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Quantum steering as resource of quantum teleportation

Yi Fan , Chuanlei Jia , and Liang Qiu *

School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, People’s Republic of China

(Received 3 March 2022; accepted 13 July 2022; published 25 July 2022)

Quantum steering, which lies between Bell nonlocality and entanglement, is a characteristic quantum cor-
relation. Its application in quantum information tasks is worth pursuing. In this paper, we investigate the
application of quantum steering as resource of quantum teleportation. It is found that two-qubit states violating
the three-setting linear steering inequality are always useful for teleportation. Some steerable states which obey
the Bell–Clauser-Horne-Shimony-Holt (CHSH) inequality could be used for teleportation. Two-qubit states that
are optimal for quantum teleportation for a fixed amount of steering are present. The optimal states achieve the
maximal average fidelity and also exhibit zero fidelity deviation.
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I. INTRODUCTION

Quantum teleportation [1] is a fundamental protocol to
transmit quantum information from one object to another
object using shared entanglement, where the spatially sepa-
rated sender and receiver are only allowed to perform local
operations and communicate among themselves via a classical
channel [2]. In the primitive teleportation scheme, a class of
maximally entangled states is required. In reality, however,
the available states are typically mixed entangled, and tele-
portation will not be perfect due to the interactions between
the transmitted qubit and the environment during sharing of
quantum entanglement or imperfection of preparation. The
noisy state is of little significance for information tasks, and
moreover, it will not provide any better transmission fidelity
than that of an ordinary classical communication channel if
the noisy state is mixed too much [3,4]. The average fidelity,
which is a measure of the expected closeness between the
input and output states, is the standard figure of merit for
quantum teleportation [5–9]. The average fidelity not only
could answer the question whether the entangled states can
offer nonclassical fidelity within the standard protocol sup-
plemented by local unitary operations, but also can be used to
indicate how a given entangled state is useful for teleportation.
Nevertheless, the average fidelity cannot give information on
fidelity fluctuations. The standard deviation of fidelity over
all input states is introduced to appropriately quantify such
fluctuations and is named as fidelity deviation [10,11].

Quantum steering, as a notion introduced by Schrödinger
in 1935 [12,13], is formalized from the perspective of quan-
tum information theory [14,15]. Steering captures the fact that
the local measurements on one side can remotely steer the
state on the other side when both sides share an entangled
state. Steering criteria, which are obtained using correlations,
state assemblages, and full information, are employed to de-
tect steering. In particular, quantum steering can be certified
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by the violation of steering inequality [16–27]. Steerable
states have an important application in randomness generation
[28], subchannel discrimination [29], quantum information
tasks [30], and one-sided device-independent processing in
quantum key distribution [31].

An attempt to make some general statement about steering
and teleportation was given in Ref. [32], which indicated that
two-qudit quantum states with large-enough fully entangled
fraction must be steerable. However, rather large, fully entan-
gled fraction values were needed. Very recently, the problem
of characterizing two-qubit states that are optimal for quantum
teleportation for a fixed amount of purity, Bell nonlocality, and
entanglement was considered [9]. The optimal states achieved
the maximal average fidelity and exhibited zero fidelity de-
viation for a fixed amount of some state property [5,9,33].
The maximal average fidelity was the maximal value of the
average fidelity achievable within the standard teleportation
protocol and local operations [5]. The maximal average fi-
delity could judge how well an input state, on average, was
teleported, while the fidelity deviation was a measure of dis-
persion. It was more effective to combine them together to
serve as a better performance measure than only one of them
[11,34]. For example, to select the best-performing states from
a set of states with the same maximal average fidelity, the
minimum fidelity deviation could act as a supplementary term
if the fidelity deviation is expected to be as small as possible.
As quantum steering is an important resource lying between
entanglement and Bell nonlocality [35], the question to char-
acterize the optimal two-qubit states of quantum teleportation
for a fixed amount of steering is interesting and left open.

In this paper, we investigate the application of quantum
steering in teleportation. First, we show that the two-qubit
states violating the three-setting linear steering inequality are
useful for teleportation. Subsequently, we characterize the
optimal two-qubit states of quantum teleportation for a fixed
amount of steering. The rest of the paper is arranged as fol-
lows. In Sec. II, the definitions of the maximal average fidelity,
fidelity deviation, and steering are reviewed. The usefulness of
the steerable states in teleportation is investigated in Sec. III.
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Then, in Sec. IV, the optimal two-qubit states of teleportation
for a fixed amount of steering are considered. A discussion
and conclusion part is given in Sec. V.

II. PRELIMINARIES

In this section, we review the concepts and definitions
of the average fidelity, the fidelity deviation, and quantum
steering.

In the Hilbert-Schmidt decomposition, a two-qubit state
shared by the sender and the receiver can be represented as

ρ = 1

4

(
I ⊗ I + �a · �σ ⊗ I + I ⊗ �b · �σ +

3∑
i, j=1

ri, jσi ⊗ σ j

)
,

(1)
where �a and �b are vectors in R3, �a(�b) · �σ = ∑3

i=1 ai(bi )σi with
σi being the Pauli matrix. ri, j = Tr(ρσi ⊗ σ j ) is the element of
the correlation matrix R.

According to the results given in Ref. [36,37], a general
two-qubit state can always be reduced to following form by
local unitary transformations:

ρ ′ = 1

4

(
I ⊗ I + �a′ · �σ ⊗ I + I ⊗ �b′ · �σ +

3∑
i=1

riσi ⊗ σi

)
,

(2)
where the correlation matrix of ρ ′ is R′ = diag(r1, r2, r3).
One could choose appropriate unitary transformations such
that ri < 0(i = 1, 2, 3) if detR � 0. The transformed state ρ ′
is the canonical form of ρ [9,33,34,36,37]. Without loss of
generality, we employ the canonical form for our studies as the
properties considered in this paper are invariant under local
unitary transformations.

The average teleportation fidelity, or average fidelity
for brevity, for a two-qubit state ρ is defined as f (ρ) =∫ 〈ψ |ρout|ψ〉dψ , where the integral is over a uniform distri-
bution dψ of input state |ψ〉 and

∫
dψ = 1. 〈ψ |ρout|ψ〉 is the

fidelity between the input and output states.
One of the conditions that a two-qubit state is optimal for

teleportation is that the average fidelity reaches its maximal
value over all strategies within the standard protocol and local
unitary operations. The maximal average fidelity for the state
ρ given in Eq. (1) is

F (ρ) = 1

2

(
1 + 1

3
Tr

√
RT R

)
. (3)

Here, the superscript T denotes the transpose of the
correlation matrix. A two-qubit state is useful for quan-
tum teleportation iff F (ρ) > 2/3 as the maximum fidelity
achieved classically is 2/3. Based on the results present in
Refs. [7,33,34], two-qubit states with detR � 0 are useless
for teleportation because F � 2/3 for these states. Thus, it
suffices to focus only on the states with detR < 0, which
will lead to ri � 0. And for these states, the maximal average
fidelity can be simplified as

F (ρ ′) = 1

2

(
1 + 1

3

3∑
i=1

|ri|
)

. (4)

Fidelity deviation is used to measure the fidelity fluctua-
tions and is defined as the standard deviation of fidelity over
all input states [10,11,34]

δ(ρ) =
√∫

〈ψ |ρout|ψ〉2dψ − f (ρ)2. (5)

For two-qubit states with detR < 0, δ(ρ) reduces to

δ(ρ ′) = 1

3
√

10

√√√√ 3∑
i< j=1

(|ri| − |r j |)2. (6)

The states with maximal average fidelity and zero fidelity
deviation are called the optimal states in this paper. Thus, the
optimal states form the subset of the set of states with the
maximal average fidelity.

The three-setting linear steering inequality was introduced
by Cavalcanti et al. to detect the steerability of a state [17]
and was also considered as a very useful criteria to quantify
steering. For a two-qubit state, it can be expressed as

1√
3

∣∣∣∣∣
3∑

m=1

Tr(Am · Bmρ)

∣∣∣∣∣ � 1, (7)

where the Hermitian operators acing on qubits A and B are ex-
pressed as Am = �am · �σ and Bm = �bm · �σ , respectively. Here,
m = 1, 2, 3. �am, �bm ∈ R3 are two unit vectors, and �b1, �b2, �b3

are orthogonal vectors. Violation of the inequality (7) implies
that the state ρ is steerable and the steering observable is given
by the maximum violation

S = max
{Am,Bm}

1√
3

∣∣∣∣∣
3∑

m=1

Tr(Am ⊗ Bmρ)

∣∣∣∣∣. (8)

Since the states given in Eqs. (1) and (2) are local unitary
equivalent, the steering observable for two-qubit states in the
Hilbert-Schmidt as well as the canonical form is

S(ρ) = S(ρ ′) =
√

Tr(RT R) =
√

Tr(R′T R′) =
√√√√ 3∑

i=1

r2
i . (9)

Assuming Am = �am · �σ = ∑3
j=1 am jσ j, Bm = �bm · �σ =∑3

k=1 bmkσk , Eq. (9) could be proved as follows;

S(ρ ′) = max
{Am,Bm}

1√
3

∣∣∣∣∣
3∑

m=1

Tr(Am ⊗ Bmρ ′)

∣∣∣∣∣
= 1√

3

∣∣∣∣∣∣
3∑

m,i=1

Tr

(
1

4

3∑
j,k=1

am jbmkri(σ j ⊗ σk )(σi ⊗ σi )

)∣∣∣∣∣∣
= 1√

3

∣∣∣∣∣∣
3∑

m, j,k,i=1

1

4
am jbmkriTr(σ jσi )Tr(σkσi )

∣∣∣∣∣∣
= 1√

3

∣∣∣∣∣
3∑

i=1

(
3∑

m=1

amibmi

)
ri

∣∣∣∣∣ (10)

= 1√
3

∣∣∣∣∣
3∑

i=1

qiri

∣∣∣∣∣ � 1√
3

√√√√ 3∑
i=1

q2
i

3∑
i=1

r2
i
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� 1√
3

√√√√ 3∑
i=1

(
3∑

m=1

a2
m

3∑
m=1

b2
m

)
3∑

i=1

r2
i

= 1√
3

√√√√3
3∑

i=1

r2
i =

√√√√ 3∑
i=1

r2
i ,

where qi = ∑3
m=1 amibmi, Tr(σiσ j ) = δi j . In the proof, the

Cauchy-Schwarz inequality was used twice.
The steering observable S(ρ) � 1 implies that the two-

qubit states obey the three-setting linear steering inequality.
However, the states violate the inequality and are steerable if
S(ρ) > 1. This condition is just a sufficient criterion to check
steerability because there are steerable states with S(ρ) < 1
[38].

III. TWO-QUBIT STATES VIOLATING THE
THREE-SETTING LINEAR STEERING INEQUALITY

BEING USEFUL FOR TELEPORTATION

In this section, the problem whether the two-qubit states
violating the three-setting linear steering inequality are useful
for teleportation is considered. An affirmative answer to this
problem is given. Here, the fact that the state is useful for stan-
dard teleportation protocol implies that the maximal average
fidelity is always larger than 2/3.

Theorem 1. If a two-qubit state violates the three-setting
linear steering inequality, i.e., S(ρ) > 1, it is useful for tele-
portation.

Proof. If the eigenvalues of RT R are assumed to be Ei(i =
1, 2, 3), Tr

√
RT R = ∑3

i=1

√
Ei, which is always larger than√∑3

i=1 Ei =
√

Tr(RT R). Based on the maximal average fi-
delity given in Eq. (3), we have

F (ρ) = 1

2

(
1 + 1

3
Tr

√
RT R

)
� 1

2

(
1 + 1

3

√
Tr(RT R)

)

= 1

2

(
1 + 1

3
S(ρ)

)
. (11)

Obviously, the states with S(ρ) > 1 will make the maximal
average fidelity F (ρ) > 2/3. Thus, all two-qubit states that
violate the three-setting linear steering inequality are useful
for teleportation.

In Ref. [5], it was shown that two-qubit mixed states
which violate the Bell–Clauser-Horne-Shimony-Holt (CHSH)
inequality were useful for teleportation. The result in Ref. [39]
indicated that all two-qubit states violating CHSH-type steer-
ing inequalities were Bell nonlocal. Theorem 1 tells us that
two-qubit mixed states which violate the three-setting linear
steering inequality are useful for teleportation, and thus it
neatly ties into the previous two results. While steering lies
between Bell nonlocality and entanglement, there are some
states which violate the three-setting linear steering inequality
and obey Bell-CHSH inequality are useful for teleportation.
Now let’s give an example to illustrate this result in detail.

A class of two-qubit maximally entangled states (MEMS)
was constructed by Ishizaka et al. [40,41] and the construction
was [42]

ρM = λ1|ψ−〉〈ψ−| + λ2|00〉〈00|
+ λ3|ψ+〉〈ψ+| + λ4|11〉〈11|, (12)

where |ψ±〉 = (|01〉 ± |10〉)/
√

2 were the maximally entan-
gled states. λi (i = 1, . . . , 4) were the eigenvalues of the state
ρM.

The presence of Bell nonlocality could be indicated by the
violation of the Bell-CHSH inequality. A two-qubit state ρ

violates the Bell-CHSH inequality if and only if M(ρ) > 1.
Here, the Bell-CHSH observable M(ρ) = maxi> j {r2

i + r2
j }.

By choosing λ1 = (1 + 3p)/4, λ2 = λ3 = λ4 = (1 −
p)/4 with p ∈ [0, 1], the MEMS state reduces to the Werner
state [43], which is a state of rank 4. By simply calculation,
the steering observable, the Bell-CHSH observable and the
maximal average fidelity are

√
3p2, 2p2 and (1 + p)/2, re-

spectively. From this it is found that the Werner state violates
the three-setting linear steering inequality and is steerable
for p >

√
3/3. The steerable Werner state is useful for tele-

portation as the maximal average fidelity is larger than 2/3
if p ∈ (

√
3/3, 1]. However, the condition that the Werner

state violates the Bell-CHSH inequality requires p >
√

2/2.
Therefore, the Werner state with p ∈ (

√
3/3,

√
2/2] violates

the three-setting linear inequality and obeys Bell-CHSH in-
equality. In this region, the Werner state is also useful for
teleportation.

If one chooses λ1 = (1 + 2p)/3, λ2 = λ3 = (1 − p)/3,

and λ4 = 0, the MEMS state reduces to the state with
rank 3. The steering observable, the Bell-CHSH observable
and the maximal average fidelity are

√
(1 + 4p + 22p2)/9,

max {2p2, (1 + 4p + 13p2)/9} and (5 + 4p)/9, respectively.
The state violates the three-setting linear steering inequality
if p > (3

√
5 − 1)/11, which will ensure the state being use-

ful for teleportation because the maximal average fidelity is
larger than 2/3. The state violates the Bell-CHSH inequal-
ity if p > 2(3

√
3 − 1)/13. Thus, the state with p ∈ ((3

√
5 −

1)/11, 2(3
√

3 − 1)/13] is steerable and useful for teleporta-
tion, while it also obeys the Bell-CHSH inequality.

When taking λ1 = (1 + p)/2, λ2 = (1 − p)/2, λ3 =
λ4 = 0 into consideration, the MEMS state reduces to the
state with rank 2. For this the steering observable, the
Bell-CHSH observable, and the maximal average fidelity are√

(1 + 2p + 3p2)/2, max {(1 + p)2/2, (1 + 2p + 5p2)/4},
and (2 + p)/3, respectively. It is easily found that the
state with p ∈ (1/3,

√
2 − 1] is steerable and useful for

teleportation. However, the state in this region obeys the
Bell-CHSH inequality.

IV. OPTIMAL TWO-QUBIT STATES FOR A FIXED
AMOUNT OF STEERING

In the previous section, it aws found that two-qubit states
which violate the three-setting linear steering inequality, i.e.,
S(ρ) > 1, were useful for teleportation. However, the connec-
tion between steerability and the ability of a state to perform
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quantum teleportation as well as other quantum information
tasks has not been explored in a comprehensive manner, es-
pecially in the context of optimality of resource states. In
this section, we investigate the optimal two-qubit states of
teleportation for a fixed amount of steering. Similar to the
explanation present in the previous section, a necessary condi-
tion that two-qubit states are useful for teleportation is detR <

0. For these states, the maximal average fidelity and steering
are given in Eqs. (4) and (9), respectively. Moreover, it should
be noted that in this section, we only consider the steerable
states with S(ρ) > 1. Therefore, the constrained optimization
problem, i.e., the optimal two-qubit states for a fixed amount
of steering, can be expressed as

maximize
3∑

i=1

|ri|, (13)

such that

√√√√ 3∑
i=1

r2
i = S. (14)

Based on Eq. (14), one can parametrize ri as

r1 = S sin α cos β, (15)

r2 = S sin α sin β, (16)

r3 = S cos α, (17)

where α ∈ (0, 2π ) and β ∈ (0, 2π ). Now, the maximization
problem present in Eq. (13) reduces to find the maximization
of the function

f (α, β ) = S (| sin α cos β| + | sin α sin β| + | cos α|). (18)

By simpe calculation and noting the condition detR <

0, the maxima is obtained at two critical points: α =
cos−1(−√

3/3), β = 5π/4 and α = 2π − cos−1(−√
3/3)

and β = π/4. The corresponding value of ri is

ri = − S√
3
, i = 1, 2, 3. (19)

The maximal average fidelity for a fixed amount of steering S
can be obtained from Eq. (4)

F = 1

2

(
1 + S√

3

)
. (20)

Noting the fact that the maximal average fidelity reaches
the maxima for the case of ri = r j , the fidelity deviation
equals to zero.

The maximal average fidelity F > 2/3 only requires S >√
3/3. All two-qubit states violating the three-setting linear

steering inequality have the steering observable S(ρ) > 1,
and they are optimal for teleportation. Therefore, for a fixed
amount of steering S , the optimal two-qubit states for telepor-
tation are those with ri = −S/

√
3.

The canonical form of the optimal two-qubit states can be
expressed as

ρopt = 1

4

(
I ⊗ I + �a′ · �σ ⊗ I + I ⊗ �b′ · σ − S√

3

3∑
i=1

σi ⊗ σi

)
.

(21)

Correspondingly, the eigenvalues of the correlation matrix of
the optimal two-qubit states in the Hilbert-Schmidt decompo-
sition are the same and equal to −S/

√
3. It is noted that no

particular condition is being imposed on the local vectors.
From the above discussion, one can make the following

conclusion. Let ρ be a two-qubit steerable state with steering
S > 1, F (ρ) = F , and δ(ρ) = 0 if and only if ri = −S/

√
3.

In other words, these states have the maximal average fidelity
as well as zero fidelity deviation, and they are optimal. For a
fixed amount of steering, the set of optimal states is identical
to the set of the maximal average fidelity states. The optimal
states for a fixed amount of purity and Bell nonlocality also
have similar characteristics [9]. However, the optimal states
form a strict subset of the maximal average fidelity states for
a fixed amount of concurrence [9]. The states with vanishing
fidelity deviation are of special interest because they are said
to satisfy the universality condition that all input states are
teleported equally well [9–11,34].

V. DISCUSSION AND CONCLUSION

The proposal to quantify the degree of steering of two-
qubit states based on the violation of the three-setting linear
steering inequality has been put forward [25]. The rationale
behind the proposal is as follows. A state that violates more
the inequality and is more robust under noisy channels, is
said to be more steering. The degree of steering is given
on the basis of the steering observable S(ρ) as S3(ρ) =
max{0, [S(ρ) − 1]/(

√
3 − 1)}. The definition is intuitively re-

lated to the notion of steering robustness [29]. Thus, our result
based on the steering observable is also related to steering
robustness.

Steering is an important quantum resource in quantum
information tasks. In practical situations, it is useful to find
the best performing quantum states with available resource.
We address the question within the set of two-qubit states
in this paper. The introduction of the fluctuations makes us
closer to the use of teleportation in practice. In Refs. [9,44],
teleportation was used as an intermediate step in a quantum
circuit and was later processed by some gates which are typi-
cally sensitive to fluctuations of their inputs. In this case, the
fact that one just considers the average fidelity is not enough.
Thus, the results obtained in this paper will be beneficial for
the application of quantum teleportation.

Steering is a characteristic quantum correlation and
quantum resource lying between entanglement and Bell non-
locality. Its application in quantum information tasks deserves
studying. In this paper, we investigate the application of steer-
ing as quantum resource in teleportation. First, it is found that
the states violating the three-setting linear steering inequal-
ity are useful for teleportation by the fact that the maximal
average fidelity is larger than the maximum fidelity achieved
classically. An explicit example is given to show that some
steerable states obey the Bell-CHSH inequality but are useful
for teleportation. Subsequently, the problem of the optimal
two-qubit states for teleportation with a fixed amount of steer-
ing is considered. The form of the optimal two-qubit states
are present, and they are the maximal average fidelity states
because these states have zero fidelity deviation. The results as
well as those given in Ref. [9] indicate that the state properties
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can have an essential role in characterizing optimal states.
We hope the results in this paper would help us to better
understand the relation between quantum teleportation and the
properties of the resource states. An open question is whether
the main results can be generalized to the bipartite states of
higher dimensions.
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