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Quantum simulation of quantum phase transitions using the convex
geometry of reduced density matrices
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Transitions of many-particle quantum systems between distinct phases at absolute-zero temperature, known
as quantum phase transitions, require an exacting treatment of particle correlations. In this work, we present
a general quantum-computing approach to quantum phase transitions that exploits the geometric structure of
reduced density matrices. While typical approaches to quantum phase transitions examine discontinuities in
the order parameters, the origin of phase transitions—their order parameters and symmetry breaking—can be
understood geometrically in terms of the set of two-particle reduced density matrices (2-RDMs). The convex
set of 2-RDMs provides a comprehensive map of the quantum system including its distinct phases as well as
the transitions connecting these phases. Because 2-RDMs can potentially be computed on quantum computers at
nonexponential cost, even when the quantum system is strongly correlated, they are ideally suited for a quantum-
computing approach to quantum phase transitions. We compute the convex set of 2-RDMs for a Lipkin-Meshkov-
Glick spin model on IBM superconducting-qubit quantum processors. Even though computations are limited to
few-particle models due to device noise, comparisons with a classically solvable 1000-particle model reveal
that the finite-particle quantum solutions capture the key features of the phase transitions including the strong
correlation and the symmetry breaking.

DOI: 10.1103/PhysRevA.106.012434

I. INTRODUCTION

Phase transitions such as the melting of ice arise from
thermal fluctuations [1]. Even at absolute zero in the absence
of thermal fluctuations, transitions between phases, known
as quantum phase transitions (QPTs), can occur from quan-
tum fluctuations arising from the uncertainty relations [2–4].
Importantly, these quantum fluctuations and their associated
phase transitions are significant for a range of temperatures
beginning at absolute zero. An understanding of these tran-
sitions is critical to addressing outstanding problems in the
study of magnetic insulators [5–7], electron gases [8–11],
heavy-fermion compounds [12–14], and high-temperature su-
perconductors [15–21]. Experimental realizations of QPTs
often involve laser traps of individual atoms and ions [22–27],
or the synthesis of exotic materials [28–30] requiring sig-
nificant investment in experimental setups and synthesis
techniques. The advent of cloud-accessible quantum com-
puting devices [31], which allow for a significant degree of
control over the preparation of an experimental quantum sys-
tem, provides a promising new avenue for the exploration of
highly correlated systems [32–35] and QPTs [36].

In this work, we present a quantum-computing approach
to quantum phase transitions that exploits the geometric
structure of two-particle reduced density matrices (2-RDMs).
Traditional approaches to QPTs are typically framed in terms
of the many-particle wave functions of ground and excited
states [2–4], which are readily prepared on hybrid quantum-
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classical computers but not easily measured in their entirety
due to their exponential scaling with the number of particles.
Quantum computers allow us to probe directly the polyno-
mially scaling 2-RDM by tomography [37] without classical
storage of the exponentially scaling many-particle wave func-
tion [34,37,38], which potentially enables the treatment of
significantly larger systems. A 2-RDM-based analysis for
QPTs on quantum computers could enable the study of QPTs
for larger system sizes than either classical 2-RDM meth-
ods [39–42] or wave-function-based modeling on quantum
devices.

Traditional wave-function analysis of QPTs relies on find-
ing discontinuities in the ground-state energy, but this method
can miss important system symmetries. A complementary
analysis based on 2-RDMs developed by Erdahl and Jin [39]
and Gidofalvi and Mazziotti [40,41] characterizes QPTs in
terms of the geometric set of 2-RDMs, particularly the move-
ment of the ground-state 2-RDM between different phases.
Separate work, inspired by the link between bipartite entan-
glement and QPTs, found that changes in individual elements
of the 2-RDM set can also indicate critical phenomenon
[43]. Additional work in this field by Zauner and Verstraete
[42] found that a geometric analysis of the ground-state set
of 2-RDMs provides a powerful visualization of symmetry
breaking and phase transitions in both classical and quantum
systems, which hearkens back to the geometric approach de-
veloped by Gibbs and Maxwell by generalizing Maxwell’s
eponymous surface to spin systems.

In contrast to the traditional description of phase tran-
sitions, 2-RDM theory provides a generalizable geometric
framework for quantum phase transitions in terms of the
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convex set of 2-RDMs that has two important advantages:
(1) based on a quantum information perspective, the 2-RDM
theory relies upon the state space of all two-body observables
rather than a specific Hamiltonian to examine the transition,
and (2) it reduces the analysis of an infinite space of Hamil-
tonians to the study of recognizable features like planes or
ruled surfaces in the finite and convex set of 2-RDMs. Such
a three-dimensional analysis allows for visualizing a greater
swath of the space of all possible Hamiltonians than tradi-
tional single-order-parameter or energy-level analysis. While
sharing many of the same observables as the conventional
analysis, the geometric perspective in a reduced state space
creates a powerful, general framework for studying and un-
derstanding quantum criticality.

Using the Lipkin-Meshkov-Glick (LMG) spin model [44],
we show that even with noisy intermediate-scale quantum
(NISQ) devices [45], the signature features of the quantum
phase transition are captured from the measured set of 2-
RDMs. LMG is a widely used bench marking system for
many-body approximation methods [46–48] and has been ex-
tensively studied for its phase behavior [40,49–53]. Using the
unitary transformations available to a quantum computer, a
simulated finite-particle LMG system is manipulated through
several critical regions. Tomography of the system is used
to determine the ground-state set of 2-RDMs [34,37,38,54],
which reveals discontinuities in the system’s order parameters.
Additionally, the geometry of the ground-state set provides
evidence of symmetry breaking on the NISQ devices [40,55].

II. THEORY

A. Reduced density matrix

RDM mechanics is an alternative to the wave-function
mechanics traditionally used in quantum molecular studies
[56,57]. Because the fundamental interactions in electronic
systems are pairwise, the energies and properties of such
systems are computable from a knowledge of the 2-RDM. The
1- and 2-RDMs are obtained by integrating the density matrix,
|ψ〉 〈ψ |, over N − 1 or N − 2 particles where the elements
of the 1- and 2-RDMs are given in the second-quantization
formalism by

1Di
j = 〈ψ | â†

i â j |ψ〉, (1)

2Di j
kl = 〈ψ | â†

i â†
j âl âk |ψ〉, (2)

in which âi and â†
i are the fermionic annihilation and creation

operators for the spin-orbital i. These pairs of operators can
be expressed as strings of Pauli matrices, which are directly
measurable on the quantum computer [34]. The resulting
2-RDMs, according to Rosina’s theorem, completely char-
acterize the ground-state energy and order parameters of a
system with only pairwise interactions [58,59], circumventing
the need for a full wave-function description of the system,
which could require significantly more measurements on a
NISQ device [60], thereby increasing error and computa-
tional time. Discontinuities in the individual order parameters
obtained from the 2-RDM as the system’s Hamiltonian is
manipulated, can be used to find critical points [40,55].

Three-dimensional (3-D) graphical analysis of the set of
2-RDMs allows for the identification and classification of
the system’s critical points, as well as direct observation of
symmetry breaking. Additionally, as these graphs are 3-D
slices of the total RDM set, their construction only requires a
subset of 2-RDM elements, potentially allowing for a further
pruning of necessary measurements. In the thermodynamic
limit, first-order QPTs appear as planes or discontinuities in
the extremal or ground-state values of the 2-RDM, which can
be identified with no knowledge of the Hamiltonian of the
system. In systems with more than three degrees of freedom
within the RDM, maximizing the size of these discontinuous
regions, by changing which 3-D slice is taken, indicates the
order parameter with maximum symmetry breaking and pro-
vides a systematic way to discover symmetry breaking in a
system [42]. Second-order QPTs manifest as regions where
the extremal values of the 2-RDM set change rapidly with
changes in the Hamiltonian parameters or the curvature be-
comes discontinuous [40,42]. To solidify these concepts, we
analyze the LMG system through the lens of RDM mechanics.

B. The Lipkin-Meshkov-Glick model

The Lipkin-Meshkov-Glick (LMG) model system consists
of two energy levels separated by ε each containing N-
degenerate states. There are N fermions in the system, with
a coupling parameter λ that scatters pairs of particles between
the levels. A configuration of the system is characterized by
two quantum numbers: σ = ±1 indicating the energy level
and p = {0, . . . , N} specifying the state within that level [44].
In the second quantization formalism, the LMG Hamiltonian
is

Ĥ = 1

2
ε
∑
pσ

σ â†
pσ âpσ + 1

2
λ

∑
pp′σ

â†
pσ â†

p′σ âp′−σ âp−σ . (3)

To solve for the LMG eigenstates exactly, it is helpful to
reduce the degrees of freedom of the problem through in-
corporation of the system’s symmetries into the Hamiltonian
through a quasispin formalism. This formalism recognizes
that the LMG two-level system is analogous to a system
comprised of N two-spin-state particles, with a Hamiltonian

Ĥ = εĴz + 1
2λ(Ĵ2

+ + Ĵ2
−), (4)

using the traditional spin operators

Ĵ+ =
∑

p

â†
p,+1âp,−1, Ĵ− =

∑
p

â†
p,−1âp,+1,

and

Ĵz = 1

2

∑
pσ

σ â†
pσ âpσ . (5)

In this quasispin formalism, p and σ indicate the particle
and the Z component of its spin, respectively. Writing the
Hamiltonian in the | j, jz〉 basis reveals a block-diagonal ma-
trix, which can be diagonalized at a much lower computational
cost than the original 2N × 2N matrix [44]. The 2-RDM for the
LMG system in this formalism is completely defined by the
three expectation values 〈Ĵz〉, 〈Ĵ2

z 〉, 〈Ĵ2
+ + Ĵ2

−〉 [61]. Therefore,
the extremal points of this set can be visualized in a space
defined by these parameters.

012434-2



QUANTUM SIMULATION OF QUANTUM PHASE … PHYSICAL REVIEW A 106, 012434 (2022)

FIG. 1. The convex hull of the 2-RDMs of the 1000-particle
Lipkin model. The cyan and green coloring distinguish the two ruled
surfaces of the convex set, which contain lines parallel to the 〈Ĵz〉
and 〈Ĵ2

+ + Ĵ2
−〉 axes, respectively. The line, traced by the black points,

that separates the two ruled surfaces contains the set of ground-state
2-RDMs. These points are projected into the 〈Ĵz〉-〈Ĵ2

+ + Ĵ2
−〉 plane as

represented by a series of blue dots. The lines along the green surface
show the steps of a trajectory along the edges of the set as λ is taken
from infinity to zero while ε = ±1. All axes are in atomic units.

C. Convex hull of ground-state set of 2-RDMs

The convex hull of the ground-state set of 2-RDMs for
the 1000-particle LMG system can be seen in Fig. 1, which
was obtained through the exact diagonalization of the Hamil-
tonian. This representation gives geometric insight into both
general properties of the 2-RDM and more specific properties
of the LMG system and serves as a reference in the geomet-
ric analysis of noisier results from simulations of the LMG
system on NISQ devices. The ground-state 2-RDMs lie on
the boundary of the convex set while excited-state 2-RDMs
generally lie inside the convex set. This plot also reveals
the existence of two ruled surfaces, colored green and blue,
indicating two forms of symmetry breaking in the system.
Points along the lines of the ruled surfaces are ground states
of the Hamiltonian with all of the same order parameters
except for the parameter with an axis parallel to the lines. This
indicates that there is symmetry breaking in the system [42].
The green surface has lines parallel to the 〈Ĵz〉 axis, which for
ε �= 0 indicates a breaking of the spin-flip symmetry of the
ground state in regions with small λ [62]. This manifests as
the ground state preferring either an all up or all down spin
configuration based on the value of ε. Figure 2 captures this
symmetry breaking by demonstrating how the order parameter
〈Ĵz〉 changes with λ for systems with positive and negative
values of ε. These systems are identical for large λ values, but
as ε becomes a more significant contribution to the Hamilto-
nian, a symmetry-breaking divergence occurs between the two
systems. The blue surface with lines parallel to the 〈Ĵ2

+ + Ĵ2
−〉

indicates another symmetry breaking, where the ground state
has either a positive or negative eigenvalue for 〈Ĵ2

+ + Ĵ2
−〉.

This eigenvalue reflects the parity of the ground-state wave
function. Figure 3 shows the divergence of the positive and
negative λ symmetry invariant systems as the Hamiltonian is

FIG. 2. Symmetry breaking of the 〈Ĵz〉 order parameter in the
1000-particle Lipkin model. The black and gray lines show the
change in 〈Ĵz〉, in atomic units, as λ is changed for systems with a
positive and negative value of ε, respectively.

tuned from an ε- to a λ-dominated region at ε ≈ 1. Figures 2
and 3 also both contain sharp changes in the curvature at
λ, ε ≈ 1. These sharp changes or discontinuities in the deriva-
tives of the order parameters are signs of a second-order QPT.
Signatures of these QPTs can also be found in the set of
2-RDMs.

The hull plot, Fig. 1, contains a projection of the 2-RDM
into the 〈Ĵz〉-〈Ĵ2

+ + Ĵ2
−〉 plane, which is seen in more detail

in Fig. 4. This two-dimensional (2-D) representation contains
two trajectories of 2-RDMs as λ is taken from ∞ → 0 for
positive and negative values of ε. The plot demonstrates that
the systems start from the same symmetry invariant 2-RDM
at λ = ∞, but diverge radically for infinitesimally small pos-
itive and negative values of ε. This graph also shows the
presence of a second-order phase transition around λ = 1.
From λ = 0 → 1 the 2-RDM barely changes, but suddenly
after λ = 1 the 2-RDM begins to move very rapidly along the
boundary of the set before decelerating again near the apex of
the curve. This “acceleration” of the 2-RDM is characteristic

FIG. 3. Symmetry breaking of the 〈Ĵ2
+ + Ĵ2

−〉 axis in the 1000-
particle Lipkin model. The black and gray lines show the change in
〈Ĵ2

+ + Ĵ2
−〉, in atomic units, as ε is changed for systems with a positive

and negative value of λ, respectively.

012434-3



WARREN, SAGER-SMITH, AND MAZZIOTTI PHYSICAL REVIEW A 106, 012434 (2022)

FIG. 4. The 2-RDM for the 1000-particle Lipkin model. The
black line shows the extremal or ground-state values of the 2-RDM
set. The black and gray circles show the trajectory of the 2-RDM
along the boundary of the set as λ is brought from infinity to zero
with ε either being greater, for black, or less, for gray, than zero. All
axes are in atomic units.

of a second-order phase transition [40,42]. For finite-particle
LMG systems, this acceleration is not as rapid as it is for the
system in the thermodynamic limit, where the speed of the
2-RDM diverges, but a finite signature of this QPT is still
present [40,53,63].

The quasispin formalism for the LMG system can be
mapped onto the two-state qubit system of a quantum com-
puter (QC), where the traditional computational basis is |↑〉 =
|0〉 and |↓〉 = |1〉 [64]. Therefore each quasiparticle in the
LMG system or equivalently each pair of pth states is rep-
resented by a qubit on the QC. Quantum computers also offer
the ability to generate arbitrary interactions between particles
including the two-spin-flip interaction of the LMG system
(circuit details can be found in Appendix A). Measurement
of the 2-RDM can then be used to identify the presence of a
QPT through the methods previously discussed.

III. RESULTS

Evidence of a QPT on a quantum computer is obtained
from a three-qubit simulation of the LMG system by mea-
suring elements of the system’s ground state 2-RDMs. The
system is simulated by the circuit in Fig. 11 for ε = ±1
and λ ∈ [−25, 25]. The experimentally gathered convex hull
for this system can be seen in Fig. 5, with the exact results
outlining a larger but similar hull. This contraction is typical in
quantum computing experiments [38] due to systematic errors
such as qubit crosstalk, T1 and T2 relaxation times, and gate
errors. Specifically, T1 errors greatly contribute to the contrac-
tion of the set. T1 error or bit flipping populates states with
lower 〈J2

z 〉 values as those states are mixed spin. 〈Ĵ2
+ + Ĵ2

−〉 =
〈J2

x − J2
y 〉 values suffer from this same error. Measurement

of 〈J2
x/y〉 requires a rotation of the X or Y component of the

spin to the Z axis (see Appendix B for details on measure-

FIG. 5. The convex hull of the three-particle Lipkin model 2-
RDMs. The black line outlines the edges of the exact set of 2-RDMs,
while the inner shape is the convex hull of the QC results. A pro-
jection of the QC results is shown by a blue scatter plot. The cyan
and green coloring distinguish the two ruled surfaces of the convex
set. The lines along the green surface connect points of constant λ

with ±ε with the distance between lines decreasing for greater values
of λ. Experimental results were obtained from ibmq_quito quantum
computers [31] using the circuit found in Fig. 11. All axes are in
atomic units.

ment of the RDM), thus T1 relaxation populating mixed spin
states will also decrease 〈J2

x/y〉. Simulations on ideal quantum
computers, which only include random noise, indicate that,
as systematic errors are decreased, this contraction will also
subside (additional analysis of the contraction of the set on
multiple NISQ devices can be found in the Supplemental
Material [65]). The hull, Fig. 5, shows many of the interesting
features that were present in the infinite-dimensional case,
Fig. 1, including the two ruled surfaces that indicate symmetry
breaking in the system without any reference to the underlying
Hamiltonian. However, in this figure a new plane parallel to
the 〈Ĵz〉-〈Ĵ2

+ + Ĵ2
−〉 plane appears due to the finite size and

odd number of particles in the system. The four vertices of
this plane are degenerate 2-RDMs corresponding to the limits
(ε, λ) → [(0+,> 0), (0+,< 0), (0−,> 0), (0−,< 0)] which
are all within the disordered phase of the Lipkin Model. This
discontinuity in the order parameters between these degener-
ate states tells of a actual level and an avoided-level crossing
as ε and λ, respectively, flip signs.

The plot contains lines of constant λ, which become
more tightly spaced as λ goes to infinity, which suggests the
presence of a finite signature of a second-order QPT. This
signature can be seen in Figs. 6 and 7. Figure 6 demonstrates
acceleration of the ground-state 2-RDMs along the boundary
of the convex set of 2-RDMs between the aligned and dis-
ordered spin regions [40]. Despite the contraction of the set
in this figure, the change in 〈Jz〉 with respect to λ is nearly
identical to the exact results as seen in Fig. 7 showing the
finite-particle signature of a second-order QPT. Note that,
due to the smaller particle number, the sudden acceleration
at small values of λ is less pronounced than in the thermo-
dynamic limit shown in Fig. 4, but the deceleration for large
values of λ is the same.
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FIG. 6. Comparison of experimental 2-RDMs with Exact for
three qubits. Experimental results were obtained from ibmq_quito
quantum computer [31]. λ, 〈Ĵz〉, 〈Ĵ2

+ + Ĵ2
−〉 are in reference to Eq. (4).

All axes are in atomic units.

The convex hull of the four-qubit 2-RDM can be seen in
Fig. 8. This hull differs immediately from the three-qubit hull
as it lacks the plane indicative of a first-order QPT due to
the even number of qubits in the system. The lines along the
hull illustrating the movement of 2-RDMs as λ is increased
also appear to no longer be parallel to each other or to the
〈Ĵz〉 axis. This asymmetry is reflected in the 2-D projection
which can be seen more clearly in Fig. 9. The asymmetry
across the 〈Jz〉 axis arises primarily due to T1 relaxation. T1
relaxation to the ground state of the qubit, |0〉, results in a shift
towards larger 〈Jz〉 values due to mapping of the quasispin
formalism to the qubits as discussed in the theory section. T1
relaxation also explains why the effect is less drastic in the
three-qubit results, as shorter circuits are less prone to this

FIG. 7. Gradient of 〈Ĵz〉 for Lipkin model on a three-qubit circuit.
Gray shading shows one standard deviation from the average of ten
experimental measurements of 213 shots. These results were obtained
from the circuit in Fig. 11 on the imbq_quito quantum computer [31].
λ and 〈Ĵz〉 are in reference to Eq. (4) and plotted in atomic units.

FIG. 8. The convex hull of the four-particle Lipkin model 2-
RDMs. The black line outlines the edges of the exact set of 2-RDMs,
while the inner shape is the convex hull of the QC results. A pro-
jection of the QC results is shown by a blue scatter plot. The cyan
and green coloring distinguish the two ruled surfaces of the convex
set. The lines along the green surface connect points of constant λ

with ±ε to the distance between lines decreasing for greater values
of λ. Experimental results were obtained from ibmq_quito quantum
computers [31] using the circuit found in Fig. 12. All axes are in
atomic units.

form of decoherence. This shift has an even more dramatic
effect on the 〈J2

z 〉 values as seen in Fig. 8. The exact results in
the figure demonstrate the approach to a symmetry-invariant
2-RDM as λ → ∞, something lacking in the three-qubit case.
The experimental results are slightly offset from one another
but still seem to approach a symmetry-invariant 2-RDM. The
characteristic acceleration and deceleration of the 2-RDMs

FIG. 9. Comparison of experimental 2-RDMs with Exact for
four qubits. Experimental results were obtained from ibmq_quito
quantum computer [31]. λ, 〈Ĵz〉, and 〈Ĵ2

+ + Ĵ2
−〉 are in reference to

Eq. (4). All axes are plotted in atomic units.

012434-5



WARREN, SAGER-SMITH, AND MAZZIOTTI PHYSICAL REVIEW A 106, 012434 (2022)

FIG. 10. Gradient of 〈Ĵz〉 for the Lipkin model on the four-qubit
circuit. Gray shading shows one standard deviation from the average
of five experimental measurements 213 shots. These results were
obtained from the ibmq_quito quantum computer [31] using the
circuit found in Fig. 12. QASM results are from the IBM QASM
simulator. λ and 〈Ĵz〉 are in reference to Eq. (4) and are plotted in
atomic units.

is also apparent in the figure. This behavior is confirmed in
Fig. 10, where the data qualitatively matches the exact results
peaking at λ = 1, indicating the finite-particle signature of a
phase transition in the system.

IV. DISCUSSION AND CONCLUSIONS

Wave-function-based methods typically characterize QPTs
by showing discontinuities in the energy surface but can miss
important symmetries of the system as well as require a pro-
hibitively large number of measurements on a noisy quantum
device increasing both computational time and error. In con-
trast, 2-RDM analysis takes advantage of the pairwise nature
of interactions to decrease the number of measurements on a
quantum computer necessary to describe a QPT and utilizes
the geometry of the convex set to demonstrate symmetry
breaking in the system without any reference to the underlying
Hamiltonian. Here we demonstrate the 2-RDM approach to
QPTs on NISQ simulators and devices by computing the
finite-particle signatures of the QPT in the Lipkin model.

When the scattering potential is increased in the Lipkin
model, taking the system from an ordered to disordered re-
gion, the ground-state 2-RDM rapidly accelerates along the
boundary of the set in the critical region. Because the 2-RDM
contains information for all of the one- and two-body oper-
ators, its movement along the boundary of the set reflects
the change in order parameters of the ground state, provid-
ing signatures of a QPT. Therefore, measurements showing
discontinuities in this movement allow for recovery of critical
behavior without any reference to the wave function [40]. The
Lipkin model, shown for the three- and four-particle systems,
has ruled surfaces on the convex hull of the set of ground-state
2-RDMs, where the lines along these ruled surfaces connect
degenerate states with different values of an order parameter
reflecting symmetry breaking [42].

While the Lipkin model has exact solutions, the methodol-
ogy outlined could be combined with quantum eigensolvers,
in particular the variational quantum eigensolver (VQE) or the
contracted quantum eigensolver (CQE) for resolving ground-

FIG. 11. Three-qubit experimental circuit. Measurement of this
circuit only provides the z component of the qubit expectation value.
The determination of the x or y components of the expectation
value requires an application of the H gate or the S† then H gates,
respectively, immediately before the measurement step of the circuit.
X is the X gate, U is the traditional 2-D rotation matrix, the two-qubit
gates are CNOT gates, and the final gate is a measurement.

state 2-RDMs [66], to arrive at solutions for systems where the
exact ground states are unknown from classical computations.
NISQ devices with around 50 qubits would be able to explore
systems that are well beyond the exactly solvable limit of clas-
sical devices and would strain many approximate methods.
Studying real systems, like potential candidates for supercon-
ductors or exciton condensates, would be possible with VQE
or CQE which are able to capture effectively long-range order
due to their basis in 2-RDM theory, and being quantum chem-
ical methods they are easily transferable to different models.
These results underscore the advantages of 2-RDM analysis
on NISQ devices by demonstrating the reduced tomography
costs relative to wave-function methods and by utilizing the
geometry of the ground-state set of 2-RDMs to resolve both
symmetry breaking and phase transitions in the LMG model.
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APPENDIX A: CIRCUIT DETAILS

The circuits developed in this article are for the three- and
four-particle LMG systems where the σ = ±1 LMG pair of
spin-orbitals, p [see Eq. (4)], are represented by the |0〉 and
|1〉 states of the pth qubit, respectively. The experimental
expectation values result from averaging 5 × 214 and 5 × 213

measurements of each relevant Pauli strings (see Appendix B)
on the quantum devices for the three- and four-qubit circuits,
respectively. The circuit for the three-qubit system can be
found in Fig. 11. The first step is to rotate the state vector
from the |000〉 configuration to the |111〉 or all down “spin”
configuration using X gates (following the computer science
tradition in naming |0〉 the excited state) [64]. The following
unitary and CNOT gates rotate the |111〉 state into

α1 |001〉 + α2 |010〉 + α3 |100〉 + β |111〉, (A1)

where each coefficient is a function of the rotation angles
of the unitary gates. By solving the Hamiltonian exactly, the
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FIG. 12. Four-qubit experimental circuit. Measurement of this
circuit only provides the z component of the qubit expectation value.
The determination of the x or y components of the expectation value
requires an application of the H gate or the S† then H gates, respec-
tively, immediately before the measurement step of the circuit. X is
the X gate, U is unitary rotation matrix (see Supplemental Material
[65]), the two-qubit gates are CNOT gates, and the final gates are
measurements of the qubits.

ground-state coefficients are known, so it is possible to solve
a system of equations for the rotation angles. With the correct
selection of rotations for the U gates, the resulting state is
the lowest-energy eigenvector of the Lipkin Hamiltonian with
coefficients dependent on the parameter λ.

The four-qubit circuit, Fig. 12, is constructed similarly to
the three-qubit circuit, with an initial rotation to an all “down
spin” state, and a series of rotations to the lowest energy
eigenstate:

α |0000〉 + β(|0011〉 + |0101〉 + |1001〉 + |1010〉
+ |1100〉) + γ |1111〉. (A2)

These circuits were developed with the goals of minimiz-
ing the number of CNOT gates, which are the largest sources
of error in quantum computations, and satisfying the connec-
tivity of the IBM computers ibmq_belem, and imbq_quito
running on the Falcon r4T processor [31]. Unlike an ideal QC,
these systems can only perform CNOT gates between a subset
of their qubits. CNOT gates that are not native to the machine
can be decomposed into native CNOT gates, but this process
can add a significant number of extra two-qubit gates, which
increases noise and hence the error of the results.

The unitary circuit referenced in Figs. 11 and 12 can be
decomposed into the basis gates:

In matrix notation,

√
X = 1

2

[
1 + i 1 − i
1 − i 1 + i

]
, (A3)

−RZ (θ ) = Rz(θ + π ) =
[

1 0
0 eθ+π

]
, (A4)

Z = Rz(3π ) =
[

1 0
0 −1

]
. (A5)

The resulting unitary matrix has the property that

U †MU = R†MR, (A6)

where

R =
[

cos θ/2 − sin θ/2
sin θ/2 cos θ/2

]
, (A7)

which is the classic two-dimensional rotation matrix and M is
any arbitrary matrix.

APPENDIX B: REDUCED DENSITY MATRIX
RECONSTRUCTION

The energy expectation value of the Lipkin system can be
written as a function of the 1- and 2-RDMs as

〈Ĥ〉 = 1

2
ε
∑
pσ

σ 1Dp
p + 1

2
λ

∑
pq

2Dpq
pq. (B1)

These elements can be constructed from linear combinations
of expectation values of at most pairs of Pauli strings [34], as
seen below:

1Dp
p = 〈σzp〉, (B2)

2Dpq
pq = 〈σxpσxq〉 − 〈σypσyq〉. (B3)

Figures 11 and 12 illustrate how to determine the expectation
values for z Pauli strings, but the reconstruction of the RDM
requires measurement of any combination of Pauli strings.
Measuring the x and y component of a specific qubit can be
accomplished by inserting a Hadamard or the adjoint phase
gate (S†) then a Hadamard gate, respectively, before collaps-
ing the wave function through measurement. This allows for
the measurement of any combination of pairs of expectation
values.
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Quantum phases of matter on a 256-atom programmable quan-
tum simulator, Nature (London) 595, 227 (2021).

[28] L. Demkó, S. Bordács, T. Vojta, D. Nozadze, F. Hrahsheh, C.
Svoboda, B. Dóra, H. Yamada, M. Kawasaki, Y. Tokura, and I.
Kézsmárki, Disorder Promotes Ferromagnetism: Rounding of
the Quantum Phase Transition in Sr1xCaxRuO3, Phys. Rev. Lett.
108, 185701 (2012).

[29] Y. Xing, K. Zhao, P. Shan, F. Zheng, Y. Zhang, H. Fu, Y. Liu,
M. Tian, C. Xi, H. Liu, J. Feng, X. Lin, S. Ji, X. Chen, Q.-K.
Xue, and J. Wang, Ising superconductivity and quantum phase
transition in macro-size monolayer NbSe2, Nano Lett. 17, 6802
(2017).

[30] Y. Saito, T. Nojima, and Y. Iwasa, Quantum phase transitions
in highly crystalline two-dimensional superconductors, Nat.
Commun. 9, 778 (2018).

[31] IBM Quantum, https://quantum-computing.ibm.com/, 2021.
[32] R. P. Feynman, Simulating physics with computers, Int. J.

Theor. Phys. 21, 467 (1982).
[33] R. Ma, B. Saxberg, C. Owens, N. Leung, Y. Lu, J. Simon,

and D. I. Schuster, A dissipatively stabilized Mott insulator of
photons, Nature (London) 566, 51 (2019).

[34] L. M. Sager, S. E. Smart, and D. A. Mazziotti, Preparation of an
exciton condensate of photons on a 53-qubit quantum computer,
Phys. Rev. Research 2, 043205 (2020).

[35] L. M. Sager and D. A. Mazziotti, Superconductivity and non-
classical long-range order on a quantum computer, Phys. Rev.
Research 4, 013003 (2022).

[36] A. Smith, B. Jobst, A. G. Green, and F. Pollmann, Crossing a
topological phase transition with a quantum computer, Phys.
Rev. Research 4, L022020 (2022).

[37] S. E. Smart and D. A. Mazziotti, Efficient two-electron ansatz
for benchmarking quantum chemistry on a quantum computer,
Phys. Rev. Research 2, 023048 (2020).

[38] S. E. Smart, D. I. Schuster, and D. A. Mazziotti, Experimental
data from a quantum computer verifies the generalized Pauli
exclusion principle, Commun. Phys. 2, 11 (2019).

[39] R. M. Erdahl and B. Jin, The lower bound method for reduced
density matrices, J. Mol. Struct.: THEOCHEM 527, 207 (2000).

[40] G. Gidofalvi and D. A. Mazziotti, Computation of quantum
phase transitions by reduced-density-matrix mechanics, Phys.
Rev. A 74, 012501 (2006).

[41] C. A. Schwerdtfeger and D. A. Mazziotti, Convex-set de-
scription of quantum phase transitions in the transverse Ising
model using reduced-density-matrix theory, J. Chem. Phys.
130, 224102 (2009).

[42] V. Zauner, D. Draxler, L. Vanderstraeten, J. Haegeman, and F.
Verstraete, Symmetry breaking and the geometry of reduced
density matrices, New J. Phys. 18, 113033 (2016).

[43] L.-A. Wu, M. S. Sarandy, and D. A. Lidar, Quantum Phase
Transitions and Bipartite Entanglement, Phys. Rev. Lett. 93,
250404 (2004).

[44] H. J. Lipkin, N. Meshkov, and A. J. Glick, Validity of many-
body approximation methods for a solvable model: (I). Exact
solutions and perturbation theory, Nucl. Phys. 62, 188 (1965).

[45] C. D. Wilen, S. Abdullah, N. A. Kurinsky, C. Stanford, L.
Cardani, G. D’Imperio, C. Tomei, L. Faoro, L. B. Ioffe, C. H.
Liu, A. Opremcak, B. G. Christensen, J. L. DuBois, and R.
McDermott, Correlated charge noise and relaxation errors in
superconducting qubits, Nature (London) 594, 369 (2021).

[46] J. R. Hammond and D. A. Mazziotti, Variational two-electron
reduced-density-matrix theory: Partial 3-positivity conditions
for N-representability, Phys. Rev. A 71, 062503 (2005).

012434-8

https://doi.org/10.1038/s41467-018-04879-1
https://doi.org/10.1103/PhysRevLett.123.207402
https://doi.org/10.1088/0953-8984/8/48/003
https://doi.org/10.1038/nphys1374
https://doi.org/10.1038/nature23315
https://doi.org/10.1103/PhysRevLett.65.923
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1016/S0304-8853(97)00999-2
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1126/science.288.5465.475
https://doi.org/10.1038/nphys2128
https://doi.org/10.1038/s41467-018-04531-y
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1038/415039a
https://doi.org/10.1038/ncomms1374
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/s41467-021-21425-8
https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1103/PhysRevLett.108.185701
https://doi.org/10.1021/acs.nanolett.7b03026
https://doi.org/10.1038/s41467-018-03275-z
https://quantum-computing.ibm.com/
https://doi.org/10.1007/BF02650179
https://doi.org/10.1038/s41586-019-0897-9
https://doi.org/10.1103/PhysRevResearch.2.043205
https://doi.org/10.1103/PhysRevResearch.4.013003
https://doi.org/10.1103/PhysRevResearch.4.L022020
https://doi.org/10.1103/PhysRevResearch.2.023048
https://doi.org/10.1038/s42005-019-0110-3
https://doi.org/10.1016/S0166-1280(00)00494-2
https://doi.org/10.1103/PhysRevA.74.012501
https://doi.org/10.1063/1.3143403
https://doi.org/10.1088/1367-2630/18/11/113033
https://doi.org/10.1103/PhysRevLett.93.250404
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1038/s41586-021-03557-5
https://doi.org/10.1103/PhysRevA.71.062503


QUANTUM SIMULATION OF QUANTUM PHASE … PHYSICAL REVIEW A 106, 012434 (2022)

[47] J. M. Wahlen-Strothman, T. M. Henderson, M. R. Hermes, M.
Degroote, Y. Qiu, J. Zhao, J. Dukelsky, and G. E. Scuseria,
Merging symmetry projection methods with coupled cluster
theory: Lessons from the Lipkin model Hamiltonian, J. Chem.
Phys. 146, 054110 (2017).

[48] K. Robbins and P. J. Love, Benchmarking near-term quan-
tum devices with the variational quantum eigensolver and
the Lipkin-Meshkov-Glick model, Phys. Rev. A 104, 022412
(2021).

[49] J. Vidal, G. Palacios, and R. Mosseri, Entanglement in a second-
order quantum phase transition, Phys. Rev. A 69, 022107
(2004).

[50] R. Orús, S. Dusuel, and J. Vidal, Equivalence of Crit-
ical Scaling Laws for Many-Body Entanglement in the
Lipkin-Meshkov-Glick Model, Phys. Rev. Lett. 101, 025701
(2008).

[51] O. Castaños, R. López-Peña, J. G. Hirsch, and E. López-
Moreno, Classical and quantum phase transitions in the
Lipkin-Meshkov-Glick model, Phys. Rev. B 74, 104118
(2006).

[52] P. Ribeiro, J. Vidal, and R. Mosseri, Thermodynamical Limit of
the Lipkin-Meshkov-Glick Model, Phys. Rev. Lett. 99, 050402
(2007).

[53] W. D. Heiss, F. G. Scholtz, and H. B. Geyer, The large N
behaviour of the Lipkin model and exceptional points, J. Phys.
A: Math. Gen. 38, 1843 (2005).

[54] S. E. Smart and D. A. Mazziotti, Quantum-classical hybrid al-
gorithm using an error-mitigating N-representability condition
to compute the Mott metal-insulator transition, Phys. Rev. A
100, 022517 (2019).

[55] A. J. Coleman, Kummer variety, geometry of N-
representability, and phase transitions, Phys. Rev. A 66,
022503 (2002).

[56] D. A. Mazziotti, Realization of Quantum Chemistry without
Wave Functions through First-Order Semidefinite Program-
ming, Phys. Rev. Lett. 93, 213001 (2004).

[57] D. A. Mazziotti, Quantum chemistry without wave functions:
Two-electron reduced density matrices, Acc. Chem. Res. 39,
207 (2006).

[58] M. Rosina, in Reduced density operators with application to
physical and chemical systems, Queens Papers in Pure and
Applied Mathematics No. 11, edited by A. J. Coleman and R. M.
Erdahl (Queen’s University, Kingston, Ontario, 1968), p. 369.

[59] D. A. Mazziotti, Contracted Schrödinger equation: Determining
quantum energies and two-particle density matrices without
wave functions, Phys. Rev. A 57, 4219 (1998).

[60] D. G. Tempel and A. Aspuru-Guzik, Quantum computing with-
out wavefunctions: Time-dependent density functional theory
for universal quantum computation, Sci. Rep. 2, 391 (2012).

[61] K. Yasuda, Uniqueness of the solution of the contracted
Schrödinger equation, Phys. Rev. A 65, 052121 (2002).

[62] D. B. Stout, Spontaneous symmetry breaking in a solvable
nuclear model, Nucl. Phys. A 567, 553 (1994).

[63] S. Dusuel and J. Vidal, Finite-Size Scaling Exponents of the
Lipkin-Meshkov-Glick Model, Phys. Rev. Lett. 93, 237204
(2004).

[64] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, 10th ed. (Cambridge University Press,
Cambridge 2010).

[65] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.106.012434 for analysis of error-driven
contraction of the set of RDMs.

[66] S. E. Smart and D. A. Mazziotti, Quantum Solver of Contracted
Eigenvalue Equations for Scalable Molecular Simulations on
Quantum Computing Devices, Phys. Rev. Lett. 126, 070504
(2021).

012434-9

https://doi.org/10.1063/1.4974989
https://doi.org/10.1103/PhysRevA.104.022412
https://doi.org/10.1103/PhysRevA.69.022107
https://doi.org/10.1103/PhysRevLett.101.025701
https://doi.org/10.1103/PhysRevB.74.104118
https://doi.org/10.1103/PhysRevLett.99.050402
https://doi.org/10.1088/0305-4470/38/9/002
https://doi.org/10.1103/PhysRevA.100.022517
https://doi.org/10.1103/PhysRevA.66.022503
https://doi.org/10.1103/PhysRevLett.93.213001
https://doi.org/10.1021/ar050029d
https://doi.org/10.1103/PhysRevA.57.4219
https://doi.org/10.1038/srep00391
https://doi.org/10.1103/PhysRevA.65.052121
https://doi.org/10.1016/0375-9474(94)90024-8
https://doi.org/10.1103/PhysRevLett.93.237204
http://link.aps.org/supplemental/10.1103/PhysRevA.106.012434
https://doi.org/10.1103/PhysRevLett.126.070504

