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Quantifying coherence relative to channels via metric-adjusted skew information
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In terms of the metric-adjusted skew information (an important and versatile class of quantum Fisher
information), which generalizes the seminal Wigner-Yanase skew information arising naturally from the study of
quantum measurement, we propose a family of coherence measures of states relative to quantum channels, and
reveal their basic properties such as unitary covariance, convexity, and monotonicity. Furthermore, we evaluate
these coherence measures of states relative to several prototypical quantum channels, and make a comparative
study for this family of coherence measures with relative entropy of coherence. This provides a general approach
to coherence of states relative to quantum channels, which also captures decoherence on the states caused by
quantum channels and asymmetry of states relative to quantum channels.
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I. INTRODUCTION

Quantum coherence, as a physical consequence of the
superposition principle, is a cornerstone of quantum mechan-
ics and plays a key role in quantum information processing
and quantum technology. Although coherence has been ex-
tensively and intensively studied as a recurring theme ever
since the inception of quantum mechanics, quantitative and
axiomatic investigations of coherence from the resource per-
spective are a quite recent subject starting from the seminal
work of Herbut [1] (which curiously remained largely unno-
ticed), Åberg [2], Levi and Mintert [3], and Baumgratz et al.
[4]. In the influential framework of resource theory initiated in
Ref. [4], various measures of coherence have been introduced
and studied [5–30]. See Refs. [12,20] for reviews and a vast
literature therein.

Motivated by the well-established fact that measurements
described by positive operator-valued measures (POVMs)
have operational advantages over the conventional von Neu-
mann measurements in many scenarios, the resource theory of
coherence of a quantum state relative to a basis (equivalently,
a von Neumann measurement) was generalized to that relative
to a POVM. The block coherence, i.e., the coherence relative
to a projective measurement (not necessarily of rank 1), was
studied in Refs. [2,15,22]. Now there are increasing interests
in the study of coherence relative to a general measurement
and associated applications [22–28]. The coherence of a state
relative to a quantum channel (henceforth abbreviated as
a channel) was explored in terms of the generalized skew
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information [16,28], and was applied to investigating quantum
correlations [31], quantum interference [32], quantum metrol-
ogy [29,33], and asymmetry [34,35], etc. Compared with
POVMs, channels retain more phase information and many
physical processes are described by channels beyond POVMs.
Consequently, coherence of a state relative to a channel is an
interesting issue worth studying.

Fisher information is a crucial concept in signal detection
and parameter estimation (quantum metrology) [36–50], since
it is used to provide an intrinsic lower bound for the precision
of parameter estimation by virtue of the celebrated Cramér-
Rao inequality. In the classical setup of probability theory,
Fisher information is unique in the sense that it is the only
Riemannian metric possessing the contractive property un-
der coarse graining (classical channels) [45,46]. However, in
the quantum scenario, the metrics satisfying the contractivity
under channels are not unique, which means that quantum
extensions of the classical Fisher information are not unique.
There are infinitely many versions of quantum Fisher informa-
tion, among which two prominent ones are the Wigner-Yanase
skew information [51] (or more generally the Wigner-Yanase-
Dyson skew information [51–54]) and the quantum Fisher
information based on the symmetric logarithmic derivative
[36–39,41]. Each version of quantum Fisher information may
have its own merits in special contexts.

Explicit characterization of the metrics with contractiv-
ity in the quantum scenario was studied by Morozova and
Chentsov [46], Petz [47–49], Petz and Ghinea [50], and
Hansen [43], among others. In particular, by virtue of the op-
erator monotone metrics, Hansen identified a class of quantum
Fisher information as the metric-adjusted skew informa-
tion [44], which encapsulates the well-known Wigner-Yanase
skew information and the quantum Fisher information based
on the symmetric logarithmic derivative as two prominent
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special instances, and generalizes them considerably. As a
general and important quantity of information, the metric-
adjusted skew information has found wide applications in
many contexts, such as uncertainty relations [55–66], quan-
tum interference [67], and asymmetry [68].

In this paper, we will quantify coherence of a state relative
to a channel via the metric-adjusted skew information. The
rest of the paper is arranged as follows. In Sec. II, after
reviewing the metric-adjusted skew information, we introduce
a family of coherence measures of a state relative to a chan-
nel via the metric-adjusted skew information, and investigate
their basic properties. In Sec. III, we evaluate these coherence
measures for several important qubit channels. We make an
extensive comparative study between our coherence measures
and the relative entropy of coherence in Sec. IV. Finally, we
conclude with a summary in Sec. V.

II. COHERENCE VIA METRIC-ADJUSTED
SKEW INFORMATION

Quantum Fisher information, and in particular, metric-
adjusted skew information, as a generalization of classical
Fisher information in mathematical statistics, is an important
concept in quantum metrology and plays a crucial role in
quantum parameter estimation. In this section, after some
preliminary discussion on motivation and background of
metric-adjusted skew information and coherence relative to
a channel, we recall the definition and basic properties of
metric-adjusted skew information induced by any operator
monotone function, and further generalize it to any reference
operator (not necessarily Hermitian). Then we introduce a
family of coherence measures of a state relative to a channel
in terms of metric-adjusted skew information, and illuminate
their basic properties.

A. Motivation and background

A wide family of quantum Fisher information is the metric-
adjusted skew information characterized by the celebrated
Morozova-Chenstov functions [44]. This is based on the in-
formation contents introduced in Ref. [51], the geometrical
formulation of quantum statistics formulated in Refs. [45,46],
and the monotone metrics classified in Ref. [47]. Different
versions of quantum Fisher information may have different
merits and different uses. The general form of the quantum
Cramér-Rao inequality based on metric-adjusted skew infor-
mation provides a family of lower bounds for the precision
of the parameter estimation [48], and as such plays a central
role in quantum metrology. Given the importance of metric-
adjusted skew information, it is desirable to further apply
this information quantity to quantifying coherence of a state
relative to a channel and explore their applications in quantum
metrology. Just like different versions of entropy (such as the
Tsallis entropy and the Rényi entropy) beyond the conve-
nient von Neumann entropy are useful in studying quantum
information, the approach to coherence via metric-adjusted
skew information may provide a more complete picture of
the properties of coherence, which in turn may be useful in
theoretical investigations of quantum information processing.

Traditionally, when talking about coherence of a state, we
need to specify an orthonormal basis as the reference basis,
which is equivalent to specifying the corresponding von Neu-
mann measurement with the basis elements as measurement
operators. In this sense, the traditional notion of coherence of
a state has two seemingly different but actually intrinsically
related meanings: (1) (potential) coherence of the state before
the von Neumann measurement and (2) (realized) decoher-
ence of the state after the von Neumann measurement. With
this second meaning of coherence of a state relative to a von
Neumann measurement as the quantifier of decoherence of the
state caused by the von Neumann measurement, it is natural
to consider decoherence of a state caused by a channel (a
more general physical process than POVM), which is a key
issue in quantum measurement and open system dynamics.
This motivates our study of coherence of a state relative to a
channel. This quantity, apart from characterizing certain as-
pects of the interplay between states and channels, has further
applications in quantifying asymmetry, quantum interference,
quantumness, etc.

We remark that some coherence measures of a state
relative to a channel based on two special instances of
metric-adjusted skew information, i.e., Wigner-Yanase skew
information and quantum Fisher information involving the
symmetric logarithmic derivative, have been used to study
quantum correlations, interference, and quantum metrology.
For example, in Ref. [31], we introduced a quantifier of corre-
lations (relative to a local channel) as the coherence difference
in terms of Wigner-Yanase skew information and proved that
both product states and some natural classical-quantum states
can be operationally characterized in terms of local channels.
In Ref. [32], two of us used the coherence of a state relative
to a unitary channel parametrized by the interfering paths and
phase shifts in multipath interference to quantify interference.
In Refs. [29,33], the authors introduced the coherence mea-
sure via quantum Fisher information involving the symmetric
logarithmic derivative and provided an operational meaning in
quantum metrology. In Ref. [67], Gibilisco et al. built a uni-
fying information-geometric framework to quantify quantum
correlations in terms of metric-adjusted skew information.
They extended the physically meaningful definition of local
quantum uncertainty to a more general class of information
measures and proved that metric-adjusted quantum correla-
tion quantifiers possess a set of desirable properties which
make them robust information measures. These studies illus-
trate certain applications and significance of metric-adjusted
skew information. In this paper, we pursue an application of
metric-adjusted skew information in quantifying coherence of
a state relative to a general channel.

B. Metric-adjusted skew information

In their seminal study of quantum measurement, Wigner
and Yanase introduced the information quantity [51]

I (ρ, X ) = − 1
2 tr[

√
ρ, X ]2

of a state ρ relative to the observable X (which served
as a conserved observable). Here the square bracket de-
notes the commutator between operators, and tr denotes the
operator (matrix) trace. This quantity is later termed the
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Wigner-Yanase skew information, and turns out to be the first
version of quantum Fisher information. After the suggestion
of Dyson, Wigner and Yanase also introduced the quantity
[51]

Is(ρ, X ) = − 1
2 tr[ρs, X ][ρ1−s, X ], 0 < s < 1

which is now termed the Wigner-Yanase-Dyson skew infor-
mation. Its convexity relative to ρ (the Wigner-Yanase-Dyson
conjecture), first established by Lieb [52], is a deep and
elegant result with extensive applications in information the-
ory. In particular, it plays an innovative role in the path
to strong subadditivity of von Neumann entropy (which is
equivalent to monotonicity of quantum relative entropy). The
skew information has been extensively used to quantify co-
herence, quantum uncertainty, asymmetry, and correlations
[13–16,55–71].

Metric-adjusted skew information is a considerable gen-
eralization of the above skew information along the lines of
quantum Fisher information. To illuminate this, we review
some basic notions.

(a) Operator monotone functions: A function f : R → R is
called operator monotone if X � Y implies that f (X ) � f (Y )
for any Hermitian operators (observables) X and Y on any
finite-dimensional Hilbert space [47].

(b) Morozova-Chentsov functions: For an operator mono-
tone function f : R+ = [0,∞) → R+ satisfying f (0) > 0
and x f (1/x) = f (x) (a kind of symmetry), the associated
Morozova-Chentsov function is defined as [47]

c f (x, y) = 1

y f (x/y)
. (1)

The corresponding generalized mean is defined as

m f (x, y) = 1

c f (x, y)
= y f (x/y).

We remark that from the symmetry constraint x f (1/x) =
f (x), we may interpret 0 f (x/0) as

0 f (x/0) = lim
y→0

y f (x/y)

= lim
y→0

x(y/x) f [1/(y/x)]

= lim
y→0

x f (y/x)

= x f (0).

This will be used in the subsequent Eqs. (10) and (12).
(c) Monotone metrics: Given a state ρ and an oper-

ator monotone function f : R+ = [0,∞) → R+ satisfying
f (0) > 0 and x f (1/x) = f (x) with the associated Morozova-
Chentsov function c f defined by Eq. (1), the monotone metric
associated with ρ and f is defined as [47]

〈A, B〉ρ, f = tr[A†c f (Lρ, Rρ )(B)] (2)

for any operators A and B on the system Hilbert space. Here

Lρ (A) = ρA, Rρ (A) = Aρ

are the left and right multiplications by ρ, respectively. Since
the superoperators Lρ and Rρ commute, the superoperators
c f (Lρ, Rρ ) and m f (Lρ, Rρ ) are well defined by functional
calculus.

(d) Metric-adjusted skew information: For any quantum
state ρ and any observable X , the metric-adjusted skew in-
formation of ρ relative to X is defined as [44]

Ff (ρ, X ) = f (0)

2
〈i[ρ, X ], i[ρ, X ]〉ρ, f

= − f (0)

2
tr{[ρ, X ]c f (Lρ, Rρ )([ρ, X ])} , (3)

which is precisely the monotone metric defined by Eq. (2)
specialized to A = B = i[ρ, X ].

By defining

f̃ (x) = 1

2

(
(x + 1) − (x − 1)2 f (0)

f (x)

)
, (4)

which is still an operator monotone function, one further
obtains

Ff (ρ, X ) = tr(ρX 2) − tr[Xm f̃ (Lρ, Rρ )(X )]

with m f̃ (x, y) = y f̃ (x/y).
Among the metric-adjusted skew information, there are

two distinguished ones.
(a) Taking the operator monotone function

f (x) =
(

1 + √
x

2

)2

, (5)

then the corresponding metric-adjusted skew information is
reduced to the Wigner-Yanase skew information [51]

I (ρ, X ) = − 1
2 tr[

√
ρ, X ]2.

(b) Taking the operator monotone function

f (x) = 1 + x

2
, (6)

then the corresponding metric-adjusted skew information is
reduced to the quantum Fisher information [36–38]

F (ρ, X ) = 1
4 tr(ρL2) (7)

based on the symmetric logarithmic derivative. Here L is the
symmetric logarithmic derivative determined by

i[ρ, X ] = 1
2 (Lρ + ρL).

These quantities play a key role in quantum estimation theory
[36–38]. In addition, the quantum Fisher information F (ρ, X )
and the Wigner-Yanase skew information I (ρ, X ) have the
following relation [40]:

I (ρ, X ) � F (ρ, X ) � 2I (ρ, X ). (8)

Furthermore, Gibilisco et al. extended the above inequality
relation to any metric-adjusted skew information as [72]

Ff (ρ, X ) � F (ρ, X ) � 1

2 f (0)
Ff (ρ, X ),

and showed that the constant 1/[2 f (0)] is optimal.
In this context, we clarify the concept of quantum Fisher

information, which may have different meanings for different
people in different contexts.

(i) In some earlier literature [36–39], the parameter-
independent version of quantum Fisher information simply
refers to the quantity defined by Eq. (7), which is a special
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instance of metric-adjusted skew information determined by
the symmetric logarithmic derivative.

(ii) In parameter estimation, quantum Fisher information
refers to quantities for a family of parametrized states ρθ

which are contracting under channels. When ρθ = e−iθX ρeiθX

is a translation family determined by some observable X ,
these quantities are independent of the parameter θ and are
completely determined by ρ and X . For the multiparameter
case, one naturally comes to quantum Fisher information ma-
trices.

(iii) In the language of information geometry, following
the classification scheme of Petz [47], quantum Fisher infor-
mation (as a metric) refers to the sesquilinear form (i.e., a
monotone metric indexed by the Morozova-Chentsov func-
tion) defined by Eq. (2). In this setting, metric-adjusted skew
information is interpreted as a special parameter-independent
version of the most general quantum Fisher information.

Since non-Hermitian operators arise naturally in the Kraus
representations of channels, it is desirable to extend the
metric-adjusted skew information defined by Eq. (3) to any
operator K (not necessarily Hermitian). For this purpose, by
substituting any operator K for the observable X in Eq. (3), we
naturally obtain a generalization of the metric-adjusted skew
information as

Ff (ρ, K ) = f (0)

2
〈i[ρ, K], i[ρ, K]〉ρ, f . (9)

Direct manipulation shows that

Ff (ρ, K ) = 1
2 tr[ρ(K†K + KK†)] − tr[K†m f̃ (Lρ, Rρ )(K )].

In terms of the spectral decomposition

ρ =
∑

i

λi|φi〉〈φi|

of the state ρ with {|φi〉} an orthonormal basis (some λi may
possibly be zero), and noting the fact

m f̃ (Lρ, Rρ ) =
∑

i j

m f̃ (λi, λ j )L|φi〉〈φi|R|φ j〉〈φ j |,

Ff (ρ, K ) can be explicitly calculated as

Ff (ρ, K ) = f (0)

2

∑
i j

(λi − λ j )2

λ j f (λi/λ j )
|〈φi|K|φ j〉|2. (10)

As a closely related quantity, we also introduce the general-
ized variance

V (ρ, K ) = 1
2 tr[ρ(K†K + KK†)] − |tr(ρK )|2

of the general operator (not necessarily Hermitian) K in the
state ρ.

The generalized metric-adjusted skew information
Ff (ρ, K ) defined by Eq. (9) has the following properties,
which follow from Refs. [44,73], or can be directly verified.

(i) 0 � Ff (ρ, K ) � V (ρ, K ). Moreover, Ff (ρ, K ) = 0 if
and only if [ρ, K] = 0, and Ff (ρ, K ) = V (ρ, K ) (the gener-
alized variance) if ρ is a pure state. In particular, Ff (ρ, K ) is
independent of f for any pure state ρ.

(ii) Ff (UρU †,UKU †) = Ff (ρ, K ) for any unitary opera-
tor U .

(iii) Ff (ρ, K ) is convex in ρ.

(iv) Ff (ρ, K ) is additive under tensoring in the sense that

Ff (ρ ⊗ σ, K ⊗ 1b + 1a ⊗ J ) = Ff (ρ, K ) + Ff (σ, J )

for any quantum states ρ and σ , and any operators K and J on
parties a and b, respectively. In particular,

Ff (ρ ⊗ σ, K ⊗ 1b) = Ff (ρ, K ).

(v) Ff (ρ, K ) is additive under direct sum in the sense that

Ff

(⊕
i

piρi,
⊕

i

Ki

)
=

∑
i

piFf (ρi, Ki )

for any quantum states ρi, any operators Ki, and any probabil-
ity distribution {pi}.

(vi) For any bipartite state ρab on the composite system ab
and any operator Ka on party a,

Ff (ρab, Ka ⊗ 1b) � Ff (ρa, Ka)

with ρa = trb(ρab) the reduced state on party a of the bipartite
state ρab shared by parties a and b.

C. Coherence via metric-adjusted skew information

Let ρ be a quantum state on a d-dimensional system
Hilbert space H , and let

�(ρ) =
∑

l

KlρK†
l

be a channel with the same input and output system. Kl

are called the Kraus operators of the channel and satisfy∑
l K†

l Kl = 1. The coherence of ρ relative to the channel
� via the generalized metric-adjusted skew information is
defined as

Ff (ρ,�) =
∑

l

Ff (ρ, Kl ). (11)

Let ρ = ∑
i λi|φi〉〈φi| be the spectral decomposition of ρ,

then

Ff (ρ,�) = f (0)

2

∑
i j

(λi − λ j )2

λ j f (λi/λ j )
〈φi|�(|φ j〉〈φ j |)|φi〉. (12)

From the above expression, it is obvious that Ff (ρ,�) is inde-
pendent of the choice of the Kraus operators Kl of the channel
�. Furthermore, Ff (ρ,�) satisfies the following properties
which make it a rational coherence measure.

(i) Non-negativity: Ff (ρ,�) � 0 and Ff (ρ,�) = 0 if and
only if [ρ, Kl ] = 0 for any l .

(ii) Unitary covariance: For any unitary operator U on the
system Hilbert space, we have

Ff (UρU †,U�U †) = Ff (ρ,�),

where U�U †(ρ) = ∑
l (UKlU †)ρ(UKlU †)† for �(ρ) =∑

l KlρK†
l .

(iii) Convexity: Ff (ρ,�) is convex in ρ.
(iv) Linearity: Ff (ρ,�) is positive-real-linear in the chan-

nel � in the sense that

Ff (ρ, c1�1 + c2�2) = c1Ff (ρ,�1) + c2Ff (ρ,�2)

for any channels �k and constants ck � 0, c1 + c2 = 1.
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(v) Ancillary independence:

Ff (ρa ⊗ ρb,�a ⊗ Ib) = Ff (ρa,�a),

where ρa and ρb are states of parties a and b, respectively, �a

is a channel on party a, and Ib is the identity channel on party
b.

(vi) Decreasing under partial trace:

Ff (ρab,�a ⊗ Ib) � Ff (ρa,�a),

where ρab is any bipartite state shared by two parties a and b.
(vii) Monotonicity: If a channel E (ρ) = ∑

j E jρE†
j does

not disturb the channel � in the sense that [Ej, Kl ] = 0 and
[Ej, K†

l ] = 0 for any j, l , then

Ff (E (ρ),�) � Ff (ρ,�).

(viii) Strong monotonicity: Let the channel E (ρ) =∑
j E jρE†

j be as in item (vii), then∑
j

p jFf (ρ j,�) � Ff (ρ,�)

with p j = tr(EjρE†
j ), ρ j = EjρE†

j /p j .
(ix) Superadditivity:

Ff (ρab,�a ⊗ Ib + Ia ⊗ �b) � Ff (ρa,�a) + Ff (ρb,�b),

where ρab is a bipartite state with ρa = trbρ
ab and ρb = traρ

ab

the corresponding reduced states, and �a and �b are channels
on parties a and b, respectively.

Now we proceed to the proof of the above properties.
Items (i)–(iii), (v), and (vi) can be directly verified from the

corresponding properties of the generalized metric-adjusted
skew information Ff (ρ, K ) and the coherence measure
Ff (ρ,�) defined by Eq. (11).

Item (iv) is obvious from Eq. (12).
To establish item (vii), we first recall the concept of

quasientropy. For non-negative definite operators ρ1 and ρ2,
any operator A and function g : R+ → R, the quasientropy is
defined as [74–76]

SA
g (ρ1|ρ2) = 〈A, mg(Lρ1 , Rρ2 )(A)〉

with 〈A, B〉 = tr(A†B) the Hilbert-Schmidt inner product be-
tween operators A and B. In particular, if g is an operator
monotone function with g(0) � 0, then [74–76]

SA
g [α†(ρ1)|α†(ρ2)] � Sα(A)

g (ρ1|ρ2)

for any unital Schwarz mapping α [that is, α(1) = 1 and
α(B†B) � α(B†)α(B) for any operator B]. For the channel
E , its dual mapping E† is obviously a unital and completely
positive mapping, which is actually a unital Schwarz mapping
[77,78]. Thus for any Kraus operator Kl and the operator
monotone function f̃ defined by (4), we have

SKl

f̃
[E (ρ)|E (ρ)] � SE†(Kl )

f̃
(ρ|ρ).

By the commutativity [Ej, Kl ] = 0 and [Ej, K†
l ] = 0 for any

j, l , we further have

tr[E (ρ)KlK
†
l ] = tr(ρKl K

†
l )

and

E†(Kl ) = Kl

for any l . Thus

SKl

f̃
[E (ρ)|E (ρ)] � SKl

f̃
(ρ|ρ).

Then the desired monotonicity follows from

Ff (E (ρ),�)

= 1

2

{
1 +

∑
l

tr[E (ρ)Kl K
†
l ]

}
−

∑
l

SKl

f̃
[E (ρ)|E (ρ)]

� 1

2

{
1 +

∑
l

tr(ρKlK
†
l )

}
−

∑
l

SKl

f̃
(ρ|ρ)

= Ff (ρ,�).

Next, we prove item (viii). Let R be an auxiliary system
with Hilbert space HR and let {| j〉 : j = 0, 1, · · · , m − 1} be
an orthonormal basis of HR. Here m is the number of the Kraus
operators for the channel E . Consider the channel

	(τ ) =
m−1∑
j=0

V j ⊗ E j (τ ) (13)

on the composite system space HR ⊗ H . Here

V j (ξ ) = VjξV †
j , Vj =

m−1∑
k=0

|k + j〉〈k|,

E j (σ ) = EjσE†
j ,

for j = 0, 1, · · · , m − 1, and the sum k + j is understood as
mod m. It is easy to show that

[Vj ⊗ Ej, 1 ⊗ Kl ] = Vj ⊗ [Ej, Kl ] = 0

and

[Vj ⊗ Ej, 1 ⊗ K†
l ] = Vj ⊗ [Ej, K†

l ] = 0

for any j, l . Thus 	 commutes with I ⊗ �. By items (v) and
(vii), we have

Ff (ρ,�) = Ff (|0〉〈0| ⊗ ρ, I ⊗ �)

�Ff (	(|0〉〈0| ⊗ ρ), I ⊗ �)

= Ff

(
m−1∑
j=0

p j | j〉〈 j| ⊗ ρ j, I ⊗ �

)

=
m−1∑
j=0

p jFf (| j〉〈 j| ⊗ ρ j, I ⊗ �)

=
m−1∑
j=0

p jFf (ρ j,�),

where the inequality follows from the monotonicity of
Ff (τ, I ⊗ �) under the channel 	. We remark here that the
monotonicity of Ff (ρ,�) can also be obtained directly from
the strong monotonicity and the convexity of Ff (ρ,�).

Item (ix) follows from items (iv) and (vi).
We further specialize to two important cases.
(a) For f (x) defined by Eq. (5), we have

FWY(ρ,�) = Ff (ρ,�) =
∑

l

I (ρ, Kl ),
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which is precisely the coherence measure based on the
Wigner-Yanase skew information [16].

(b) For f (x) defined by Eq. (6), we have

FSLD(ρ,�) = Ff (ρ,�) =
∑

l

F (ρ, Kl ),

where F (ρ, K ) is the quantum Fisher information of ρ based
on the symmetric logarithmic derivative. We notice that
this coherence measure is different from that introduced in
Ref. [29], which is defined as the sum of the quantum Fisher
information relative to the corresponding measurement oper-
ators K†

l Kl , i.e.,
∑

l F (ρ, K†
l Kl ).

It is interesting to note that the above two coherence mea-
sures are related as

FWY(ρ,�) � FSLD(ρ,�) � 2FWY(ρ,�).

This follows directly from inequality relation (8) and the def-
initions of FWY(ρ,�) and FSLD(ρ,�).

Now we consider a special channel induced by a compact
Lie group which provides an interpretation of coherence as
asymmetry. For a compact Lie group G, let {Ug : g ∈ G} be a
unitary representation of G, then

TG(ρ) =
∫

G
UgρU †

g dg

is the twirling channel induced by the group G with dg the
normalized Haar measure over the compact Lie group G. The
coherence of ρ relative to the channel TG is

Ff (ρ, TG) = f (0)

2

∑
i j

(λi − λ j )2

λ j f (λi/λ j )

∫
G

|〈φi|Ug|φ j〉|2dg

with ρ = ∑
i λi|φi〉〈φi| the spectral decomposition of ρ. Since

Ff (ρ, TG) = 0 if and only if [ρ,Ug] = 0 for any g ∈ G,
Ff (ρ, TG) also quantifies the asymmetry of ρ relative to the
group G in some sense. To illustrate this idea more clearly, we
analyze two special unitary groups.

(i) For the full unitary group U (H ) on H , the twirling
channel TU (H ) is

TU (H )(ρ) =
∫

U (H )
UρU †dU = 1

d
1,

which coincides with the completely depolarizing channel

�CDe(ρ) = 1

d

d2∑
l=1

XlρXl = 1

d
1

with {Xl : l = 1, 2, · · · , d2} an orthonormal basis of the
Hilbert space of all Hermitian operators on H and d the
dimension of H . Thus the asymmetry of ρ relative to the full
unitary group U (H ) may be quantified by the coherence of ρ

relative to the completely depolarizing channel �CDe as

Ff (ρ, TU (H ) ) = Ff (ρ,�CDe) = f (0)

2d

∑
i j

(λi − λ j )2

λ j f (λi/λ j )
.

(ii) For the block-diagonal unitary group

Udiag =
{

Uθ =
n∑

l=1

eiθl �l : θ = (θ1, · · · , θn) ∈ [0, 2π )n

}

with � = {�l : l = 1, 2, · · · , n} the Lüders (projective)
measurement, the twirling channel generated by the group
Udiag is

TUdiag (ρ) =
∫ 2π

0
· · ·

∫ 2π

0
UθρU †

θ dθ

with dθ = dθ1dθ2 · · · dθn, which coincides with the decoher-
ing channel

�(ρ) =
n∑

l=1

�lρ�l

induced by the Lüders measurement � = {�l : l =
1, 2, · · · , n}. Therefore the asymmetry of ρ relative to
the group Udiag can be quantified by the coherence of ρ

relative to the decohering channel � as

Ff (ρ, TUdiag ) = Ff (ρ,�)

= f (0)

2

∑
i jl

(λi − λ j )2

λ j f (λi/λ j )
|〈φi|�l |φ j〉|2.

III. EXAMPLES

In this section, we illustrate the coherence measure
Ff (ρ,�) through several prototypical examples, which reveal
some quantitative features of the channels from the perspec-
tive of coherence.

In the computational basis {|0〉, |1〉} of a qubit system, any
qubit state can be represented as

ρ = 1

2

(
1 +

3∑
i=1

riσi

)
= 1

2

(
1 + r3 r1 − ir2

r1 + ir2 1 − r3

)
, (14)

where ri ∈ R, r =
√

r2
1 + r2

2 + r2
3 � 1, and σi are the Pauli

matrices. The spectral decomposition of ρ reads

ρ = λ1|φ1〉〈φ1| + λ2|φ2〉〈φ2|
with the eigenvalues

λ1 = 1
2 (1 + r), λ2 = 1

2 (1 − r)

and the corresponding eigenvectors

|φ1〉 = (r1 − ir2)|0〉 − (r3 − r)|1〉√
2r(r − r3)

,

|φ2〉 = (r1 − ir2)|0〉 − (r3 + r)|1〉√
2r(r + r3)

.

From this it can be directly evaluated that

Ff (ρ, K ) = r2 f (0)(|〈φ1|K|φ2〉|2 + |〈φ2|K|φ1〉|2)

(1 + r) f
(

1−r
1+r

)
for any operator K on the qubit system. From the above
expression, we see that the coherence measures associated
with different operator monotone functions f are proportional
to each other for any fixed state. Thus they have similar be-
haviors. Of course, this phenomenon is special to the qubit
system.

To further illustrate the coherence measures based on
metric-adjusted skew information, we evaluate coherence of
a general state relative to several prototypical qubit channels.
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In the following examples, ρ is a general qubit state defined
by Eq. (14) with r =

√
r2

1 + r2
2 + r2

3 .
Example 0. For the unitary channel U (ρ) = UρU † with the

unique Kraus operator

U = eiα

(
u −v

v̄ ū

)
,

where α ∈ [0, 2π ) and u, v ∈ C satisfying |u|2 + |v|2 = 1,
we have

Ff (ρ,U ) = 2 f (0)
[
x2 + 2r3yz + z2

(
r2 − r2

3

) + r2
3 |v|2]

(1 + r) f
(

1−r
1+r

) ,

where x = Re[(r1 + ir2)v], y = Im[(r1 + ir2)v], and z =
Im(u) with Re and Im denoting the real and imaginary parts
of a complex number, respectively. In particular, let Ui(ρ) =
σiρσ

†
i with σi the Pauli matrices, then

Ff (ρ,Ui ) = 2 f (0)

(1 + r) f
(

1−r
1+r

)(
r2 − r2

i

)
, i = 1, 2, 3.

Clearly, due to the convexity in ρ, the maximal value
maxρ Ff (ρ,Ui ) is achieved by pure states (i.e., r = 1), and
maxρ Ff (ρ,Ui ) = 1. Any pure state with ri = 0 achieves this
maximal coherence for the unitary channel Ui.

For the bit flip channel

�BF(ρ) = pρ + (1 − p)U1(ρ) =
2∑

l=1

KlρK†
l

with the Kraus operators K1 = √
p1 and K2 = √

1 − pσ1 and
0 � p � 1, we have

Ff (ρ,�BF) = (1 − p)Ff (ρ,U1),

and maxρ Ff (ρ,�BF) = 1 − p. Any pure state ρ with r1 = 0
achieves this maximal coherence.

For the phase flip channel

�PF(ρ) = pρ + (1 − p)U3(ρ) =
2∑

l=1

KlρK†
l

with the Kraus operators K1 = √
p1 and K2 = √

1 − pσ3, we
have

Ff (ρ,�PF) = (1 − p)Ff (ρ,U3),

and maxρ Ff (ρ,�PF) = 1 − p. Any pure state ρ with r3 = 0
achieves this maximal coherence.

For the bit-phase flip channel

�BPF(ρ) = pρ + (1 − p)U2(ρ) =
2∑

l=1

KlρK†
l

with the Kraus operators K1 = √
p1 and K2 = √

1 − pσ2, we
have

Ff (ρ,�BPF) = (1 − p)Ff (ρ,U2),

and maxρ Ff (ρ,�PF) = 1 − p. Any pure state ρ with r2 = 0
achieves this maximal coherence.

Example 1. For the amplitude damping (spontaneous
emission) channel �AD(ρ) = ∑2

l=1 KlρK†
l with the Kraus op-

erators

K1 =
(

1 0
0

√
1 − p

)
, K2 =

(
0

√
p

0 0

)
, 0 � p � 1,

let q = 1 − √
1 − p, then we have

Ff (ρ,�AD) = f (0)

(1 + r) f
(

1−r
1+r

) [(
r2 − r2

3

)
q + r2

3 p
]
,

and maxρ Ff (ρ,�AD) = p/2. The pure states with r3 = ±1
(i.e., |0〉, |1〉) achieve the maximal coherence.

Example 2. For the phase damping channel �PD(ρ) =∑2
l=1 KlρK†

l with

K1 =
(

1 0
0

√
1 − p

)
, K2 =

(
0 0
0

√
p

)
, 0 � p � 1,

we have

Ff (ρ,�PD) = f (0)

(1 + r) f
(

1−r
1+r

)(
r2 − r2

3

)
q. (15)

and maxρ Ff (ρ,�AD) = q/2. The pure states with r3 = 0
achieve the maximal coherence.

It is interesting to compare the above two damping chan-
nels. We see that Ff (ρ,�AD) � Ff (ρ,�PD), and the states
with the maximal coherence are quite different for the two
damping channels �AD and �PD.

Example 3. For the depolarizing channel

�De(ρ) = (1 − 3p)ρ + p
3∑

i=1

σiρσi, 0 � p � 1/3

with σi the Pauli matrices, we have

Ff (ρ,�De) = 4r2 f (0)

(1 + r) f
(

1−r
1+r

) p, (16)

which is an increasing function of p and is in line with our in-
tuitive understanding. Moreover, maxρ Ff (ρ,�De) = 2p, and
this maximal coherence is achieved by any pure state.

Example 4. For fixed x ∈ [0, 1/2], consider the channel

�W(ρ) = KxρK†
x + K1−xρK†

1−x

induced by the qubit weak measurement with
Kx = √

1 − x|0〉〈0| + √
x|1〉〈1|. Here {|0〉〈0|, |1〉〈1|} is a

von Neumann measurement induced by the computational
basis {|0〉, |1〉}. The coherence of ρ relative to �W can be
directly evaluated as

Ff (ρ,�W) = f (0)

(1 + r) f
(

1−r
1+r

)(
r2 − r2

3

)
[1 − 2

√
x(1 − x)].

It is a decreasing function of x ∈ [0, 1/2], which is consis-
tent with our intuition, that is, the coherence of ρ relative
to the von Neumann measurement {|0〉〈0|, |1〉〈1|} with
x = 0 is maximal and that relative to the identity channel
with x = 1/2 is minimal. Moreover, maxρ Ff (ρ,�W) = [1 −
2
√

x(1 − x)]/2. Any pure state with r3 = 0 achieves this max-
imal coherence.
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Example 5. Recall that the Hadamard channel (completely
decoherent channel) in a qubit system is defined as [79,80]

�H(ρ) = M ◦ ρ,

where M is a non-negative definite matrix with all diagonal
elements being 1, and ◦ denotes the Hadamard (entrywise)
product of matrices. In general,

M =
(

1 α∗
α 1

)
, |α| � 1.

It is easy to verify that the channel can be equivalently ex-
pressed as �H(ρ) = ∑3

l=1 KlρK†
l with the Kraus operators

K1 =
(√

1 − |α| 0
0 0

)
, K2 =

(
0 0
0

√
1 − |α|

)
,

K3 =
√

|α|
(

1 0
0 eiθ

)
,

where α = |α|eiθ , θ ∈ [0, 2π ). By direct calculations, we
have

Ff (ρ,�H) = f (0)

(1 + r) f
(

1−r
1+r

)(
r2 − r2

3

)
(1 − |α| cos θ ),

and maxρ Ff (ρ,�H) = (1 − |α| cos θ )/2. Any state with
r3 = 0 achieves this maximal coherence.

Example 6. For later comparison, consider the distorted
trine channel [24]

�T(ρ) =
3∑

l=1

KlρK†
l

with the Kraus operators Kl = √
2αl |ψl〉〈ψl | and

α1 = t, α2 = α3 = 1

2
(1 − t ), t ∈ [0, 1/3],

|ψ1〉 = 1√
2

(|0〉 + |1〉),

|ψ2〉 = 1√
2

(|0〉 − eiθ |1〉),

|ψ3〉 = 1√
2

(|0〉 − e−iθ |1〉), cos θ = t

1 − t
.

We have

Ff (ρ,�T) = f (0)

(1 + r) f
(

1−r
1+r

)(
r2 − t

1 − t
r2

1 − 1 − 2t

1 − t
r2

2

)
,

and maxρ Ff (ρ,�T) = 1/2. The pure states with r3 = ±1
(i.e., |0〉, |1〉) achieve the maximal coherence. In particular,
when t = 0, �T reduces to the unitary channel U2 in exam-
ple 0, and when t = 1/3, �T reduces to the trine channel

�Trine(ρ) = ∑3
l=1 KlρK†

l with Kl =
√

2
3 |ψl〉〈ψl | and |ψl〉 =

1√
2
(|0〉 + ωl−1|1〉), ω = ei4π/3. We have

Ff (ρ,�Trine ) = f (0)

2(1 + r) f
(

1−r
1+r

)(
r2 + r2

3

)
,

and maxρ Ff (ρ,�Trine ) = 1/2.

FIG. 1. Comparison between the two coherence measures
Ff (|ξφ〉, �BF ) and Crel (|ξφ〉, �BF ) as functions of φ ∈ [0, 2π ) for
the bit flip channel �BF with p = 1/2 (example 0). Here |ξφ〉 =
(|0〉 + eiφ |1〉)/

√
2. We see that they display quite different behaviors

in this special case: Ff (|ξφ〉,�BF ) is oscillating in the parameter φ,
while Crel (|ξφ〉,�BF ) = ln 2 is a constant independent of φ.

IV. COMPARISON

Several coherence measures of a state relative to a POVM
were introduced in the literature [23–26], and it is desirable to
compare our coherence measures with them. Recall that the
quantity

Crel(ρ, M ) = H ({pl}) +
∑

l

pl S(ρl ) − S(ρ) (17)

was introduced in Refs. [23,24], which is defined as a co-
herence measure of a state ρ relative to a POVM M = {Ml :
l = 1, 2, · · · , m}. Here pl = tr(Mlρ), ρl = √

Mlρ
√

Ml/pl ,
H ({pl}) = −∑

l pl lnpl is the Shannon entropy, while S(ρ) =
−trρlnρ is the von Neumann entropy. The logarithm refers to
the natural base throughout this paper. This measure is based
on relative entropy and has the operational meaning of entropy
production caused by M. In contrast, our approach is based on
metric-adjusted skew information rather than relative entropy
and yields a whole family of coherence measures, which have
the origin in quantum metrology due to the involvement of
quantum Fisher information.

It is straightforward to generalize the quantity defined by
Eq. (17) to a channel � as

Crel(ρ,�) = H ({pl}) +
∑

l

plS(ρl ) − S(ρ),

where pl = tr(KlρK†
l ), ρl = KlρK†

l /pl , and �(ρ) =∑
l KlρK†

l . In particular, when ρ is any pure state, then since
ρl will also be pure the above coherence measure is reduced to
Crel(ρ,�) = H ({pl}), which is simply the Shannon entropy
of the probability distribution of the measurement outcomes.

In order to facilitate a comparison between the above
coherence measure Crel(ρ,�) and our coherence measure
Ff (ρ,�), we depict the graphs of coherence of parametrized
pure states relative to the bit flip channel and amplitude damp-
ing channel in Figs. 1 and 2, respectively. We see that although
Ff (ρ,�) and Crel(ρ,�) share many similar features, they also
display remarkable differences. In general, they yield different
orderings of coherence, as illustrated in Figs. 1 and 2.
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FIG. 2. Comparison between the two coherence measures
Ff (|ψθ 〉,�AD) and Crel (|ψθ 〉,�AD) as functions of θ ∈ [0, π ] for
the amplitude damping channel �AD with p = 1/2 (example 1).
Here |ψθ 〉 = cos θ

2 |0〉 + sin θ

2 |1〉. We see that they display radi-
cally different behaviors in this special case: Ff (|ψθ 〉,�AD) is
decreasing in the parameter θ ∈ [0, π ], while Crel (|ψθ 〉, �AD) is
increasing in θ ∈ [0, π ]. Consequently, they yield different order-
ings of coherence of states relative to the same amplitude damping
channel.

For the purpose of more detailed comparison, we evalu-
ate Crel(ρ,�) for pure states and various channels studied
in Sec. III, and list the values as well as those of our co-
herence measure in Table I. We further list the maximal
values of coherence and the associated pure states achiev-
ing the maximal values in Table II. We see that in many
cases Ff (ρ,�) is more sensitive than Crel(ρ,�). In partic-
ular, for the weak measurement channel �W (example 4),
Ff (ρ,�W) is more sensitive than Crel(ρ,�W) in the sense
that maxρ Ff (ρ,�W) depends on the parameter (measure-
ment strength) x, while maxρ Crel(ρ,�W) is independent of
x. Similarly, for the Hadamard channel �H (example 5),
Ff (ρ,�H) is more sensitive than Crel(ρ,�H) in the sense
that maxρ Ff (ρ,�H) depends on the phase angle θ , while
maxρ Crel(ρ,�H) is independent of θ .

All the above comparisons are for pure states. It is desirable
to also consider mixed states for comparison since the func-
tion f in metric-adjusted skew information plays a significant

role only when mixed states are involved. For this purpose, we
consider parametrized mixed states

ρλ = λ|0〉〈0| + (1 − λ)|1〉〈1|, λ ∈ (0, 1)

and the following choices of the function f :

f1(x) = 1 + x

2
,

f2(x) =
(

1 + √
x

2

)2

,

f3(x) = 3(x − 1)2

16(x1/4 − 1)(x3/4 − 1)
,

which are all operator monotone functions satisfying f (0) >

0 and x f (1/x) = f (x), and thus can be employed to define
metric-adjusted skew information Ffi (ρ,�). We specify the
channel � to the amplitude channel �AD in example 1 with
p = 1/2. In this case, the various coherence measures can be
evaluated as

Crel(ρλ,�AD) = (1 − λ) ln 2,

Ff1 (ρλ,�AD) = (2λ − 1)2

4
,

Ff2 (ρλ,�AD) = (
√

λ − √
1 − λ)2

4
,

Ff3 (ρλ,�AD) = (λ1/4 − (1 − λ)1/4)(λ3/4 − (1 − λ)3/4)

4
.

To gain an intuitive understanding of the comparison, we
depict the graphs of the above coherence measures in Fig. 3.
We see that while our coherence measures yield qualitatively
similar behaviors with respect to the parameter λ (decreas-
ing and then increasing), the relative entropy of coherence
Crel(ρλ,�) is a monotonically decreasing function of λ. This
further highlights some differences between our coherence
measures based on metric-adjusted skew information and the
coherence measure Crel(ρ,�) in the literature.

In Refs. [25,26], several coherence measures involving
optimization were introduced. Since it is usually difficult to
perform the optimization, these quantities are in general dif-
ficult to calculate. Of course, each coherence measure may
have its own merits and usage in different contexts, and they

TABLE I. Comparison between the two coherence measures Crel (ρ, �) and Ff (ρ,�) of pure states ρ relative to various channels
�(ρ ) = ∑

l KlρK†
l in Sec. III. Here the pure states ρ = 1

2 (1 + ∑3
i=1 riσi ) are completely determined by the Bloch parameters ri with

r = √
r2

1 + r2
2 + r2

3 = 1. The measurement induced by the channel � yields the outcome probability pl = tr(KlρK†
l ), H ({pi}) = −∑

i pilnpi

is the Shannon entropy, and q = 1 − √
1 − p.

Channels � Coherence Ff (ρ,�) Coherence Crel (ρ, �)

�BF (1 − p)(1 − r2
1 )

�PF (1 − p)(1 − r2
3 ) H ({p, 1 − p})

�BPF (1 − p)(1 − r2
2 )

�AD (q + (p − q)r2
3 )/2

H ({p(1 − r3)/2, 1 − p(1 − r3)/2})
�PD (1 − r2

3 )q/2
�De 2p H ({p, p, p, 1 − 3p})
�W (1 − r2

3 )[1 − 2
√

x(1 − x)]/2 H ({[1 + (1 − 2x)r3]/2, [1 − (1 − 2x)r3]/2})
�H (1 − r2

3 )(1 − |α| cos θ )/2 H ({|α|, (1 + r3)(1 − |α|)/2, (1 − r3)(1 − |α|)/2})
�T [1 − t (1 + r2

1 ) − (1 − 2t )r2
2 ]/(2 − 2t ) H ({t (1 + r1), [1 − t (1 + r1) ± √

1 − 2tr2]/2})
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TABLE II. Comparison between the maximal coherence as quantified by maxρ Ff (ρ,�) and maxρ Crel (ρ,�) for prototypical channels.
The maximum is taken over all pure states ρ = 1

2 (1 + ∑3
i=1 riσi ), which are completely determined by the Bloch parameters ri with r =√

r2
1 + r2

2 + r2
3 = 1. Note that, due to the convexity, the maximum of both the coherence measures Ff (ρ,�) and Crel (ρ, �) can be achieved by

pure states. H ({pi}) = −∑
i pilnpi is the Shannon entropy, and q = 1 − √

1 − p.

Channels � maxρ Ff (ρ, �) maxρ Crel (ρ,�) argmaxρFf (ρ,�) argmaxρCrel (ρ,�)

�BF r1 = 0
�PF 1 − p H ({p, 1 − p}) r3 = 0 Any pure state
�BPF r2 = 0
�AD, p < 1/2

p/2
H ({p, 1 − p})

r3 = ±1
r3 = −1

�AD, p � 1/2 ln 2 r3 = 1 − 1/p
�PD, p < 1/2

q/2
H ({p, 1 − p})

r3 = 0
r3 = −1

�PD, p � 1/2 ln 2 r3 = 1 − 1/p
�De 2p H ({p, p, p, 1 − 3p}) Any pure state Any pure state
�W 1/2 − √

x(1 − x) ln 2
r3 = 0 r3 = 0

�H (1 − |α| cos θ )/2 H ({|α|, (1 − |α|)/2, (1 − |α|)/2})
�T, 0 � t < 1/6

1/2
H ({2t, (1 − 2t )/2, (1 − 2t )/2})

r3 = ±1
r1 = 1

�T, 1/6 � t � 1/3 ln 3 r1 = 1/(3t ) − 1, r2 = 0

complement each other in providing a more complete picture
of coherence.

V. SUMMARY

We have introduced a family of coherence measures of a
state relative to a channel via metric-adjusted skew informa-
tion, and have revealed their basic properties. This generalizes
the coherence of a state relative to an orthonormal basis (von
Neumann measurement) to a general channel beyond POVMs.
For a compact Lie group, we have shown that the coherence
of a state relative to the twirling channel associated with the
group can be used to characterize the asymmetry of this state

FIG. 3. Comparison between the coherence measures
Ffi (ρλ, �AD) and Crel (ρλ, �AD), as functions of the mixing
parameter λ ∈ (0, 1) for the amplitude damping channel �AD with
p = 1/2 (example 1). Here ρλ = λ|0〉〈0| + (1 − λ)|1〉〈1|. We see
that Ffi (ρλ, �AD) share similar properties for i = 1, 2, 3 (all are
special instances of coherence measures defined via metric-adjusted
skew information). In sharp contrast, Ffi (ρλ,�AD) and Crel (ρλ, �AD)
are radically different in the sense that they display different
monotonicity: Ffi (ρλ, �AD) is decreasing in λ ∈ (0, 1/2] and
increasing in λ ∈ [1/2, 1), but Crel (ρλ, �AD) is monotonically
decreasing in λ ∈ (0, 1). Ffi (ρλ, �AD) and Crel (ρλ,�AD) yield
different orderings of coherence.

relative to the group. To illustrate these coherence measures,
we have evaluated them for several qubit channels and have
found that the effects of a qubit channel for the coherence
of a state exhibit qualitatively similar behaviors for all op-
erator monotone functions. This is a special effect for qubit
systems.

We have made a rather detailed comparison between our
coherence measures and the relative entropy of coherence
in the literature. We have illuminated some remarkable dif-
ference between them. In general, they yield quite different
orderings of coherence. They capture coherence from dif-
ferent angles and have their own advantages in different
contexts.

One may further consider coherence via more general in-
formation quantities and related issues. What is the advantage
of metric-adjusted skew information over other quantities re-
lated to quantum Fisher information? General quantum Fisher
information is characterized by monotonicity under coarse
graining (channels), as such, it is rather abstract in general.
The metric-adjusted skew information has the advantage that
it is a sufficiently large family including many important in-
formation quantities such as the Wigner-Yanase-Dyson skew
information and the most celebrated quantum Fisher infor-
mation involving the symmetric logarithmic derivative, and
in the meantime has an explicit form for manipulation and
calculation. However, other coherence measures relative to
channels via generalized quantum Fisher information and var-
ious entropies such as the relative Tsallis entropy are certainly
worth investigating. A more detailed comparative study of
different coherence measures is also desirable.

In view of the information-theoretic meaning of the co-
herence measures via the metric-adjusted skew information,
it is desirable to further investigate their theoretical implica-
tions and experimental applications. One may try to apply
these quantifiers to studying correlations, quantum interfer-
ence, quantum metrology, and quantum chaos, which are left
for further investigations. We hope these coherence measures
based on the metric-adjusted skew information may shed light
on the structure of quantum coherence in particular and quan-
tum information processing in general.
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