cannot be reused once they
have been measured, MBAC protocols cannot be expanded
by repeating them for multiple rounds. However, it is fea-
sible to use more ancillary qubits to achieve better cooling.
Specifically, imagine expanding s1 to k − 1 qubits in Fig. 3.
We apply k − 1 CNOT gates controlled by st and targeted on
si, i = 1, . . . , k − 1, and we measure all s1, . . . , sk−1 at the
end. The target st is kept only if all measurement outcomes
are 0, and it is discarded otherwise. We call the above protocol
MBAC-k, which serves as an expanded version of MBAC-2.

To analyze MBAC-k, observe that it is equivalent to repeat-
ing k − 1 “rounds” of MBAC-2, if the ancilla in MBAC-2 is
allowed to return to its original state after being measured and
can be reused again. The evolution of noise in a single “round”
is already given in Eq. (7), so the evolution for MBAC-k
can be recursively calculated from Eq. (7). Furthermore, by
assuming again δt = δ1 = δ initially and observing the first
few terms, we can infer the analytic solution for this series,
given by

δt [k] = δk

δk + (1 − δ)k
, (8)

where from now on we use δt [k] to denote “SP error on st after
applying MBAC-k.” In particular, δt [1] is used to denote the
initial SP error on st . The solution in Eq. (8) can be readily
verified by plugging it back into Eq. (7). From this solution
one can see how δt decreases approximately exponentially in
k, especially in the small-δ limit.

To make a fair comparison between MBAC and conven-
tional AC, we now briefly review the reversible scheme first
proposed by Schulman and Vazirani [17]. The main step in
reversible AC is called entropy compression, where through
a unitary map U the entropy is extracted from some subset
of qubits and transferred to another subset of qubits. If we
constrain the system to start and end in diagonal states, and
the goal is to cool down only one qubit, then it can be shown
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FIG. 4. Simulated evolution of δt between MBAC-k and SV-k,
plotted on a semi-log scale. The initial errors (red: δ = 0.45; blue:
δ = 0.1) are assumed to be the same on all qubits. The effect of
decoherence is assumed negligible and gates are assumed to be ideal.

that the optimal unitary U is to perform a descending sort
on the diagonal elements of the full system’s density matrix
[7,18]. We thus consider this to be an upper bound on the
performance of Schulman-Vazirani type of cooling, and we
call this scheme SV-k if it uses a total of k qubits to cool one
qubit. In Fig. 4, we compare MBAC-k (in circles) and SV-k
(in squares) starting from two initial noise levels, δ = 0.1
(in blue) and δ = 0.45 (in red). The advantage of allowing
projective measurement into the task of cooling, compared to
the optimal reversible scheme, is clearly visible.

C. SPAM error characterization

In Sec. II A, we have already seen how the parameter δ can
be interpreted as a measure of state preparation (SP) error. We
now formally define what SP and M errors are, and then we
demonstrate how MBAC can be used to characterize SPAM
errors. Our definition here will closely follow the one given in
Ref. [19]. The ideal SPAM operators are denoted by a density
operator ρ and a two-outcome positive operator-valued mea-
sure (POVM) M = {M0, M1}, which satisfy the physicality
constraints that ρ and Mi are positive-semidefinite Hermitian
operators, and M0 + M1 = σI . We assume that ideally, ρ =
M0 = |0〉〈0|. The SPAM error is defined as the probability
of obtaining an incorrect outcome when measuring the initial
state; that is,

δSPAM := 1 − Tr[ρM0]. (9)

We now define the SP error, denoted as δSP, to be equal
to δSPAM with an ideal measurement operator. Similarly, the
M error (denoted as δM) is defined as δSPAM with an ideal
input state. While the total SPAM error δSPAM is a measurable
quantity, δSP and δM are not, when both state preparation and
measurement errors are present. However, one may design
algorithms that allow one to isolate the contributions to the
total error from state preparation or measurement processes.

We now demonstrate how one can separately estimate δSP

and δM, based on the concept of AC. For simplicity, we first
assume that both the imperfect state and measurement opera-

tors are of the same form

ρ =
(

1 − δSP 0
0 δSP

)
, M0 =

(
1 − δM 0

0 δM

)
, (10)

so that the total SPAM error is given [from Eq. (9)] by

δSPAM = δSP + δM − 2δSPδM. (11)

As before, we also assume that δSP, δM ∈ [0, 0.5). Our goal
is to separately estimate δSP,t and δM,t on st . For now we
also assume, for simplicity, that measurement operations on
all ancillary qubits are ideal, and the only noisy measurement
is the one on st . This allows us to directly apply the previous
calculations. This assumption is relaxed in the next section.

Since δSPAM,t can be obtained from directly measuring st ,
the problem of separately characterizing SPAM errors is then
reduced to estimating either δSP,t or δM,t : from the symmetry
between the two, once either is known, the other can also be
calculated from the second equation.

It is now possible to intuitively see how AC can be used
to resolve SPAM errors. We saw in Eq. (8) and Fig. 4 that
MBAC can quickly reduce the error δt on st close to 0. Now
imagine two separate experiments where in the first one we
measure st directly and obtain δSPAM,t . In the second one, we
first apply multiple rounds of MBAC until the final bias on
the target is sufficiently close to 1 (we later show how this can
be determined), and then we measure the target qubit. Since
the measurement operation is independent of the qubit state,
δM,t is directly obtained from the measurement result, since
the input state is now ideal. From here, δSP,t can be easily
calculated from Eq. (11). We have thus separately estimated
SPAM errors by first eliminating the SP error, determining the
measurement error, and then inferring the SP error from the
total δSPAM,t .

We have so far focused on the case of diagonal state and
measurement operators. To justify this, below we describe
an averaging technique to convert arbitrary one-qubit SPAM
elements to this simpler case. Begin by noting that we can
generally write

ρ = 1
2 (σI + sxσx + syσy + szσz ),

M0 = 1
2 (miσI + mxσx + myσy + mzσz ), (12)

where the s′s and m′s are unknown parameters (si = 1 be-
cause Tr[ρ] = 1). Assuming ideal quantum gates, we can
obtain an effective initial state with sx = sy = 0 for an arbi-
trary one-qubit circuit as follows. We perform two separate
experiments, where in the first we apply the original circuit,
and in the second we apply a σz gate immediately after the
state preparation and then carry out the same circuit. Due
to linearity of quantum operations, the average of measure-
ment outcomes from the two experiments is then equivalent
to one where ρeff = 1

2 (ρ + σzρσ †
z ) = 1

2 (σI + szσz ). Similarly,
we can also make mx = my = 0 by averaging the results from
the original experiment and one where a σz gate is applied
immediately before the measurement. To set mi = 1, we can
average the original circuit with one where a σx gate is applied
immediately before the measurement and the outcomes 0 and
1 are relabeled (so that outcome 0 corresponds to the POVM
element M1 and vice versa). This reduces the SPAM operators
to the ones described by Eq. (10).
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D. MBAC with measurement errors

We now deal with the second issue raised in Sec. I and
study the performance of MBAC when the measurement error
is nonzero on all ancillary qubits as well, thereby relaxing
the assumption made in the previous section. We show that
MBAC still performs well if δSPAM on each ancilla is not
very large, thereby relaxing the most crucial assumption in
SPAM characterization. Again, in this section we assume that
quantum gates are ideal, which means that the SPAM averag-
ing processes are also ideal, and the state and measurement
operators can each be described by a single parameter.

The problem setup is as follows. We assume that each qubit
i in a quantum computer has an independent state preparation
error δSP,i and measurement error δM,i, where i labels the
qubit. The target qubit is labeled by t as usual. The goal is
again to learn δSP,t and δM,t . But as we show later, similar
arguments can be used to learn all δSP,i and δM,i if desired.

Consider performing one successful round of the MBAC-2
protocol with two qubits st and s1. With an imperfect mea-
surement, we generalize the case of projective measurement
in Eq. (6) to a POVM measurement, so that performing one
successful round of MBAC updates the state of st to [20]

ρ ′
t = Tr1[τ (I ⊗ M0)]

Tr[Trt [τ ]M0]
, (13)

where, again, τ denotes the state of the full system imme-
diately before measurement. Using Eq. (13), following again
the circuit in Fig. 3 and the parametrization in Eq. (10), we
calculate the SP error on st after one round of MBAC to be

δ′
SP,t = δSP,t

2(δSP,1 + δM,1 − 2δSP,1δM,1)

1 + (1 − 2δSP,1)(1 − 2δSP,t )(1 − 2δM,1)

= δSP,t
2δSPAM,1

1 + (1 − 2δSP,1)(1 − 2δSP,t )(1 − 2δM,1)
, (14)

where the second equality comes from Eq. (11). The ratio

δSP,t

δ′
SP,t

= 1 + (1 − 2δSP,1)(1 − 2δSP,t )(1 − 2δM,1)

2δSPAM,1
(15)

is a measure of the improvement of the SP error on st after one
round of MBAC, which is better when larger. For example, a
ratio of 100 implies that δSP,t has been reduced by a factor of
100. Intuitively, the improvement should be more significant
when there is less error on s1: indeed, if δSP,1 = δM,1 = 0 in
Eq. (14), then δ′

SP,t = 0 and st will always be projected to
|0〉〈0| when the measurement outputs 0 on s1. In the more gen-
eral case where the SPAM error on s1 is present, we observe
that the numerator on the right-hand side of Eq. (15) is always
� 1, in the relevant region where δSP,1, δSP,t , δM,1 ∈ [0, 1/2).
Therefore,

δSP,t

δ′
SP,t

� 1

2δSPAM,1
. (16)

Furthermore, in the limit where δSP,1, δSP,t , and δM,1 are all

 1, the bound in Eq. (16) can be improved by approximately
a factor of 2 to simply 1/δSPAM,1.

Next, recall from Sec. II B that MBAC-k is equivalent
to repeating k − 1 rounds of MBAC-2. Using mathematical
induction, we see that by applying one successful run of

MBAC-k, the final SP-error on st is upper bounded by

δSP,t [k] � δSP,t

k−1∏
i=1

(2δSPAM,i ). (17)

Recall that δSPAM,i is a measurable quantity obtained by
measuring the initial state on ancilla si. The product simply
corresponds to the probability of directly measuring all an-
cillary qubits s1, . . . , sk−1 after they are prepared and getting
the output 1 on all qubits. Therefore, given δSPAM,i on each
qubit (which can be obtained before the experiment, during
the calibration step), Eq. (17) guarantees that δSP,t from the
output of a successful run of MBAC-k is at least reduced by∏k−1

i=1 (2δSPAM,i ). This shows that finite measurement errors on
the ancillary qubits do not pose a fundamental limitation to
the cooling power of MBAC. In particular, as long as each
δSPAM,i < 1/2 (which we assume from now on), the output
state is guaranteed to be more pure than the input state. More-
over, if both δSP,t and all δ′

SPAM,is are upper bounded by a
constant δ, then δSP,t [k] is simply upper bounded by δk .

E. Number of trials needed in MBAC-k

Next, we study whether the probabilistic nature of MBAC
hinders its usefulness in practice. We see that it remains
practically useful for a wide range of experimentally relevant
SPAM error rates. To illustrate the problem, first ignore any
measurement error and consider a run of MBAC-2. The post-
measurement state upon measuring 1 (which implies a failed
run) can be computed by changing all 0′s to 1′s in Eq. (6),
leading to

δ′
t,fail = δt (1 − δ1)

δt + δ1 − 2δtδ1
= 1

2
− δ1 − δt

2(δt + δ1 − 2δtδ1)
. (18)

One sees that, if δ1 = δt initially, then obtaining a measure-
ment outcome of 1 on s1 will heat up the state to a completely
mixed one. The probability of failure is

pfail = δ1 + δt − 2δ1δt . (19)

For MBAC-k, since we need all the k − 1 measurements to
succeed, the rate of success decreases exponentially with k,
and it becomes increasingly difficult to get a successful run.

Fortunately, recall from Eq. (17) that the target polarization
also improves exponentially fast with increasing number of
ancillas. Therefore, the intuition is that one does not need
a large k value to achieve significant cooling, which in turn
will not have a vanishingly small success probability. Below
we make this intuition more concrete. Specifically, we ask
the following question: if we would like to reduce δSP,t by
a factor of r, i.e., we want δSP,t/δSP,t [k] = r, how many runs
are needed to achieve this cooling ratio? To answer this we
start from Eq. (17) and first derive a relation between k and
r. Note that because each δSPAM,i can be different, the most
general expression will involve all δ′

SPAM,is. In order to obtain
an expression in k, we now make the assumption that all
k − 1 ancillary qubits have the same δSPAM, which we denote
as δSPAM,a where a stands for the word “ancillary.” The case
where the δ′

SPAM,is are different can be bounded similarly by
setting δSPAM,a to the highest among all δSPAM,i.
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FIG. 5. Upper bound Nupper on the expected number of runs re-
quired for different values of r [the improvement ratio defined in
Eq. (20)] versus the initial SP error δSP (assumed to be the same on
the target and all ancillary qubits). Solid and dashed lines represent
the cases of δM,a = 0 and δM,a = 0.1, respectively.

With this assumption, we obtain the following inequality
between k and r:

r = δSP,t

δSP,t [k]
� (2δSPAM,a)−(k−1). (20)

Taking the logarithm of both sides and rearranging the terms
[note that ln(2δSPAM,a) < 0] results in

k − 1 � ln(r)

− ln(2δSPAM,a)
. (21)

This allows the experimentalist to determine the total number
of ancillary qubits needed in order to cool to the desired noise
level, based on their hardware specifications (i.e., the δSPAM,a

on their hardware). Importantly, this upper bound scales loga-
rithmically with r.

Next, we compute the expectation value of the total number
of runs needed before having a successful run, in order to
achieve a cooling ratio r. We show in the Appendix that the
expected number of runs is upper bounded by a function,

Nupper(r) = (r)
ln(A)
ln(B) , (22)

where

A = (1 − δSP,t [1] − δSP,a + 2δSP,t [1]δSP,a)(1 − δM,a),

B = 2δSPAM,a. (23)

We see that Eq. (22) scales polynomially in r. Note that A is
simply the success probability (i.e., measuring 0) of doing the
first run of MBAC-2, so the exponent is a measurable quantity.
Thus, the upper bound can be calculated given a target r.

To understand the behavior of Nupper(r) more concretely,
we can further simplify Eq. (22) by assuming again δSP,t [1] =
δSP,a := δSP, i.e., both the target and the ancillas have the same
initial error δSP. The exponent then becomes [recall δSPAM

from Eq. (11)]

ln(A)

ln(B)
= ln

[(
1 − 2δSP + 2δ2

SP

)
(1 − δM,a)

]
ln[2(δSP + δM,a − 2δSPδM,a)]

. (24)

Shown in Fig. 5 are plots of Nupper(r) in Eq. (22) as a
function of δSP, after making the simplifying assumption in
Eq. (24), for a few chosen values of r and δM,a. As the ini-
tial SP error rate approaches 0.5 (the theoretical maximum),
MBAC fails since the measurement is simply giving random
outputs. In this case, Nupper(r) diverges as expected. On the
other hand, for reasonably low values of δSP, we see that

the expected number of runs before achieving a successful
one is rather low. For example, for δSP = 0.1, δM,a = 0, and
r = 1000, we expect to obtain a successful run in about two
trials. For δSP = 0.1, δM,a = 0.1, and r = 1000, the expected
number of trials is approximately 3. Note that this corresponds
to a case of 10% SP error rate plus 10% measurement error
rate on the ancillas, combining to almost 20% of the total
SPAM error rate. Many modern quantum computing plat-
forms [21–23] can now achieve SPAM error rates below this
level. In these cases, MBAC will be a useful and easy tool
to significantly improve the quality of state preparation in
quantum computers.

III. CONCLUSION

We introduce a different variant of the algorithmic
cooling (AC) protocol based on the ability to perform im-
perfect measurements on individual qubits, which we call
measurement-based AC (MBAC). Using this method, we de-
velop a simple way to separately characterize state preparation
and measurement errors, by eliminating the former using
MBAC and directly obtaining the latter. Our approach is ap-
plicable to many current quantum computing platforms and
significantly outperforms the optimal reversible AC protocol
in the absence of measurement errors. Moreover, its cooling
ability can still be lower bounded by some experimentally
measurable quantities when measurement errors are present.
Despite the probabilistic nature of MBAC, we have shown
that it remains practically useful for many current quantum
processors. We believe our method can be a helpful tool
for benchmarking and improving current noisy, intermediate-
scale quantum (NISQ) processors, and can provide further
insights to measurement as a resource for cooling.

A few open questions remain after our work. First, while
we have shown that measurement errors do not pose a fun-
damental challenge for MBAC, it remains an interesting
question to also study the effect of errors in the quantum gates
used [19,24]. Second, it would be useful to investigate the
performance of MBAC with fully general SPAM operators,
without the averaging techniques used in our work. Third, it
can be very interesting to integrate the concept of MBAC into
other algorithmic cooling protocols (see, e.g., Refs. [5–7,13–
15,25]; also see the reviews [26,27]), which goes far beyond
the BCS subroutine mentioned in Sec. II B, to develop new
protocols that may have better performances than these cur-
rent protocols. Last, our work suggests that measurements
may be regarded as a resource in quantum thermodynamic
theories. It would be interesting to explore the possibility of
integrating measurement operations into the current quantum
resource theory framework.

The data supporting the findings of this work are available
from the corresponding author upon request.
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APPENDIX: CALCULATING THE EXPECTED NUMBER
OF RUNS BEFORE A SUCCESSFUL ONE

Here we calculate the expected number of failed MBAC-k
runs before having a successful one. The scenario is that
one will continue running the experiment, until a successful
round of MBAC-k occurs. Assume that one would like to
reduce δSP,t by a factor of r (e.g., r = 100 or r = 1000 can
be set by the experimentalist), by using MBAC-k. According
to Eq. (14) in the main text, the final SP error is exponentially
suppressed in terms of successful cooling rounds.

We again think about MBAC-k as a (k − 1)-step protocol,
where each step corresponds to measuring an ancilla and trac-
ing it out after the measurement. The probability of measuring
0 on the ith step is

p0,i = (1 − δSP,t [i] − δSP,a + 2δSP,t [i]δSP,a)(1 − δM,a). (A1)

The measurements are independent for each round, so the
probability of measuring all 0′s is given by the product of p0,i

from each round. Since p0,i improves as i increases, we can
lower bound all of them by p0,1, i.e., the probability of getting
0 in the first run of MBAC-2.

Thus, we see that the expected total number of runs is upper
bounded by a simpler case, where n independent Bernoulli
trials are conducted in series, each having success probability
p0,1. The probability of having all trials successful, which we
will call the success probability, is (p0,1)k−1. Note that for
a Bernoulli trial that has success probability p, the expected
number of tests n can be calculated to be

E(n) =
∑

i

ni pi(ni )

= p + 2p(1 − p) + 3p(1 − p)2 + · · ·

= p
∞∑

n=0

(n + 1)(1 − p)n

= p

p2
= 1

p
(A2)

as expected. Thus, if we denote the expected number of tests
in reality by N , we have

N � 1

(p0,1)k−1
, (A3)

where p0,1 is defined in Eq. (A1). Next, recall that Eq. (21)
gives an upper bound on the required number of ancillary
qubits, k − 1. Because p0,1 ∈ (0, 1), px

0,1 decreases with x for
x � 0, so that (1/p0,1)x increases with x for x � 0. Combining
this with Eq. (A3), we have

N �
(

1

p0,1

)k−1

�
(

1

p0,1

) ln(r)
− ln(2δSPAM,a )

:= A
ln(r)
ln(B) , (A4)

where

A = p0,1, B = 2δSPAM,a. (A5)

We now define the expression on the right-hand side of
Eq. (A4) as an upper bound on N , i.e.,

Nupper(r) := A
ln(r)
ln(B) . (A6)

Note that this upper bound is only a function of r and some
measurable quantities that are specific to the machine. Taking
the log on both sides of Eq. (A6) gives

ln[Nupper(r)] = ln(r)

ln(B)
ln(A) = ln(r)

ln(A)

ln(B)
(A7)

and taking the exponential on both sides again gives

Nupper(r) = (r)
ln(A)
ln(B) , (A8)

which is polynomial in r, as claimed.
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