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Triorthogonal codes are a class of quantum error-correcting codes used in magic state distillation protocols.
We classify all triorthogonal codes with n + k � 38, where n is the number of physical qubits and k is the
number of logical qubits of the code. We find 38 distinguished triorthogonal subspaces, and we show that
every triorthogonal code with n + k � 38 descends from one of these subspaces through elementary operations
such as puncturing and deleting qubits. Specifically, we associate each triorthogonal code with a Reed-Muller
polynomial of weight n + k, and we classify the Reed-Muller polynomials of low weight using the results
of Kasami, Tokura, and Azumi [IEEE Trans. Inf. Theory 16, 752 (1970); Inf. Contr. 30, 380 (1976)] and
an extensive computerized search. In an Appendix independent of the main text, we improve a magic state
distillation protocol by reducing the time variance due to stochastic Clifford corrections.
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I. INTRODUCTION

A magic state is a state on one or more qubits with which
Clifford gates and Pauli measurements complete quantum
universality [1,2]. Clifford operations can be implemented
fault-tolerantly using Pauli stabilizer codes, and magic states
of high fidelity can be distilled using Clifford operations.
This way of achieving fault-tolerant quantum universality
underlies leading proposals for quantum computers at scale
[3–6]. However, the fault tolerance for non-Clifford opera-
tions via magic state distillation is estimated to be more costly
than that for Clifford operations, and hence there have been
many proposals to reduce the cost; see [4,7] and references
therein.

A broad class of magic state distillation protocols
[1,2,8–13] uses so-called triorthogonal codes [14]. These are
a class of CSS codes that admit transversal gates at one level
higher in the Clifford hierarchy than Clifford gates, and they
are specified by certain cubic polynomial equations. Even if a
magic state distillation protocol does not nominally involve a
triorthogonal code, many protocols correspond to triorthogo-
nal codes after some manipulation [15]. Given a triorthogonal
code, there are various ways to implement a magic state
distillation protocol [7,11,13,14]. In all cases, if a protocol
corresponds to a triorthogonal code, the basic parameters of
the triorthogonal code (the encoding rate and code distance)
have direct consequences in the performance of the protocol.
Hence, it is natural to seek optimal triorthogonal codes as
an abstract CSS code. A few infinite classes of triorthogo-

nal codes are known to date [11,13–16], but extremal codes
(those of the best encoding rate given a code distance) are
still poorly understood. One could instead ask for a complete
table of small triorthogonal codes, with which one would be
able to optimize Clifford circuits implementing magic state
distillation protocols.

In this paper, we give results towards the classification of
triorthogonal codes, which are useful at least for short length
codes. We associate an indicator polynomial to any triorthog-
onal matrix, which is naturally identified with a codeword of
a Reed-Muller code. Specifically, we regard a triorthogonal
matrix as a collection of column vectors, which is then iden-
tified with the support of an indicator function. This approach
allows us to use existing classification results on Reed-Muller
codewords of small weights [17,18] and new computerized
searches to classify all triorthogonal codes up to a certain
size.

Generalizing the puncturing procedure of [11,13], we focus
on triorthogonal spaces rather than triorthogonal codes, where
the latter are obtained from the former by choosing a set of co-
ordinates. We have run a computer-assisted exhaustive search
over the choices of these sets of coordinates, and we report all
Reed-Muller polynomials corresponding to the triorthogonal
spaces and the distances of respective codes in Table II. See
Fig. 1 as well.

Notable new examples from our search include codes of
parameters [[28,2,3]] and [[35,3,3]]. See Eq. (1) for the gen-
erator matrix of the [[35,3,3]] code,
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FIG. 1. List of all possible pairs (n, k) with n + k � 38 such that a triorthogonal code of parameters [[n, k, d]] with d � 2 exists. Small
solid dots indicate the cases in which the triorthogonal codes’ maximum attainable distance is 2, while the dots enclosed in a circle correspond
to the cases in which the maximum achievable distance is 3. Note that there is no triorthogonal code of distance 4 when n + k � 38. We know
that the hatched region above the n = 2k line contains no triorthogonal code as a result of Lemma 7. The region on the right of n + k = 38 in
this figure is unexplored in our investigation, and our result is exhaustive only in the region to the left of (and including) the line n + k = 38.
We have excluded nonunital triorthogonal codes (defined in Sec. II B) and codes with repeated columns, as they can easily be constructed from
the above codes and will not have better parameters (see Sec. II B and Ref. [14]).
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Furthermore, we show that there is no code of distance larger
than 3 in this regime of parameters.

II. UNITAL TRIORTHOGONAL SUBSPACES
AND DESCENDANT CODES

We start with the following definition:
Definition 1 (Unital triorthogonal subspaces). A subspace

H ⊆ F c
2 of dimension r is triorthogonal if for any three vec-

tors u, v, w ∈ H we have
∑c

i=1 uiviwi = 0 mod 2, where ui

denotes the ith component of the vector u. If H contains
all-one vector 1c (i.e., 1i

c = 1 for all i), then H is called unital.
In the definition, the three vectors need not be distinct.

Hence, any triorthogonal subspace is always self-orthogonal.
If there is a unital triorthogonal subspace in F c

2 , then c must
be even because 1c is orthogonal to itself. As always in coding
theory, a permutation of coordinates is considered an equiva-
lence transformation. If two subspaces H and H′ are the same
up to permutations of components, we will write

H ∼= H′ (2)

and say that they are isomorphic. We generally present the
triorthogonal subspaces as the row space of a matrix, i.e.,

H = RowSpan(H ), (3)

where H is called the generator matrix of H. Lastly, similar
to the subspaces, we say two matrices are isomorphic and
present it by

H ∼= H ′ (4)

if they can be converted to each other by a permutation of their
columns.

A. Descendant codes

Let H ⊆ F c
2 be a unital triorthogonal subspace. Suppose

we are given a set P ⊂ {1, 2, . . . , c} of p = |P| coordinate
labels such that the restriction of H on these coordinates has
dimension p: to be more clear, we define a restriction linear
map

�P : e j �→
{

e j if j ∈ P,

0 otherwise
(5)

for all j = 1, 2, . . . , c, where e j is the standard basis vector
of F c

2 with sole 1 at the jth position. Although �P is a map
from F c

2 to itself, the codomain may be regarded as F p
2 . This

amounts to the puncturing procedure for classical codes. Un-
der this convention, �PH is a subspace of F p

2 . For the rest of
this manuscript, we always consider P such that the codomain
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of �P coincides with its image:

�PH = F p
2 . (6)

From H, we can define a quantum CSS code with n physical
qubits and k logical qubits by the following procedure [11,13]:

(i) Even (n + k = 0 mod 2). Put k = p and n = c − p,
where p < c/2, so that n > k. Choose any basis for H and
put it in the rows of an r-by-c matrix G′. Bring the columns
of G′ corresponding to P to the left by a column permutation,
and put the resulting matrix in the reduced row echelon form:

H ∼= RowSpan

[
Ik G1

0 G0

]
. (7)

By assumption Eq. (6), there has to be a k-dimensional iden-
tity matrix Ik on the top left.

(ii) Odd (n + k = 1 mod 2). Put k = p − 1 and n = c −
p, where p < (c + 1)/2, so that n > k. Choose a basis of H
by extending {1} and put the basis in the rows of an r-by-c
matrix G′. The first row of G′ is 1. Bring the columns of G′
corresponding to P to the left by a column permutation, and
put all the rows but the first into the reduced row echelon form:

H ∼= RowSpan

⎡
⎣ 1n+k+1

0 Ik G1

0 0 G0

⎤
⎦. (8)

By assumption Eq. (6), the top-left submatrix must have rank
k + 1, and the Gaussian elimination reveals the displayed k-
dimensional identity matrix.

It is straightforward to check that the submatrix G consist-
ing of G0 and G1 satisfies the following conditions [14]:∑

j

Ga, jGb, j = 0 mod 2 for all a < b, and (9)

∑
j

Ga, jGb, jGc, j = 0 mod 2 for all a < b < c, (10)

where Ga, j is the matrix element of G at the ath row and the
jth column. In addition, the rows of G0 have even weight, and
those of G1 odd.

Definition 2. A binary matrix G is triorthogonal if it satis-
fies both Eqs. (9) and (10).

Now, let X be the row span of submatrix G0, and let Z
be the orthogonal complement of the rows of G0 and G1. We
have dim X = r − p and dim Z = n − k − r + p. Hence, the
CSS code defined by X -stabilizers corresponding to X - and
Z-stabilizers Z encodes k logical qubits into n qubits. The
rows of G1 are orthogonal to each other and to the rows of
G0; this is inherited from the self-orthogonality of H. We
make a specific choice of X logical operators by declaring
that each row of G1 corresponds to an X logical operator.
We also choose the Z logical operators by declaring that each
row of G1 corresponds to a Z logical operator. This choice of
X and Z logical operators determines a decomposition of the
code space into logical qubits. This is a generalization of the
puncturing process of [11,13]; the odd descendants have not
been considered before. The relevant distance for magic state
distillation is the Z distance, the minimum of the weight of
any nontrivial Z logical operator:

dZ = min
z∈G⊥

0 \G⊥
|z|. (11)

Although defined in terms of a basis of H, the descendant
triorthogonal codes are independent of the basis.

Lemma 3. Any even descendant triorthogonal code and its
choice of X logical operators depend only on P as a set, not on
the ordering of coordinates within P. Any odd descendant tri-
orthogonal code and its choice of X logical operators depend
only on a pair (P, j ∈ P), not on the ordering of coordinates
within P \ { j}.

Proof. Even case: Let Q = {1, 2, . . . , c} \ P be the com-
plementary coordinate set. The subspace X is the kernel of
�P, and Z is the orthogonal complement of �QH within
Fn

2 . This shows that the stabilizer group only depends on P,
not on the ordering within P. A different ordering within P
corresponds to a permutation on the coordinates of P, which
is represented by a permutation matrix multiplied on the right
of G′, the matrix in Eq. (7), that acts nontrivially only on the
first k columns. This permutation can be compensated by its
inverse acting on the left of G′, permuting the first k rows of
G′. This row permutation leads to a different matrix G1, but
the overall matrix remains in a row echelon form that is not
necessarily reduced. Applying (reverse) Gauss elimination,
we see that the G0 part remains intact, and the G1 part will
be modified by G0. As logical operators, this modification is
simply multiplications by X stabilizers.

Odd case: The distinguished coordinate label j determines
the first column of the matrix in Eq. (8). The first column
and the first row of 1 are the only difference from the even
case. But the vector 1 is a permutation invariant vector, so the
argument for the even case applies here. �

B. Triorthogonal matrices to unital triorthogonal spaces

Definition 4. A triorthogonal matrix or code is unital if it
is obtained by one of the descending procedures from a unital
triorthogonal subspace.

A triorthogonal matrix might not be unital. However, con-
sidering unital ones is not constraining, as we show. First,
if n + k is odd, G is already an odd descendant of a unital
triorthogonal space:

G =
[

G1

G0

]
odd descending←−−−−−−− H = RowSpan

⎡
⎣ 1n+k+1

0 Ik G1

0 0 G0

⎤
⎦.

(12)

Second, if n + k is even, then a vector v = 1n + G1
1 + · · · +

Gk
1 has even weight because the mod 2 weight of the sum of

vectors is just the mod 2 sum of all weights of all the vectors,
and each Gj

1 with j = 1, . . . , k has odd weight. Hence, v can
be adjoined to the X stabilizer group X to form a new code
unless it is already in X . This amounts to enlarging G0 with an
additional row v. The new vector addition does not violate the
triorthogonality, as one can easily check. It is straightforward
to see that this addition can only increase the Z distance of
the code, without changing the number of logical or physical
qubits. Note that this addition may decrease the X distance
since the set of all representatives of an X logical operator
is enlarged; however, we only care about Z distances in this
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paper. Now, this new code is unital,

G =
[

G1

G0

]
even descending←−−−−−−−− H = RowSpan

[
Ik G1

0 G0

]
(13)

as the sum of v and the first k rows of the matrix on the right-
hand side are the all-one vector 1k+n. For this reason, we only
consider unital triorthogonal codes in this paper.

III. CONNECTION TO THE REED-MULLER CODEWORDS

A. Review of binary Reed-Muller codes

Define a set RM(s, m) to be the collection of all polynomi-
als in m binary variables of degree at most s, with coefficients
in F2:

RM(s, m) := {
p ∈ F2[x1, . . . , xm]

/(
x2

i − xi
)

: deg p � s
}
.

(14)

Strictly speaking, since we are modding out the polynomial
ring by the ideal (x2

i − xi ), the degree is not the usual one; for
us, the degree of a monomial is simply the number of variables
with nonzero exponent in the monomial, and the degree of a
polynomial is the maximum degree of all nonzero monomials
in the polynomial. In this convention,

deg( f g) � deg f + deg g, (15)

which may be strict even if f �= 0 and g �= 0. For example,
take f = x1 and g = x1. An element of RM(s, m) is identified
with its value list:

p ∈ RM(s, m) ⇐⇒ [
p(x) ∈ F2 : x ∈ Fm

2

]
. (16)

The collection of all value lists is the Reed-Muller code.
The minimum distance of the Reed-Muller code is 2m−s. The
dual (orthogonal complement) of RM(s, m) is RM(s, m)⊥ =
RM(m − s − 1, m).

B. Indicator polynomials

Every binary function is uniquely specified by its support,
which is the set of all inputs that evaluate to 1, and any subset
of an F2-vector space specifies an indicator function that as-
sumes 1 precisely on the subset. For a matrix H that is r-by-c
where the first row is the all-1 vector and no columns are
repeated, we associate a unique polynomial f by the following
rule:

f ⇐⇒ H,

f (x1, . . . , xr−1) = 1 ⇐⇒ (1, x1, . . . , xr−1) is a column of H.

(17)

By a slight abuse of language, we call f the indicator polyno-
mial of H . We will only consider matrices whose first row is
all-1, so this will not cause any confusion.

Hence, any generator matrix for a unital triorthogonal
space gives an indicator polynomial. The number of columns
in a generator matrix is equal to the Hamming weight of the
indicator polynomial viewed as a Reed-Muller codeword.

We can now characterize indicator polynomials for unital
triorthogonal spaces.

Lemma 5. Let H be an r-by-c binary matrix with no
columns repeated and the first row being the all-1 vector, and

let f ∈ F2[x1, . . . , xr−1]/(x2
i − xi ) be its indicator polynomial

[in the sense of Eq. (17)]. The row span of H is unital tri-
orthogonal if and only if deg f � r − 5.

It follows that the smallest unital triorthogonal space re-
quires r − 1 = 4 variables and with indicator polynomial
f = 1, which is precisely RM(1, 4) on 16 bits.

Proof. For any a = 1, 2, . . . , r − 1, the ath row of H is the
value list of a function xa f over the support of f . Since the
weight of any row of H is even, we have

∑
x xa f = 0 mod 2

for any a and also
∑

x f = 0 mod 2. Moreover, the com-
ponentwise product of two rows a and b is the value list
of xa f (x)xb f (x) = xaxb f (x). Hence, the self-orthogonality
is equivalent to

∑
x xaxb f = 0 mod 2. Similarly, for a triple

a, b, c of rows, the triple overlap is zero if and only if∑
x xaxbxc f = 0 mod 2.
Therefore, the indicator polynomial of H should be orthog-

onal to all polynomials with degree � 3, and we have

f ∈ RM(3, r − 1)⊥ = RM(r − 5, r − 1). (18)

The converse is obvious. �
There is no canonical choice of a generator matrix given a

triorthogonal space as one may apply row operations on the
generator matrix without changing its row span. But the row
operations give all possible generator matrices (up to column
permutations), so we only have to consider how an indicator
polynomial transforms upon a row operation. Let x �→ Lx + �

be an invertible affine transformation on F r−1
2 . It is easy to see

that for any v ∈ F r−1
2 ,

(
1

Lv + �

)
=

(
1 0
� L

)(
1
v

)
is a column of H

⇐⇒ f (Lv + �) = 1

⇐⇒ g(v) = 1 where g(x) = f (Lx + �). (19)

So, any row operation on H that leaves the first row intact
induces an affine transformation on the indicator polynomial
( f → g).

It is obvious that any affine transform g of f ∈ RM(s, m)
belongs again to RM(s, m). Since affine transformations are
composable and invertible, they define an equivalence relation
on RM(s, m).

Corollary 6. The set of isomorphism classes of r-
dimensional unital triorthogonal subspaces in F c

2 is in
one-to-one correspondence with the affine equivalence classes
of RM(r − 5, r − 1) with Hamming weight c, excluding those
divisible by a polynomial of degree 1.

Proof. We have characterized the indicator polynomial f
for a unital triorthogonal subspace: f has to be a polynomial
of degree � r − 5. We have to show that f gives a generator
matrix of rank r if and only if it does not have a factor of
degree 1.

Suppose f = uv, where deg u = 1. Then, there is an affine
transformation on variables after which we have u = x1 + 1.
This means that x1 f = 0, implying that the second row of the
associated generator matrix H is zero. Hence, H has a rank
smaller than r.
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Conversely, if the rank of the generator matrix is less than
r, then some row becomes zero after some row operation,
which means that with certain affine transformation of vari-
ables we have xr−1 f = 0 ∈ F2[x1, . . . , xr−1]/(x2

i − xi ), which
is only possible if f has xr−1 + 1 as a factor. �

We also note the following facts.
Lemma 7. Let G be a triorthogonal matrix for a triorthogo-

nal code with dZ � 2. Then,

n � 2k. (20)

Proof. We may assume that no column of G is zero, and
the assumption dZ � 2 implies that no column of G0 is zero.
The span G0 of all rows of G0 is supported on all n compo-
nents. Since the average of the weight of all vectors in any
binary vector space is a sum of all the averages of individual
components, the average weight of all the vectors in G0 is
n/2. Therefore, there exists a vector t of weight � n/2. Let
u = 1n − t, the indicator vector of zero components of t.

For any v ∈ Fn
2 , let v ∧ u denote the componentwise prod-

uct of v and u. We may regard v ∧ u as the restriction of v on
the support of u. If g1, . . . , gk are rows of G1, then the vectors
fi = gi ∧ u satisfy

fa · fb = |ga ∧ gb ∧ 1| − |ga ∧ gb ∧ t|

=
{|ga| − |ga ∧ t| = 1 mod 2 (a = b),

|ga ∧ gb| − |ga ∧ gb ∧ t| = 0 mod 2 (a �= b).
(21)

Since every fa is on at most n/2 bits, the number k of orthonor-
mal and hence linearly independent vectors cannot exceed
n/2.

Remark 8. Let H be a unital triorthogonal subspace. Define
two functions of k:

deven
max (k) = maximum dZ over all even

descendants of H with k logical qubits,

dodd
max(k) = maximum dZ over all odd

descendants of H with k logical qubits. (22)

Then, each of them is a nonincreasing function of k.

Proof. Suppose G1 and G0 are the collections of odd and
even weight rows, respectively, of a triorthogonal matrix with
k rows in G1. Increasing k amounts to choosing a column,
permuting this column to the front, and putting the matrix in
a row echelon form such that

G =
[

G1

G0

]
∼=

⎡
⎣ 0 G′

1
1 g′

0 G′
0

⎤
⎦. (23)

Suppose z is a minimum weight row vector that corresponds
to a nontrivial Z logical operator of the triorthogonal code of
G. By definition, z is orthogonal to all rows of G0 but is not
orthogonal to some rows of G1. Let z1 be the first component
of z, and let z′ be the rest, so that z = (z1, z′). Now, z′ is
orthogonal to all rows of G′

0, and z′ is not orthogonal to some
rows of G′

1. Hence, z′ corresponds to a nontrivial Z logical
operator of the new code encoding k + 1 logical qubits. If
z1 = 0, then the Z distance of the new code is at most the
old one. If z1 = 1, then the Z distance of the new code is at
most 1 less than the old one. �

IV. REED-MULLER CODES OF SMALL WEIGHT

We have so far shown that every triorthogonal code can be
regarded as a descendant of a unital triorthogonal subspace,
and that all unital triorthogonal subspaces are in one-to-
one correspondence—in the sense of Eq. (17)—with the
affine-equivalence classes of polynomials in RM(r − 5, r − 1)
(Corollary 6).

Given an indicator polynomial f of an r-dimensional unital
triorthogonal subspace, we know that | f | is at least the min-
imum distance 2r−s−1 of RM(s, r − 1), where s = deg f �
r − 5. In particular, | f | � 16.

A. Codes with n + k � 30

Kasami and Tokura [17] show that every f ∈ RM(s, m)
with 2m−s � | f | < 2m−s+1 is affine-equivalent to one of the
following polynomials:

x1 · · · xs−q(xs−q+1 · · · xs + xs+1 · · · xs+q ) for m � s + q and s � q � 3,

x1 · · · xs−2(xs−1xs + xs+1xs+2 + · · · + xs+2q−3xs+2q−2) for m − s + 2 � 2q � 2. (24)

Since our indicator polynomial f should not be divisible by a
linear factor, the leading factor x1 · · · xs−q or x1 · · · xs−2 must
be absent. This implies that, in the first case, s = q = deg f �
m/2, or in the second case, s = 2 = deg f . Requiring | f | �
30, we see that m � 8 in the first case and m � 6 in the second
case. Therefore, the following five polynomials represent all
affine-equivalence classes of RM(r − 5, r − 1) with no linear
factor and of Hamming weight � 30.

(i) p(x1, x2, x3, x4) = 1, which corresponds to an (r = 5)-
dimensional unital triorthogonal subspace in F16

2 . This simple
polynomial has the original [[15,1,3]] magic state distillation
code by Bravyi and Kitaev [2], and the first code of the

Bravyi-Haah family [14] with parameters [[14,2,2]] as its even
descendants. See the first row of Table II.

(ii) p(x1, x2, x3, x4, x5, x6) = x1x2 + x3x4, which corre-
sponds to a seven-dimensional unital triorthogonal subspace
in F24

2 . This subspace contains the second code of the Bravyi-
Haah family [14] as one of its descendants.

(iii) p(x1, x2, x3, x4, x5, x6) = x1x2 + x3x4 + x5x6, which
corresponds to a seven-dimensional unital triorthogonal sub-
space in F28

2 .
(iv) p(x1, x2, x3, x4, x5, x6, x7) = x1x2x3 + x4x5x6, which

corresponds to an eight-dimensional unital triorthogonal sub-
space in F28

2 .
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(v) p(x1, x2, x3, x4, x5, x6, x7, x8) = x1x2x3x4 + x5x6x7x8,
which corresponds to a nine-dimensional unital triorthogonal
subspace in F30

2 .
With this list of polynomials, we can generate all tri-

orthogonal subspaces in F c
2 , with c � 30, and we compute the

distance of all of its descendants. These results are reported in
the first five rows of Table II.

We observe in Table II that in order for a triorthogonal code
to have dZ � 2, it must hold that r − k = rank(G0) is at least
3 for odd r and at least 4 for even r. We prove this observation
in the following, which is a strengthening of a result in [14].

Lemma 9. Let G = [G1
G0

] be a triorthogonal matrix with
the associated Z distance � 2. If G is a descendant of an
r-dimensional unital triorthogonal subspace, then

rank(G0) �
{

4 if r is even,

3 if r is odd.
(25)

Proof. The assumption that dZ � 2 implies that G0 does
not contain any zero column. Now, let H be a generator
matrix for the unital triorthogonal subspace that has G as its
even descendant; we will treat odd descendants later. A unital
triorthogonal matrix can be constructed by padding G with Ik ,
and we change the basis of H such that the first row is the
all-one vector,

H =
⎡
⎣ 1c

0 Ik−1 �

0 0 G0

⎤
⎦.

Let p be the indicator polynomial of H . Since no column of
G0 is zero, we have

p(x1, . . . , xk−1, 0, 0, . . . , 0) = 1

⇔(x1, . . . , xk−1) is one of the first k columns of H

⇔(x1, . . . , xk−1) ∈ {0, e1, . . . , ek−1}.

It follows that the polynomial p(x1, . . . , xk−1, 0, 0, . . . , 0) is
the sum of k “delta functions”

p(x1, . . . , xk−1, 0, . . . , 0)

= x̄1x̄2 · · · x̄k−1 +
k−1∑
j=1

x̄1 · · · x̄ j−1x j x̄ j+1 · · · x̄k−1,

where x̄i := (xi + 1). Therefore,

deg (p(x1, . . . , xk−1, 0, 0, . . . , 0)) =
{

k − 2 if k is even,

k − 1 if k is odd.

(26)

But deg (p(x1, . . . , xk−1, 0, 0, . . . , 0)) � deg p obviously, and
deg p � r − 5 since H is unital triorthogonal. Hence,

rank(G0) = r − k �
{

3 if k is even,

4 if k is odd.
(27)

This completes the proof if G is an even descendant.

If G is an odd descendant, the dimension of the parent
triorthogonal space is r = 1 + k + rank(G0), but we have

H =
⎡
⎣ 1c

0 Ik �

0 0 G0

⎤
⎦.

So, a similar argument proves the lemma. �

B. Codes with 30 < n + k � 38

In the regime where 30 < n + k � 38, we have to ex-
amine indicator polynomials f ∈ RM(r − 5, r − 1) of unital
triorthogonal spaces that have weight <40. The upper bound
40 is equal to 5

2 d , where d = 16 is the minimum distance
of RM(r − 5, r − 1). Since we have covered in the previ-
ous subsection the case in which | f | < 2d = 32, here we
assume that | f | � 2d = 32. Let us use m = r − 1 for the
number of variables, so our indicator polynomial f is always
in RM(m − 4, m).

Kasami, Tokura, and Azumi show (Ref. [18], Theorem 2)
that if all four of the following conditions are satisfied for a
polynomial function f over Fm

2 , namely if (i) f has no linear
factor, (ii) 2d � | f | < 5

2 d , (iii) deg f � 4, and (iv) m � 9,
then f is affine-equivalent to one and only one of the poly-
nomials in Table 1 of [18]. The condition (i) is true for us
since we do not want redundant rows in a generating matrix
for a unital triorthogonal space. The condition (ii) is true for
us because we are restricting our scope. The conditions (iii)
and (iv) may or may not be true, and this is the place we will
use a computer search. Still, we can shrink the search space
by the following argument.

We know that the degree of f must be � m − 4 to be an
indicator polynomial of a unital triorthogonal space. Here,
m is at least the number of distinct variables that appear
in an expression of f , but it can be larger. Let us show
that in our classification scope where | f | = n + k < 40, it
suffices to consider cases in which either m = 4 + deg f or
f = f (x1, x2, x3, x4, x5) = 1.

Proof. If m � 6 + deg f , then f ∈ RM(m − 6, m) and the
weight of f is at least 64. If m = 5 + deg f , then | f | � 32.
In this case, if 32 < | f | < 2 × 32, then Ref. [18] [Lemma
1.(2)] implies that | f | � 64 − 16 = 48, which is beyond our
scope, and we may assume | f | = 32. But then Ref. [18]
[Lemma 1.(2.1)] implies that f = 1 if it does not have a linear
factor. �

Hence, if m � 9, we may assume that deg f � 5 and
the conditions (iii) and (iv) are satisfied. Examining [18]
(Table I), we find that there are only five polynomials that
satisfy the condition deg f = m − 4. They are reported in
Table II, polynomials 15, 30, 36, 37, and 38. The case
of f (x1, x2, x3, x4, x5) = 1 corresponds to polynomial 6 in
Table II.

Now, the remaining cases of our classification problem
are when 4 < 4 + deg f = m � 8. We are going to classify
polynomials p ∈ RM(4, 8) where deg p = 4 and |p| < 40, but
where p is allowed to have a linear factor. This is sufficient be-
cause any f ∈ RM(m − 4, m) with deg f = m − 4 < 4 with
| f | < 40 may be multiplied by xm+1xm+2 · · · x8 to become
degree 4 and still |xm+1xm+2 · · · x8 f | < 40. After finding all
such polynomials p, we can remove any linear factors and
recover the cases with six or seven variables.
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TABLE I. List of representative polynomials of affine equiv-
alence classes of RM(3, 6) with weight less than or equal to
18. This list has been constructed using a computer search over
the polynomials of the form x1g(x3, x4, x5, x6) + x2h(x3, x4, x5, x6) +
x1x2u(x3, x4, x5, x6), with deg g, deg h � 2, and deg u � 1. We know
from Ref. [18] (Theorem 1) that all elements of RM(3, 6) are affine
equivalent to a polynomial of the above form.

Weight Representatives of affine equivalence classes of RM(3, 6)

8 x1x2x3

12 x1(x2x3 + x4x5)
14 x1x2x3 + x4x5x6

16 x1x2

x1(x2 + x3x4)
x1(x2 + x3x4 + x5x6)
(x1 + 1)x2x3 + x1x4x5

x2x3x4 + x1x3x5 + x1x2x6

18 x1x2 + x2x3x5 + x1x4x6

x1x2x3 + x2x3x4 + x1x2x5 + x1x3x6 + x4x5x6

Reference [18] [Theorem 1.(1)] says that for a polynomial
p of degree 4 (or larger), if p has weight less than 40, then p
is affine-equivalent to a polynomial of the form

p(x1, x2, . . . , x8) = x7g(x1, x2, . . . , x6) + x8h(x1, x2, . . . , x6)

+ x7x8u(x1, x2, . . . , x6), (28)

where deg g � 3, deg h � 3, and deg u � 2, or more suc-
cinctly, g, h ∈ RM(3, 6), u ∈ RM(2, 6). It is easy to see that
|p| = |g| + |h| + |g + h + u| by setting x7, x8 = 0, 1. Using
a simple change of variables (e.g., x7 → x7 + x8 or x8 →
x7 + x8), one can assume without loss of generality that

|g| � |h| � |g + h + u|. (29)

We call g and h the base polynomials for p.
Given a pair of base polynomials, there are only

(6
2

) +(6
1

) + (6
0

) = 22 monomials of degree 2, 1, or 0 that can be
included in the polynomial u. In our computer search, we
construct all 222 possible polynomials u, and check their
Hamming weights to see if they match a target weight. This
algorithm usually finds many affine-equivalent polynomials.
Therefore, for each polynomial p with a target weight, we
perform a heuristic optimization over the affine equivalence
class of p with the goal of minimizing the number of mono-
mials. In this way, we find a much smaller number of distinct
polynomials, most of them having only a few monomials. See
[19] for more details. It only remains to run the search on all
possible combinations of basis polynomials g, h ∈ RM(3, 6).

Since |p| = |g| + |h| + |g + h + u| � 38, one can easily
see that |g|, |h| � 18 as a consequence of Eq. (29). To see
what polynomials qualify as a base pair, we first solve a more
tractable problem of classifying affine equivalence classes of
low weight polynomials in RM(3, 6). The search space is
much smaller in this case, and with the aid of [18] [Theorem
1.(1)], we can perform a full computer search and classifica-
tion. See Table I for the results.

Coming back to the problem of classifying elements of
RM(4, 8), we list all possible combinations of base pairs

based on their weights, up to affine transformations on vari-
ables x1, x2, . . . , x6:

(i) |g| = 0, |h| = 0, which means that both g and h are
identically zero.

(ii) |g| = 0, |h| = 8, where g = 0 and h can be chosen to be
x1x2x3. This is because every weight 8 element of RM(3, 6) is
affine-equivalent to x1x2x3; see Table I.

(iii) |g| = 0, |h| = 12, where g = 0 and h can be chosen to
be x1(x2x3 + x4x5); see Table I.

(iv) |g| = 0, |h| = 14, where g = 0 and h is chosen to be
x1x2x3 + x4x5x6; see Table I.

(v) |g| = 0, |h| = 16, where g = 0 and h is one of the five
polynomials with weight 16 in Table I.

(vi) |g| = 0, |h| = 18, where g = 0 and h is one of the
two polynomials with weight 18 in Table I. Since |p| = |h| +
|h + u| and |h + u| � |h|, we should only consider these base
polynomials for p with |p| � 36.

(vii) |g| = 8, |h| = 8. In this case, we can set g = x1x2x3.
We only know that h is affine-equivalent to x1x2x3; we cannot
immediately set h to be x1x2x3 because we may not be able
to bring both g and h to their canonical affine representatives
simultaneously. However, one can see by further investigation
that using affine transformations that fix g = x1x2x3, one can
bring h to one of at most 32 options.1 We use all of these 32
pairs as our basis polynomials.

(viii) |g| = 8, |h| = 12. Similar to the previous case, we
can set h = x1(x2x3 + x4x5). Then by affine transformations
that fix h, we can bring g (which itself is affine-equivalent to
x1x2x3) to one of 224 choices. (It might be possible to reduce
this number of possibilities.) We implement the computer
search for all of these 224 basis polynomials.

(ix) |g| = 8, |h| = 14. We can set h = x1x2x3 + x4x5x6 (see
Table I), and consider h-preserving affine transformations. In
this case, we can find 264 candidates for g. These basis pairs
are only relevant for polynomials with |p| = |g| + |h| + |g +
h + u| � 8 + 14 + 14 = 36.

(x) |g| = 12, |h| = 12. This case implies that |p| =
|g| + |h| + |g + h + u| � 12 + 12 + 12 = 36. We set h =
x1(x2x3 + x4x5), the second row of Table I. Using h-preserving
affine transformations, we find 1 404 928 options for g; this is
likely an overcounting. We use all of the 1 404 928 possible
polynomials as base pairs in our computer search. This search
is the most costly, as we have to examine more than 5×1012

polynomials, accounting for 222 options for the polynomial u
given a base pair. See our classification code [19].

1If h = (x1 + 1)(x2 + 1)(x3 + 1), the support of h is a three-
dimensional subspace {(0, 0, 0, x4, x5, x6) : x4, x5, x6 = 0, 1}. Since
g is affine-equivalent to h, the support of g is an affine subspace of
dimension 3. If both affine subspaces contain the origin, the only
invariant of the pair of subspaces under linear (not general affine)
transformations is the dimension of their intersection, which can be
0, 1, 2, or 3. Given an intersection dimension, the support of g can
be translated along three directions normal to the support of h. This
gives 4×23 = 32 options for g. This is an overcounting; if the inter-
section dimension is 0, then the support of g is {(x1, x2, x3, 0, 0, 0) :
x1, x2, x3 = 0, 1}, but any translation of this does not change the
polynomial h.
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TABLE II. List of affine representatives of RM(r − 5, r − 1) with no linear factor and of weight c < 40. Every polynomial listed above
is the indicator function [in the sense of Eq. (17)] of an r-dimensional unital triorthogonal subspace embedded in F c

2 , with c := |p| being the
Hamming weight of the polynomial as a Reed-Muller codeword. Every unital triorthogonal code with n + k � 38 and no repeating columns
can be constructed as a descendant of one of these unital triorthogonal subspaces. For each k, we have listed deven

max (k), the maximum distance
achieved by the even descendants of a given unital triorthogonal subspace with k logical qubits. We have observed that dodd

max(k) = deven
max (k + 1)

for codes in the table, and therefore the distances of odd descendants are not listed. The first three instances of Bravyi-Haah [14] codes are even
descendants of codes 1, 2, and 12. Except for polynomials 12 and 13, we have checked that all unital triorthogonal subspaces corresponding to
the above polynomials have different weight enumerator functions, and therefore they are affine-inequivalent. The inequivalence of polynomials
12 and 13 is evident from the fact that they have different dodd

max(k) functions.

deven
max (k)

No. p(x1, x2, . . . , xr−1) r c k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

1 1 5 16 3 2 1 1 1 − −
2 x1x2 + x3x4 7 24 3 2 2 2 1 1 1
3 x1x2 + x3x4 + x5x6 7 28 3 2 2 2 1 1 1
4 x1x2x3 + x4x5x6 8 28 3 2 2 2 1 1 1
5 x1x2x3x4 + x5x6x7x8 9 30 3 3 2 2 1 1 1
6 1 6 32 3 2 1 1 1 1 −
7 x1x2 + x3 7 32 3 2 2 2 1 1 1
8 x2x3 + x1x4 + x5 7 32 3 2 2 2 1 1 1
9 (x1 + 1)x2x3 + x1x4x5 8 32 3 2 2 2 1 1 1
10 x1x3x4 + x1x2x5 + x2x3x6 8 32 3 2 2 2 1 1 1
11 x1x2x4 + x1x5x6 + x2x3x7 8 32 3 2 2 2 1 1 1
12 x1x2x3x4 + x1x2x3 + (x1x2 + x3x4)x5x6 9 32 3 2 2 2 2 2 1
13 x1x2x3x4 + x2x3x4x5 + x1x5x6x7 9 32 3 2 2 2 1 1 1
14 x1x2x3x5 + x3x4x5x7 + (x1x2x4 + x1x2)x6 9 32 3 2 2 2 2 2 1
15 x1x2x3x4x5 + (x1 + 1)x6x7x8x9 10 32 3 3 2 2 1 1 1
16 x1x2x3x4 + (x1x2 + x5x6)x7x8 9 34 3 3 2 2 2 2 1
17 x1x3 + x4x5 + x2x6 + 1 7 36 3 2 2 2 1 1 1
18 x2x3x5 + x1x4x6 + x1x2 8 36 3 2 2 2 1 1 1
19 x2x3x5 + x1x6x7 + (x1x2 + x1x3)x4 8 36 3 2 2 2 1 1 1
20 x2x3x4 + x1x3x5 + x1x2x6 + x1x4x7 8 36 3 2 2 2 1 1 1
21 x3x4x6 + x1x2x7 + (x2x3 + x1x4)x5 8 36 3 2 2 2 1 1 1
22 x1x2x3 + x2x3x4 + x1x2x5 + x1x2 + (x1x3 + x4x5)x6 8 36 3 2 2 2 1 1 1
23 (x1 + x2)x5x6 + (x1x2 + x1x3)x4 8 36 3 2 2 2 1 1 1

+(x2x3 + x3x5 + x4x6)x7

24 x1x2x3x4 + x1x2x5x6 + x3x4x5x7 9 36 3 2 2 2 2 2 1
25 x2x3x4x5 + x1x2x4x7 + x1x3x6x8 9 36 3 2 2 2 2 2 1
26 x1x2x4x5 + x1x2x5x6 + x1x3x4x7 + x2x3x6x8 9 36 3 2 2 2 2 2 1
27 x1x2x3x4 + x1x3x5x6 + (x1x2x5 + x2x4x6)x7 9 36 3 2 2 2 2 2 1
28 x2x3x4x5 + (x1 + x2)x4x5x6 + x1x2x3x7 + x1x3x6x8 9 36 3 2 2 2 2 2 1
29 x1x2x4x6 + x1x2x3x7 + (x4x5x6 + x3x5x7)x8 9 36 3 2 2 2 2 2 1
30 x1x2x3x4x5 + x3x4x6x7x8 + (x5 + 1)x6x7x8x9 10 36 3 3 2 2 2 2 1
31 x1x2x3x4 + x2x3x7x8 + (x1x2 + x1x4)x5x6 9 38 3 3 2 2 2 2 1
32 x1x2x3x5 + x1x2x4x6 + x2x4x5x7 + x1x3x6x8 9 38 3 3 2 2 2 2 1
33 x1x2x4x5 + x1x4x5x6 + (x2x3x4 + x1x5x6)x7 9 38 3 3 3 2 2 2 1

+(x1x2x3 + x1x2x6 + x2x3x7)x8

34 x1x2x3x4 + x2x4x5x6 + x1x5x6x7 + x1x3x7x8 9 38 3 3 2 2 2 2 1
35 x1x2x3x4 + x1x2x3x5 + x1x5x7x8 9 38 3 3 2 2 2 2 1

+(x2x3x4 + x1x4x5)x6

36 x1x2x3x4x5 + x4x5x6x7x8 + x3x6x7x8x9 10 38 3 3 2 2 2 2 1
37 x1x2x3x4x5 + x3x4x6x7x8 10 38 3 3 2 2 2 2 1

+(x2x5x6x7 + x2x6x7x8)x9

38 x1x2x3x4x5x6 + (x10x3x4 + x10x5x6 + x10x5)x7x8x9 11 38 3 3 2 2 2 2 1

In this way, we conclude the classification of all unital tri-
orthogonal subspaces embedded in F c

2 with c < 40. All of the
polynomials found in this search, in addition to the distances
of their even descendants, are reported in Table II and Fig. 1.
See [19] for explicit matrices. We do not report dodd

max(k) explic-

itly as we numerically observed that dodd
max(k) = deven

max (k + 1)
for all polynomials.

Our results show that there is no triorthogonal code with
distance higher than 3 among the codes with n + k � 38.
However, we find the smallest code with k = 3 and d = 3,
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which has n = 35 physical qubits. It is an even descendant of
code number 33 in Table II with the generator matrix Eq. (1).

V. DIVISIBILITY AT LEVEL 3

A subspace H ⊆ F c
2 is said to be divisible at level 3 [15] if

there exists a vector t ∈ Zc
8 with all odd entries such that h ·

t = 0 mod 8 for all h ∈ H. Every level 3 divisible subspace is
triorthogonal, but the converse was not known to be true. We
observe that the converse is false; in Table II, Codes 3, 17, 20,
23, 28, and 33 are not divisible at level 3.

To determine that those codes are not level 3 divisible but
all other codes are level 3 divisible, we develop an efficient
algorithm as follows. The level 3 divisibility is equivalent
[Ref. [15], (Lemma III.2)] to the following set of conditions
on a basis {h1, . . . , hr} of the subspace H:

0. ti = 1 mod 2 for all i.
1. ha · t = 0 mod 8 for all a.
2. (ha ∧ hb) · t = 0 mod 4 for all a � b.
3. (ha ∧ hb ∧ hc) · t = 0 mod 2 for all a � b � c.
Given a triorthogonal subspace H, we know that the third

condition is satisfied. We work with an r-by-c matrix M in
the reduced row echelon form whose rows form a basis for
H, where we assume that the left r-by-r submatrix is the
identity matrix. Let N be the

(r
2

)
-by-(c − r) matrix, where

each row, indexed by a pair (a, b) with 1 � a < b � r, is
ha ∧ hb. Conditions 0 and 2 are that t|c−r , the restriction of
t on the last c − r entries, should satisfy

Nt|c−r = 0 mod 4, t
∣∣i

c−r = 1 mod 2 ∀i. (30)

Conversely, suppose we have t|c−r that fulfills (30). Then, we
can easily find a full t such that M · t = 0 mod 8 as follows.
Let t|r denote the first r entries of t. For each row ha of M,
we have to solve an equation ha|r · t|r = −ha|c−r · t|c−r mod
8. Since ha|r has a sole nonzero entry 1 at the ath position,
this equation clearly has a solution, but we need to check if
Condition 0 is fulfilled. Since Condition 1 is fulfilled mod 2,
the subvector ha|c−r contains an odd number of 1’s, and hence
ha|c−rt|c−r is odd, and therefore Condition 0 can be fulfilled.

Hence, given a triorthogonal subspace, a desired t exists
if and only if there is a solution to Eq. (30). We know that
Eq. (30) has a solution over F2; the triorthogonality implies
that the all-1 vector is a solution. Thus, any solution over Z4

can only differ from this all-1 vector 1 by some vector with
even entries. That is, we may write t|c−r = 1 + 2v mod 4
where v is a binary vector of length c − r.

Let U be an integer matrix such that UN mod 2 is in the
reduced row echelon form. Since UN1 = 0 mod 2, we know
UN1 mod 4 consists of even entries. If UN mod 4 has a row ρ

of all even entries, then ρ(1 + 2v) = ρ1 mod 4 for any binary
vector v. Hence, Eq. (30) has a solution only if ρ1 = 0 mod 4
for any all-even row ρ of UN . Conversely, if ρ1 = 0 mod 4
for any all-even row ρ of UN , then it is straightforward to find
a vector v such that UN (1 + 2v) = 0 mod 4 since for every
row of UN that is nonzero over F2 there is an odd entry such
that any other entry in its column is even.

In summary, an efficient algorithm to test if a subspace
H ⊆ F c

2 is divisible at level 3 is as follows: (i) Take a matrix
M in the reduced row echelon form over F2 whose row span
is H, (ii) permute columns of M such that the left block is

the r-by-r identity matrix, (iii) make a binary
(r

2

)
-by-(c − r)

matrix N by enumerating entrywise products but ignoring first
r entries of all pairs of rows of M, (iv) compute the reduced
row echelon form UN of N over F2, and (v) test the integer
matrix UN for each all-even row of UN to determine whether
the sum of all entries of the row is zero mod 4.

VI. CONCLUSION

Triorthogonal codes are a versatile class of codes for con-
structing magic state distillation protocols. In particular, they
are the most general CSS codes for T state distillation, and
furthermore considering non-CSS stabilizer codes does not
seem to improve code parameters [20]. We have shown that it
suffices to consider unital triorthogonal codes, characterized
by the property that the parent triorthogonal space contains
all-1 vectors. By indexing triorthogonal codes by Reed-Muller
codewords, we have classified all unital triorthogonal codes
with k logical qubits on n physical qubits, where n + k � 38.
Our classification reveals new instances such as [[35,3,3]] and
[[28,2,3]] codes. In addition, we have shown the limitations of
triorthogonal codes with small parameters; for example, there
is no code with Z distance larger than 3 when n + k � 38, and
the first three Bravyi-Haah codes are extremal in this regime.

Although a triorthogonal code as an abstract CSS code
is not necessarily tied to a magic state distillation circuit,
it serves as a basic ingredient for many distillation circuits
[7,11–13]. Given an enveloping design of distillation proto-
cols, our main result (Table II) can be used for selecting the
most appropriate instance.
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APPENDIX: DELAYING CLIFFORD CORRECTIONS
IN MAGIC STATE DISTILLATION CIRCUITS

The standard magic state injection circuit consists of a
multiqubit measurement followed by a conditional Clifford
correction. While Pauli operators can be implemented pas-
sively by Pauli frame tracking so that they do not require any
feedback from a classical controller to a quantum hardware,
the Clifford correction must be implemented on the quantum
hardware by a decision from the classical controller. The cost
of this feedback will be escalated for a magic state factory
because many magic states are consumed in a factory. In this
Appendix, we propose a circuit that reduces the classical feed-
back. In a specific protocol below, our proposal will reduce the
time cost, too.

1. Z4-valued quadratic forms

Let M be a symmetric matrix over Z4. By a quadratic form
q by M, we mean the function q : z �→ zMzT ∈ Z4, where z is
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a vector over F2.2 It should be checked whether this function
is well defined since the coefficient ring in the domain is a
quotient ring of that in the codomain. For any integral vectors
z and y, we see that (z + 2y)M(z + 2y)T = zMzT + 2yMzT +
2zMyT + 4yMyT = zMzT mod 4. This shows that the func-
tion q : Fm

2 → Z4 is well defined by M.
Although every element of M belongs to Z4, the

off-diagonal elements basically reside in F2 for the fol-
lowing reason. If a symmetric matrix N over Z4 has
zero diagonal and even off-diagonal entries, then zNzT =∑

a,b zaNabzb = 2
∑

a<b zaNabzb = 0 mod 4. Therefore, two
Z4-valued quadratic forms by M and M + N are equal. Hence,
if we are given an equation M = M ′ mod 2 of symmetric
matrices, the Z4-valued quadratic form by M is determined
by M ′ up to diagonal elements. Thus it makes sense to define
the F2-rank of q by the F2-rank of M.

Lemma 10. For any Z4-valued quadratic form q : Fm
2 →

Z4, there exists an r-by-m matrix W and an m-by-m diagonal
matrix D, both over F2, such that q is defined by W T W +
2D and r0 � r � r0 + 1, r0 = rankF2 (q). Here, 2 : F2 → Z4

is the standard additive group embedding.
Proof. Let M be any matrix over Z4 by which q is de-

fined. By the discussion above, it suffices to find W such that
W T W = M mod 2 because we can read off the diagonal D
from M − W T W mod 4. From now on, we work over F2.

If M has 1 in the diagonal, then there is an invertible
matrix E such that E−T ME−1 is diagonal. (This is well known
[10,22–24].) But over F2, any diagonal matrix is the identity
matrix with some number of trailing zeros in the diagonal.
Hence, we may write M = ET (Ir0 0

0 0)E . Keeping only the
first r0 row of E , we find W with r0 rows.

If the diagonal of M is zero, then we consider one-larger
matrix (1 0

0 M) and find W ′ to reproduce it by the argument
in the previous paragraph. The desired W is obtained by
removing the first column of W ′. The number of rows of W
is r0 + 1. �

A variant of Gauss elimination can be used to find W given
M, putting the computational complexity to O(m3).

2. Diagonal Clifford gates

The math below is essentially contained in Ref. [25]
(Chap. 2), which can be understood if one is familiar with
the correspondence between Clifford groups and symplectic
groups [26]. However, we were not able to identify an exact
claim in [25,26] that gives our result. We choose to be explicit
here.

Let Z = |0〉 〈0| − |1〉 〈1| be the standard Pauli Z matrix.
For any binary vector v = (v1, . . . , vm) ∈ Fm

2 , let Z (v) be the

2It may look weird to mix up F2 and Z4, but this object appears
in algebraic topology and is a quadratic enhancement of a mod 2
intersection form. Since we are not enhancing anything here, we
choose to give a simpler name, a Z4-valued quadratic form. All
material in Appendix A 1 is well known in the math literature. See,
e.g., [21].

tensor product

Z (v) =
m⊗

j=1

Zv j (A1)

of Z and the identity matrices. By diagonal Clifford gates, we
mean any product

S(V ) =
∏
v∈V

exp

(
iπ

4
− iπ

4
Z (v)

)
, (A2)

where v ranges over some set V ⊆ Fm
2 . Since Z is diagonal,

any two diagonal Clifford gates commute with each other, so
the product is unambiguous. The set of all diagonal Clifford
gates includes the usual S gate and the control-Z gate. Note
that

S(V )2 =
∏
v

exp

(
iπ

2
− iπ

2
Z (v)

)
=

∏
v∈V

Z (v) (A3)

is a Pauli operator.
Let us examine the action of S(V ) more explicitly. The

following formula will be useful:

x mod 2 = x2 mod 4, (A4)

which is true for any integer x if “mod 2” and “mod 4” are in-
terpreted as the non-negative smallest integer remainder after
division by 2 and 4, respectively. From now on, we identify
F2 as a subset of Z. By abuse of notation, let V = (Vab) be
the matrix over F2 whose rows are vectors in the set V ⊆ Fm

2 .
On an arbitrary computational basis state |z〉 = |z1, . . . , zm〉,
where z j ∈ F2, we have

S(V ) |z〉 =
∏

a

exp

(
iπ

4
− iπ

4

∏
b

(−1)Vabzb

)
|z〉

= |z〉
∏

a

exp

[
iπ

2

(∑
b

Vabzb mod 2

)]

= |z〉 exp

[∑
a

iπ

2

(∑
b

Vabzb

)2]

= |z〉 exp

[
iπ

2

∑
a,b,c

VabzbVaczc

]

= |z〉 exp

[
iπ

2
zV T V zT

]
, (A5)

where in the last line we used a vector-matrix notation in
which z is a row vector. The expression in the exponential
implies that the action of S(V ) is determined by a symmetric
matrix

M = V T V (A6)

viewed as a function q : Fm
2 → Z4 by q(z) = zMzT .

By Lemma 10, any such function q can be realized by a
matrix W with m + 1 or fewer rows and a diagonal matrix D
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as

q(z) = z(W T W )zT + 2zDzT . (A7)

The diagonal matrix 2D corresponds to S(D)2, which is a
tensor product of Pauli matrix Z . This means that

S(V ) = S(W )Z (diag(D)). (A8)

Observe that S(W ) consists of at most m + 1 rotation gates,
whereas S(V ) contains |V | rotation gates, which can be expo-
nentially large in m.

3. One level higher

An analogous calculation can be done for diagonal,
Clifford-conjugated T gates. We first observe that

x mod 2 = 2x3 + x2 − 2x mod 8 (A9)

for any integer x where “mod 2” and “mod 8” are interpreted
as taking the smallest non-negative remainder after division.
Now, we define

T (V ) =
∏
v∈V

exp

(
iπ

8
− iπ

8
Z (v)

)
, (A10)

where v ranges over some set V ⊆ Fm
2 . Then, for any compu-

tational basis state |z〉, we have

T (V ) |z〉 =
∏

a

exp

(
iπ

8
− iπ

8

∏
b

(−1)Vabzb

)
|z〉 = |z〉

∏
a

exp

[
iπ

4

(∑
b

Vabzb mod 2

)]

= |z〉
∏

a

exp

[
iπ

4

(
2

∑
b,c,d

VabzbVaczcVad zd +
∑
b,c

VabzbVaczc − 2
∑

b

Vabzb

)]
[using Eq. (A9)]

= |z〉
∏

a

exp

[
iπ

4

(
12

∑
b<c<d

VabzbVaczcVad zd − 2
∑
b<c

VabzbVaczc +
∑

b

Vabzb

)]

= |z〉 exp

[
iπ

( ∑
b<c<d

∑
a

VabVacVad zbzczd

)
− iπ

2

(∑
b<c

∑
a

VabVaczbzc

)
+ iπ

4

(∑
b

∑
a

Vabzb

)]
. (A11)

Note that the cubic term is a collection of CCZ gates, the
quadratic term is a collection of CS gate, and the linear term
is a collection of T gates.

4. Application to T -distillation circuits

There are many circuit implementations possible for a
given triorthogonal code, and here we consider a “space-
efficient” one. The general idea of this space-efficient protocol
was sketched in Ref. [11,13] (Sec. II.D), and more explicitly
written in [7]. The specific protocol we consider here is the
following. Let G be a triorthogonal matrix with even weight
rows G0 and odd weight rows G1.

(1) Prepare |+〉⊗(k+g0 ), where g1 = k, g0 are the numbers
of rows in G1 and G0, respectively.

(2) For each � = 1, 2, . . . , n, apply exp(−iπ Z̄�/8), where
Z̄� = Z ((Gj�) j ) is the tensor product of Z for each 1 in column
� of G.

(3) After a diagonal Clifford correction S[G] (that is vac-
uous if G descends from a triply even subspace; see below),
measure single-qubit X on the last g0 qubits corresponding to
the rows of G0.

(4) Postselect on all +1 outcomes.
(5) The magic states are in the first k qubits corresponding

to the rows of G1.
If V is the collection of all columns of G, then T (V )

implements T gates on the qubits that correspond to the rows
of G1 up to a diagonal Clifford. Indeed, the cubic term of
Eq. (A11) vanishes due to the triorthogonality of G. The gate

that implements

S[G] |z〉 = |z〉 exp

{
− iπ

2

(∑
b<c

∑
a

GabGaczbzc

)

+ iπ

4

[(∑
a,b

Gabzb

)
−

(∑
a,b

Gabzb mod 2

)]}

(A12)

is a diagonal Clifford.
The rotation e−iπ Z̄�/8 may not be an elementary operation,

in which case it must be induced by a T injection [1,2]. The T
injection is achieved by the following measurement sequence:

(1) Prepare an ancilla qubit in T state |0〉 + eiπ/4 |1〉 with
possible noise. This can be provided by an earlier round of T
distillation.

(2) Measure Zancilla ⊗ Z̄� to obtain an outcome t� = ±1.
(3) Measure Xancilla. If the outcome is −1, apply Z̄�.
(4) If t� = −1, apply exp(−iπ Z̄�/4).
Except for the last Clifford correction e−iπ Z̄�/4, every mea-

surement is a multiqubit Pauli measurement, which can be
implemented by lattice surgery techniques [27]. Note that the
ancilla in T injection is measured out before the last step, so
we may reuse it. The last Clifford correction upon t� = −1 can
be implemented in a number of ways, but it is essentially an S
injection [7]. Recall that in a lattice surgery architecture, the
application of a Pauli operator is always passive and does not
correspond to any action on a quantum device; one keeps track
of what Pauli frame a qubit is in and interprets any measure-
ment outcome in the Pauli frame. Perhaps more importantly,
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a measurement-outcome-dependent Pauli operator does not
require any classical feedback.

In the absence of any noise, the Clifford correction is
needed with probability 1

2 , and the total number of Clifford
corrections in the above T distillation protocol follows a bino-
mial distribution B(n, 1

2 ). In the presence of some noise in the
circuit, the measurement outcome distribution can be biased,
but in the regime of practical interests the bias is small. Such
a stochastic process is less favorable than a fully deterministic
process because it makes it harder to synchronize operations
across the quantum device. Moreover, the Clifford corrections
depend on classical feedback where we have to know n bits,
where n is the number of columns of G. This might slow down
the execution of the overall distillation protocol.

We propose to delay all the Clifford corrections until all
input T states are consumed. This is possible since any op-
eration on the data qubits, which corresponds to rows of G,
is diagonal in the Z basis, and so is the S correction. That is,
we just collect all the outcomes t� for � = 1, 2, . . . , n, and we
apply

∏
�:t�=−1

exp(−iπ Z̄�/4). (A13)

This is in the form of S(V ) in Eq. (A2), where

V ={
v ∈ F k+g0

2

∣∣ ∃� : t� = −1, v = �th column of G
}
. (A14)

Hence, according to Lemma 10, S(V ) can be implemented
by at most k + g0 + 1 S-injections. In all the triorthogonal
matrices we know, k + g0 + 1 < n. For example, in 15-to-1
protocol [2], k + g0 + 1 = 6 < 15 = n. In 116-to-12 protocol
[11,13], k + g0 + 1 = 30 < 116 = n.

Let us flesh out the protocol. As before, G denotes a tri-
orthogonal matrix.

(1) Prepare |+〉⊗(k+g0 ), where g1 = k, g0 are the numbers
of rows in G1 and G0, respectively.

(2) For each � = 1, 2, . . . , n, do the following:
(i) Prepare an ancilla qubit in T state |0〉 + eiπ/4 |1〉 with

possible noise. This can be provided by an earlier round of T
distillation.

(ii) Measure Zancilla ⊗ Z̄� to obtain an outcome t� = ±1.
Here, Z̄� = Z ((Gj�) j ) is the tensor product of Z for each 1
in column � of G.

(iii) Measure Xancilla. If the outcome is −1, apply Z̄�.
(3) Let C be the collection of indices � such that t� = −1.

Let H be the submatrix of G by choosing columns of indices
in C, and let V consist of all the columns of H and a set of
vectors that implement S[G] of Eq. (A12). Find matrices W
and D such that Eq. (A2) holds.

(4) Apply S(W )Z (diag(D)).
(5) Measure individual X on the last g0 qubits correspond-

ing to the rows of G0. Postselect on all +1 outcomes.
(6) The magic states are in the first k qubits corresponding

to the rows of G1.
In the proposed protocol, the stochastic nature of the pro-

cess is not entirely eliminated, but the number of Clifford
corrections is now upper-bounded by k + g0 + 1, a smaller
number than n, and classical feedback is required only once,
rather than n times in sequence, in between all T consumption
(Step 2) and S(V ) application (Step 4).

If the triorthogonal code allows T and T † gates to induce
logical T gates without any further Clifford correction (empty
“S[G]”) [15], then some Clifford correction e−iπ Z̄�/4 is called
on t� = +1 rather than t� = −1. Our proposal can be used in
that case, too, by letting V be the collection of all needed S-
corrections.
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