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Scalable noncontextuality inequalities and certification of multiqubit quantum systems
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We propose a family of noncontextuality inequalities and show that they can be used for certification of
multiqubit quantum systems. Our scheme, unlike those based on nonlocality, does not require spatial separation
between the subsystems, yet it makes use of certain compatibility relations between measurements. Moreover,
it is scalable in the sense that the number of expectation values that are to be measured to observe contextuality
scales polynomially with the number of qubits that are being certified. In a particular case we also show our
scheme to be robust to errors and experimental imperfections. Our results seem promising as far as certification of
physical setups is concerned in scenarios where spatial separation between the subsystems cannot be guaranteed.
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I. INTRODUCTION

Multiqubit entangled states constitute a key resource for
various quantum information tasks such as quantum computa-
tion [1,2] and error correction [3,4], quantum communication
[5,6], quantum simulations [7,8], and cryptographic protocols
[9,10]. To realize genuine quantum technologies employing
such tasks, the back-end user should be guaranteed that the
quantum devices work as specified by the provider. The
standard state verification schemes based on quantum tomog-
raphy [11,12], however, suffer from two problems: they are
unfeasible for larger systems and require using trusted and
well-characterized measuring devices.

Observing nonclassical correlations through the violation
of a Bell-type inequality [13] can be used to detect entan-
glement in a device-independent way; i.e., it implies the
presence of entanglement without the need to have a trust
in the measurement devices. This property of the violation
of Bell inequalities makes them a useful resource for imple-
menting quantum information protocols such as quantum key
distribution in a device-independent way [14]. Remarkably,
maximal quantum violation of certain Bell inequalities can
be used to demonstrate a phenomenon called “self-testing
of quantum states and measurements” [15,16], which can be
used to provide device-independent characterization of quan-
tum devices. Recently, such a form of certification based on
the phenomenon of nonlocality has been explored extensively.
For instance, several self-testing statements for multiqubit
graph states were recently derived in Refs. [17–19]. However,
genuine demonstration of the violation of Bell inequalities
requires a spatial separation between the subsystems.

Sequential quantum measurements on a single system can
be used to observe quantum contextuality [20] and tempo-
ral quantum correlations [21–23] through the violation of
suitable inequalities. Apart from the foundational relevance
of these two notions of nonclassicality, on one side, they
have been explored as a resource for quantum information
applications such as measurement-based quantum computa-
tion [24–27]. On the other side, they have also been used
for certification of relevant quantum properties such as the

dimension of the underlying quantum system [28,29]. More
importantly, contextuality and temporal correlations have also
been exploited for certification of quantum states and/or mea-
surements [30–34].

Motivated by the above results, in this work we introduce
a family of noncontextuality inequalities that are maximally
violated by many-qubit quantum systems and certain pairs of
anticommuting observables. In constructing our inequalities
we exploit the multiqubit stabilizer formalism known for its
use in quantum error correction [35–37]. These inequalities
are scalable in the sense that the number of expectation values
they are built from scales polynomially with the number of ob-
servables, 2n, that are measured; yet their maximal violation
can be achieved by quantum systems of dimension at least
2n. From this point of view they can be seen as dimension
witnesses. In the particular case n = 3 our family reproduces
an inequality that in the nonlocality context is known as
the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality
[38–40] (see also Refs. [41–43] for other approaches to reveal
Bell nonlocality or quantum contextuality based on stabilizer
formalism). Yet for n > 3 these families are distinct. We then
show that our inequalities can be used for certification of
multiqubit quantum systems in the sense of Ref. [32]. In fact,
we generalize the results of that work to any number of qubits.

Our work is organized as follows. In Sec. II we outline
the contextuality scenario and provide the definitions of graph
states and self-testing. In Sec. III we present the simplest
inequality designed to certify the three-qubit graph state cor-
responding to the complete graph together with three pairs of
anticommuting observables. In Sec. IV we present a scalable
family of inequalities designed to certify multiqubit quantum
systems. In Sec. V we investigate whether our certification
schemes are robust.

II. PRELIMINARIES

We begin by illustrating our scenario and introducing the
relevant notations and definitions.
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FIG. 1. Measurement setup. A contextuality experiment com-
prises of a preparation device P that prepares some quantum state
ρ which is later measured sequentially by the nondemolishing mea-
surement device with settings Ai; each of these measurements yields
the ±1 outcome. Figure from Ref. [33].

A. Contextuality scenario

A standard contextuality scenario is defined by a triple
of sets: a set of measurements, a set of outcomes of the
measurements, and a set of contexts, which are the subsets
of compatible measurements. The notion of compatibility in
a contextuality scenario means that the measurements that
belong to the same context can be performed jointly or in
a sequence in such a way that the observed statistics are
independent of the order in which these measurements were
performed. In the latter case, however, the measurements are
nondemolishing, meaning that they do not physically destroy
the system.

Each run of the experimental observation comprises of
preparation of a physical system followed by a sequence
of nondemolishing measurements in a device as depicted in
Fig. 1. The measurement device has no memory and returns
only the actual postmeasurement state. The measurement de-
vice has different settings, each of which yields two outcomes
which we label by ±1. The contexts will be defined in the spe-
cific scenarios studied. Let us stress here that in the quantum
case the above scenario comprises the most general situation
in which the physical system is described by a mixed state and
the measurements need not be projective.

After repeating this experiment many times, one esti-
mates the joint probabilities of obtaining the outcomes of
measurements that are performed on the preparation and,
consequently, their correlation functions, which are average
values over the outcomes of the measurements. For instance,
if the measurements A1, A2, and A3, which belong to the same
context, are performed in sequence or jointly, we can estimate
the 23 joint probabilities p(a1, a2, a3|A1, A2, A3) as well as the
correlation function

〈A1A2A3〉 =
∑

ai=±1

a1a2a3 p(a1, a2, a3|A1, A2, A3). (1)

This notation can be naturally extended to any sets of compat-
ible measurements.

To reveal contextuality in the experiment one typically uses
noncontextuality inequalities as violation of such inequalities
by the joint probabilities implies that any noncontextual hid-
den variable model cannot reproduce them [20]. Typically
such inequalities are defined in terms of linear expressions
composed of correlation functions. For instance, in a scenario
where the measurements are performed in triples, we can

consider the following form of inequality:

I :=
∑
i, j,k

ci, j,k〈AiAjAk〉 � ηC � ηQ, (2)

where ci, j,k are real coefficients to be chosen, and ηC and ηQ

are the classical and quantum bounds.
If there is a noncontextual hidden variable model that

describes the joint probabilities, then the inequality with
the classical bound ηC is satisfied. Here, the meaning of
classicality is mathematically defined as the existence of
a noncontextual hidden variable model, for which the ex-
pectation values in Eq. (2) factorize and each individual
expectation value is deterministic, i.e., 〈AiAiAk〉 = aia jak ,
with ai ∈ {+1,−1}. Consequently, the classical bound ηC of
Eq. (2) can be derived as the maximum value that can be
attained by any such model,

ηC = max
ai=±1

⎛
⎝∑

i, j,k

ci, j,kaia jak

⎞
⎠. (3)

On the other hand, the quantum bound of the inequality is
defined as the optimal value of the linear expression obtained
over all the possible quantum states and measurements in
any Hilbert space. Since we do not specify the dimension of
the underlying Hilbert space, without any loss of generality,
we can assume that the measurements are projective and the
state is pure (see, e.g., Ref. [32], where an extension of the
Neumark dilation theorem is proven). In other words, any
correlations obtained within the above experiment can always
be reproduced with a pure state and projective measurements
satisfying the same compatibility relations.

For instance, in the case of the inequality given in Eq. (2)
the quantum bound is evaluated to be

ηQ = sup
Ai ;ρ

⎡
⎣∑

i, j,k

ci, j,k tr(ρAiAjAk )

⎤
⎦, (4)

where the observables Ai are Hermitian operators acting on
a Hilbert space H and satisfying A2

i = 1 for any i and ρ =
|ψ〉〈ψ | is some pure state that describes the preparation.

Our aim here is to introduce certain noncontextuality in-
equalities that are scalable in the sense that the number of
expectation values they consist of grows polynomially with n
and, at the same time, their maximal violation can be achieved
only by quantum systems of dimension 2n. We also explore
whether these inequalities can be used for certification of
quantum states and measurements.

B. Graph states

A graph G = (V, E ) is a mathematical object defined by a
set of vertices V and a set of edges E that connect some pairs
of vertices. By N (i) we denote the neighborhood of the vertex
i, that is, a set of those vertices that are connected to i by an
edge. Also, we call a graph connected if any two vertices are
connected by a path composed of edges.

Interestingly, one can exploit the notion of a graph to
define classes of pure entangled multipartite states. While in
principle there are many ways of doing that, here we follow
the definition based on the stabilizer formalism [44] (see also
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FIG. 2. Two nonisomorphic graphs with three vertices.

Ref. [45] for a review on graph states). It allows one to as-
sociate an N-qubit entangled state to any connected N-vertex
graph G.

In order to present the construction consider the Pauli ma-
trices

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (5)

Now, to each vertex i ∈ V one associates an N-qubit operator
Gi defined as

Gi = Xi ⊗
⊗

j∈N (i)

Zj, (6)

where the single X acts on site i, whereas the Z operators act
on all sites that belong to the neighborhood N (i) of i. Having
introduced the Gi operators we define the graph state.

Definition 1. We define the graph state |G〉 associated to
the graph G = (V, E ) as the unique state stabilized by the
corresponding operators Gi (6), that is,

Gi|G〉 = |G〉, ∀i = 1, . . . , N. (7)

In other words, |G〉 is the unique common eigenstate of all Gi

corresponding to eigenvalue +1.
The operators Gi are usually called the stabilizing opera-

tors. Notice also that they mutually commute and the Abelian
group generated by them is called a stabilizer.

Two simple examples of connected graphs with three ver-
tices are depicted in Fig. 2. The graph on the left is a complete
graph, i.e., one in which any vertex is connected to any other
vertex by an edge. The unique three-qubit state associated
to this graph is stabilized by the following three stabilizing
operators,

G1 = X ⊗ Z ⊗ Z, (8)

G2 = Z ⊗ X ⊗ Z, (9)

G3 = Z ⊗ Z ⊗ X, (10)

and can be stated as

|G′〉 = 1√
8

(|000〉 + |100〉 + |010〉 − |110〉

+ |001〉 − |101〉 − |011〉 − |111〉). (11)

The graph on the right-hand side in Fig. 2 is nonisomorphic
to the complete graph. The unique three-qubit state associated
with this graph is stabilized by

G1 = X ⊗ Z ⊗ Z, (12)

G2 = Z ⊗ X ⊗ 1, (13)

G3 = Z ⊗ 1 ⊗ X, (14)

and is given by

|G′′〉 = 1√
8

(|000〉 + |100〉 + |010〉 − |110〉

+ |001〉 + |101〉 − |011〉 + |111〉). (15)

Let us notice that although both these exemplary states
|G′〉 and |G′′〉 correspond to nonisomorphic graphs, they
are actually equivalent to the same three-qubit Greenberger-
Horne-Zeilinger (GHZ) state,

|GHZ〉 = 1√
2

(|000〉 − |111〉), (16)

by suitable local unitary transformations.
In the context of multipartite qubit states such a vertex

is associated to a qubit and edges represent entanglement
between qubits. However, in our scheme that we propose for
certification of such a multiqubit state, we do not assume that
there exists a local Hilbert space corresponding to each vertex.

Let us finally notice that the construction of the graph
state corresponding to the three-vertex complete graph can
be generalized to any number of qubits. The corresponding
stabilizing operators are given by

Gi = Z1 · · · Zi−1XiZi+1 · · · Zn, (17)

with i = 1, . . . , n. They stabilize an n-qubit graph state that
is local-unitary equivalent to the GHZ state (1/

√
2)(|0〉⊗n +

|1〉⊗n).

C. Self-testing

Self-testing, originally defined in Ref. [15] in the context
of nonlocality, aims to certify an unknown quantum state and
a set of measurements based on statistics obtained in an exper-
iment, up to certain unitary equivalence and the existence of
auxiliary degrees of freedom. Self-testing based on violation
of Bell inequalities is by definition a device-independent task
as it does not depend on any assumption on the state and
measurements. In a Bell test, the assumption of commutativity
between the measurements arises due to the fact that spatially
separated subsystems cannot communicate instantaneously
with each other.

Self-testing statements based on violation of noncontextu-
ality inequalities require, on the other hand, the assumption
of compatibility of measurements. First, contextuality-based
self-testing was defined in Ref. [31] in a similar way to how
self-testing is defined within the Bell scenario. Here we pro-
vide a slightly different definition that takes inspiration from
Ref. [32] (see also Ref. [33]) and fits better the inequalities
introduced here.
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To this aim, let us consider again the experiment described
in Sec. II A, but now we assume that both the state (in gen-
eral mixed) and measurements (in general nonprojective) are
unknown; still, the measurements obey certain compatibility
relations. Since we do not specify the dimension of the under-
lying Hilbert space, without loss of generality, we can assume
that the measurements are projective and the state is pure (see,
e.g., Ref. [32]). In other words, any correlations giving rise to
the violation of the noncontextuality inequality can always be
reproduced with a pure state ρ = |ψ〉〈ψ | and observables Ai

obeying A2
i = 1, all acting on some Hilbert space of unknown

dimension H. These observables obey the same compatibility
relations.

At the same time we consider a reference experiment with
a known pure state |ψ̃〉 ∈ Cd for some d and known ob-
servables Ãi acting on Cd that obey the same compatibility
relations.

Definition 2. Suppose an unknown state |ψ〉 ∈ H and a set
of measurements Ai violate a given noncontextuality inequal-
ity maximally; then this maximal quantum violation self-tests
the state |ψ̃〉 ∈ Cd and the set of measurements Ãi if there
exists a projection P : H → Cd and a unitary U acting on Cd

such that

U †(P Ai P†)U = Ãi, (18)

U (P |ψ〉) = |ψ̃〉. (19)

Speaking alternatively, the above definition says that based
on the observed nonclassicality one is able to identify a
subspace V = Cd in H on which all the observables act in-
variantly. Equivalently, Ai can be decomposed as Ai = Âi ⊕
A′

i, where Âi act on V , whereas A′
i act on the orthocomplement

of V in H; in particular, A′
i|ψ〉 = 0. Moreover, there is a

unitary U † Âi U = Ãi.

III. THE SIMPLEST INEQUALITY AND SELF-TESTING
OF THREE-QUBIT GRAPH STATE

A. Simplest inequality

Here, we consider a noncontextuality inequality that allows
for self-testing the complete graph state of three qubits and
simultaneously a set of six dichotomic observables denoted by
Ai and Bj (i, j ∈ {1, 2, 3}) such that {Ai, Bi} = 0 (i = 1, 2, 3).
The measurement outcomes are labeled by ±1, which means
that the measurement operators have eigenvalues ±1 and thus
they satisfy A2

i = B2
i = 1.

The compatibility hypergraph of the scenario is depicted
in Fig. 3. A compatibility hypergraph is one in which the
vertices are associated with the measurements of the scenario
and the hyperedges represent the contexts which are subsets
of compatible measurements. The noncontextuality inequality
we consider is given by

I3 := 〈A1B2B3〉 + 〈B1A2B3〉 + 〈B1B2A3〉 − 〈A1A2A3〉
� ηC = 2 < ηQ = 4. (20)

The above inequality is equivalent to a noncontextuality
inequality employed in Ref. [46] to demonstrate quantum
contextuality of a single eight-dimensional quantum system.
In the context of the Bell scenario it is the well-known MABK

FIG. 3. Hypergraph [47] of compatibility of the Kochen-Specker
contextuality scenario associated to inequality (20). In this hyper-
graph, the vertices represent the observables of the scenario and the
hyperedges represent the contexts. The red hyperedges are associated
to the correlators which enter inequality (20) with +1 and the blue
to correlators corresponding to the negative sign. Here the colors are
conveniently chosen in order to elucidate symmetric properties of the
inequality.

inequality [38–40] for which a non-locality-based self-testing
statement was derived in Ref. [17].

Following the argument in the previous section, the clas-
sical bound of the above expression can be obtained by
assigning the values ±1 to each variable Ai and Bj which
implies ηC = 2. At the same time, the algebraic maximum
of I3 is four since the correlators can take a value between
−1 and +1, and, importantly, it equals the maximal quantum
value of I3, that is, ηQ = 4. Indeed, it can be checked that the
following set of measurements,

A1 = X ⊗ 1 ⊗ 1, B1 = Z ⊗ 1 ⊗ 1,

A2 = 1 ⊗ X ⊗ 1, B2 = 1 ⊗ Z ⊗ 1,

A3 = 1 ⊗ 1 ⊗ X, B3 = 1 ⊗ 1 ⊗ Z, (21)

together with the complete graph state |G′〉 given by Eq. (11)
give rise to the algebraic maximum. This follows from the
fact that for this choice of observables, the first three terms of
the inequality correspond to the stabilizing operators Gi given
in Eq. (8), whereas the last one corresponds to their product
G1G2G3 = −X1X2X3.

Let us notice that almost all pairs of these observables
commute except for those with the same subscripts which
anticommute, that is,

[Ai, Aj] = [Ai, Bj] = [Bi, Bj] = 0 (i �= j) (22)

and

{Ai, Bi} = 0 (i = 1, 2, 3). (23)
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For further convenience let us also comment on the sym-
metries of inequality (20). A simple way to visualize these
symmetries is by using the compatibility hypergraph of the
scenario that is represented in Fig. 3. For instance, note that
under the relabeling of the measurements Ai ↔ Aj together
with Bi ↔ Bj , i.e., a permutation of subscripts i ↔ j, the
inequality remains the same. We can also observe that a cyclic
permutation of measurements A1 → A2 → A3 → A1 together
with B3 → B1 → B2 → B3 does not change the structure of
the hypergraph and therefore the inequality remains the same.
Other symmetries can be found just by looking at the hyper-
graph since it captures the intrinsic structure of the associated
inequality. The above symmetries as well as the structure
of the I3 expression will be vital for our considerations, in
particular, for generalizing this inequality into a family of
inequalities maximally violated by n-qubit GHZ states and n
pairs of anticommuting observables.

B. Self-testing

We now prove that the maximal quantum violation of in-
equality (20) can be used for certification of the GHZ state
(11) along with the observables (21). To this aim, consider
a quantum realization given by a pure state |ψ〉 ∈ H and a
set of quantum observables Ai, Bj with i, j = 1, 2, 3 acting on
H, where H is some unknown Hilbert space. We additionally
assume that these observables obey the compatibility relations
presented in Fig. 3, which translate into the commutation
relations in Eq. (22).

Assume then the correlations obtained by measuring Ai and
Bj on the state |ψ〉 attain the quantum bound of inequality
(20). This directly implies that the first three terms in I3

take value 1, whereas the last term equals −1, which via the
Cauchy-Schwarz inequality translate to the following equa-
tions:

A1B2B3|ψ〉 = |ψ〉 and permutations, (24)

B1A2B3|ψ〉 = |ψ〉 and permutations, (25)

B1B2A3|ψ〉 = |ψ〉 and permutations, (26)

A1A2A3|ψ〉 = −|ψ〉 and permutations, (27)

where “permutations” refers to the fact that the above rela-
tions also hold if we permute the observables, which is a
consequence of the commutation relations (22). One directly
deduces from these identities that

A1B1|ψ〉 = A1A2B3|ψ〉 = −B3A3|ψ〉
= A1A3B2|ψ〉 = A3B3|ψ〉, (28)

where in the first line we used B1|ψ〉 = A2B3|ψ〉 from
Eq. (25) and then the fact that B3 commutes with A1 and A2

along with the relation A1A2|ψ〉 = −A3|ψ〉 that stems from
Eq. (27). On the other hand, in the second line, we used
B1|ψ〉 = A3B2|ψ〉 from Eq. (26) and A1B2|ψ〉 = A3|ψ〉 from
Eq. (27).

Let us now employ the symmetries of the inequality. In-
deed, as already mentioned, it is invariant under simultaneous
permutations Ai ↔ Aj and Bi ↔ Bj for any i �= j, and there-
fore one can straightforwardly infer from Eq. (28) that the

following chain of equalities holds true:

A1B1|ψ〉 = A2B2|ψ〉 = A3B3|ψ〉
= −B1A1|ψ〉 = −B2A2|ψ〉 = −B3A3|ψ〉. (29)

From the above equations it follows that the operators Ai and
Bi with i = 1, 2, 3 anticommute when acting on the state |ψ〉,
i.e.,

{A1, B1}|ψ〉 = {A2, B2}|ψ〉 = {A3, B3}|ψ〉 = 0. (30)

Inspired by the approach of Ref. [32], we now define a
subspace

V := span{|ψ〉, A1|ψ〉, A2|ψ〉, A3|ψ〉,
B1|ψ〉, B2|ψ〉, B3|ψ〉, A1B1|ψ〉}, (31)

and prove the following fact for it.
Lemma 1. V is an invariant subspace of all the observables

Ai and Bj for i, j ∈ {1, 2, 3}.
Proof. One can verify with the aid of Eqs. (24)–(27) that

the action of the operator A1 on the eight vectors spanning
V is a permutation of these vectors up to the factor −1. In
exactly the same way, one shows that B1V ⊆ V . Therefore,
we conclude that the subspace V is invariant under the action
of the observables A1 and B1. By the symmetry of inequality
(20) it then follows that the subspace V is invariant under the
action of all observables Ai and Bj for i, j ∈ {1, 2, 3}. �

It should be noticed that due to Eq. (29), the subspace
V stays the same if one replaces the last vector A1B1|ψ〉 in
Eq. (31) by A2B2|ψ〉 or A3B3|ψ〉.

Due to Lemma 1, it suffices for our purpose to identify the
form of the state |ψ〉 and the operators Ai and Bj restricted to
the subspace V . In fact, the whole Hilbert space splits as H =
V ⊕ V ⊥, where V ⊥ is an orthocomplement of V in H. Then,
the fact that V is an invariant subspace of all the observables
Ai and Bj means that they have the following block structure:

Ai = Âi ⊕ A′
i, Bj = B̂ j ⊕ B′

j, (32)

where Âi = PAiP and analogously B̂i = PBiP with P : H →
V being a projection onto V . Since A′

i and B′
j act trivially on

V , that is, A′
iV = B′

jV = 0, which means that the observed
correlations giving rise to the maximal violation of inequality
(20) come solely from the subspace V , in what follows we can
restrict our attention to the operators Âi and B̂ j .

First, from the fact that Ai and Bj are observables obeying
A2

i = B2
j = 1, it directly follows that Âi, B̂ j are observables

too and satisfy

Â2
i = B̂2

j = 1V (i, j = 1, 2, 3), (33)

where 1V is the identity acting on V . Second, Eq. (32) implies
that the hatted observables must obey the same commutation
relations as Ai and Bj , that is,

[Âi, Â j] = [Âi, B̂ j] = [B̂i, B̂ j] = 0 (i �= j). (34)

Third, it turns out that relations (30) force Âi and B̂i to anti-
commute on the subspace V .

Lemma 2. Suppose the maximal quantum violation of in-
equality (20) is observed. Then, {Âi, B̂i} = 0 for all i ∈
{1, 2, 3}.
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Proof. Let us focus on the first pair Â1 and B̂1. By checking
the action of {A1, B1} on all the eight vectors that span the sub-
space V we can conclude that {Â1, B̂1} = 0. Indeed, Eq. (30)
implies that {A1, B1} vanishes when acting on |ψ〉. Then, for
A1|ψ〉 one has

{A1, B1}A1|ψ〉 = (A1B1A1 + B1)|ψ〉 = 0, (35)

where the second equality follows again from Eq. (30). For
A2|ψ〉 and A3|ψ〉 we can use the fact that A1 and B1 commute
with A2 and A3, which gives

{A1, B1}Ai|ψ〉 = Ai{A1, B1}|ψ〉 = 0 (i = 2, 3). (36)

In exactly the same way one deals with the vectors Bi|ψ〉.
Finally, for the last vector in Eq. (31), A1B1|ψ〉, one has

{A1, B1}A1B1|ψ〉 = (A1B1A1B1 + 1)|ψ〉 = 0, (37)

where to get the last equality we use Eq. (30). Owing to the
block form of A1 and B1 in Eq. (32), all this implies that
{Â1, B̂1} = 0.

One more time, by the symmetries of the inequality, we
can draw the same conclusions for the remaining pairs of the
observables Ai and Bi. As a result {Âi, B̂i} = 0 for i = 1, 2, 3,
which completes the proof. �

With Lemma 2 at hand, we can now employ the standard
approach that has already been used in many non-locality-
based self-testing schemes [17,18,48,49]. Precisely, using this
approach we can first infer that the dimension d of the
subspace V is even. To see this, note that from the above
anticommutation relation between Âi and B̂i we have

Âi = −B̂iÂiB̂i or B̂i = −ÂiB̂iÂi, (38)

which after taking trace on both sides simplifies to tr(Âi ) =
tr(B̂i ) = 0. It then follows that both the eigenvalues ±1 of
each observable Âi or B̂i have equal multiplicities. This clearly
implies that the dimension d = dim V is an even number,
d = 2k for some k ∈ N, and thus V = C2 ⊗ Ck . On the other
hand, since dim V � 8, one concludes that k = 2, 3, 4.

The fact that Â1 and B̂1 are traceless means also that the
operators Â1 and B̂1 are equivalent to X ⊗ 1k and Z ⊗ 1k for
some k = 2, 3, 4 up to some unitary operation (see for in-
stance Appendix B in Ref. [48] for the proof of this statement).
This observation is one of the key ideas behind the proof of the
following lemma.

Lemma 3. Suppose the maximal quantum violation of in-
equality (20) is observed. Then, there exists a basis in V such
that

Â1 = X ⊗ 1 ⊗ 1, B̂1 = Z ⊗ 1 ⊗ 1,

Â2 = 1 ⊗ X ⊗ 1, B̂2 = 1 ⊗ Z ⊗ 1,

Â3 = 1 ⊗ 1 ⊗ X, B̂3 = 1 ⊗ 1 ⊗ Z. (39)

Proof. First, from Lemma 2 we have {Â1, B̂1} = 0 which
implies that there exists a unitary U1 acting on V such that

U †
1 Â1 U1 = X ⊗ 1k, (40)

U †
1 B̂1 U1 = Z ⊗ 1k, (41)

where, as already mentioned, the dimension d of the subspace
V is given by d = 2k for some k = 2, 3, 4. Using then the

above form of Â1 and B̂1 and the commutation relations (22)
we can write the other operators as follows:

U †
1 Â2 U1 = 12 ⊗ M, (42)

U †
1 B̂2 U1 = 12 ⊗ N, (43)

U †
1 Â3 U1 = 12 ⊗ O, (44)

U †
1 B̂3 U1 = 12 ⊗ P, (45)

where M, N , O, and P are Hermitian involutions acting on the
subspace of dimension k. To show explicitly how the above
equations are obtained let us focus on Â2; the proof for the
other observables is basically the same. Since Â2 acts on C2 ⊗
Ck , it can be decomposed in the Pauli basis as

U †
1 Â2 U1 = 12 ⊗ M1 + X ⊗ M2 + Y ⊗ M3 + Z ⊗ M4, (46)

where Y is the third Pauli matrix and Mi are some Hermitian
matrices acting on Ck . Now, it follows from the fact that Â2

commutes with Â1, that M3 = M4 = 0. Then, from [Â2, B̂1]
one obtains that M2 = 0, and, by putting M1 = M, we arrive
at Eq. (42).

Second, from Lemma 2, we have {Â2, B̂2} = 0 which is
equivalent to {M, N} = 0. Since both M and N are involutions,
one concludes, as before, that k = 2k′ for k′ = 1, 2, or, equiv-
alently, that Ck = C2 ⊗ Ck′

. Moreover, there exists another
unitary transformation U2 : Ck → Ck such that

U †
2 M U2 = X ⊗ 1k′ , (47)

U †
2 N U2 = Z ⊗ 1k′ . (48)

Finally, to learn the form of O and P we can again employ
the commutation relations (22). They imply in particular that
[M, O] = [N, O] = [M, P] = [N, P] = 0, and consequently,

O = 12 ⊗ O′, P = 12 ⊗ P′, (49)

where O′ and P′ are some operators acting on Ck′
such

that [O′]2 = [P′]2 = 1k′ . Additionally, due to the fact that
{Â3, B̂3} = 0, they must anticommute, {O′, P′} = 0. This
means that k′ = 2 and that there exists a unitary operation U3

acting on this qubit Hilbert space such that

U †
3 O′ U3 = X, U †

3 P′ U3 = Z. (50)

Taking all this into account, one finds that V ∼= C2 ⊗
C2 ⊗ C2 and that there exists a single unitary operation
U = U1(12 ⊗ U2)(12 ⊗ 12 ⊗ U3) on V which brings all the
observables Âi and B̂i to the form in Eqs. (39). �

We have thus arrived at one of our main results of this
paper.

Theorem 1. If a quantum state |ψ〉 and a set of mea-
surements Ai and Bj with i, j ∈ {1, 2, 3} maximally violate
inequality (20), then there exist a projection P : H → V with
V = (C2)⊗3 and a unitary U acting on V such that

U † (P Ai P†)U = Xi, (51)

U † (P Bi P†)U = Zi, (52)

where Xi and Zi are X and Z Pauli matrices acting on qubit i,
and

U (P|ψ〉) = |G〉 (53)
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with |G〉 being the three-qubit complete graph state defined in
Eq. (11).

Proof. A quantum state |ψ〉 that belongs to a Hilbert space
H and a set of observables Ai, Bj acting on H attain the
maximal quantum violation of inequality (20) if and only if
they satisfy the set of Eqs. (24)–(27). The algebraic relations
induced by this set of equations let us prove Lemmas 1–3
which imply that there exists a projection P : H → V ∼= C8

and a unitary U = U1(12 ⊗ U2)(12 ⊗ 12 ⊗ U3) acting on V ∼=
C8 for which Eqs. (51) hold true.

From the above characterization of the observables we can
infer the form of the state |ψ〉. Indeed, after plugging Eqs. (78)
into the conditions (24) one realizes that the latter are simply
the stabilizing conditions of the graph state associated to the
complete graph of three vertices given in Eq. (11) and thus
U |ψ〉 = |G′〉. This completes the proof. �

A few comments are in order. The first is that the tensor
product structure here is just a suitable mathematical tool
we used to represent our results. We know that in composite
quantum systems the Hilbert space of the whole system is a
tensor product of the Hilbert spaces of the separate subsys-
tems; however, it has to be clear that in Theorem 1 we do not
assume the whole system to be composite.

The second comment is that the certification statement
made in Theorem 1 involves a global unitary operation which
means that any state from V can in fact be chosen as the
reference state, even a fully product one. Thus, Theorem 1
cannot be understood as a certification of only the state, but
rather as a certification of a state and a set of measurements at
the same time. Or, more precisely, it is a certification of how
measurements act on the state or what the relation between a
state and measurements is; this relation is basis independent.

One way to get rid of the above ambiguity is to assume
that the quantum system at hand is composed of spatially
separated subsystems on which the verifier can perform local
measurements. Such an assumption allows them to use Bell
nonlocality to deduce the form of the state. For instance for
the GHZ state of three qubits a self-testing statement based on
the violation of inequality (20) was derived in Ref. [17].

To illustrate the difference between contextuality and non-
locality-based certification let us consider another set of
quantum observables on C8 defined as

A1 = X ⊗ 1 ⊗ 1, A2 = 1 ⊗ X ⊗ Z, A3 = 1 ⊗ Z ⊗ X,

B1 = Z ⊗ 1 ⊗ 1, B2 = 1 ⊗ Z ⊗ 1, B3 = 1 ⊗ 1 ⊗ Z.

(54)

Clearly, these observables, similarly to those in Eq. (21),
satisfy the commutation and anticommutation relations in

Eqs. (22) and (30). Moreover, they give rise to the maximal
violation of inequality (20) together with the graph state |G′′〉
corresponding to the linear graph in Fig. 2. However, while
both the graph states |G′〉 and |G′′〉 are equivalent under local
unitary operations and thus cannot be distinguished within
both approaches to self-testing, the sets of observables in
Eqs. (21) and (54) are certainly not; they are equivalent under
global unitary operations. Thus, the maximal violation of the
Bell inequality (20) would allow one to distinguish between
these two sets, while standard quantum contextuality does not
allow to do that.

IV. A SCALABLE INEQUALITY AND SELF-TESTING
OF MULTIQUBIT GRAPH STATES

In this section we design a family of noncontextuality in-
equalities which is scalable and aimed to certify multiqubit
quantum systems. These inequalities are scalable since the
numbers of measurements and correlators increase polynomi-
ally with the number of vertices of the respective graph state.
The inequality we propose in Eq. (57) generalizes the inequal-
ity given in Eq. (20) and has this inequality in the heart of
the construction since the structure of the simplest inequality
appears as the building blocks of the general construction. We
prove that the inequalities are useful for certification purposes.

A. Scalable noncontextuality inequalities

First, let us consider a set of 2n observables denoted by
A1, . . . , An and B1, . . . , Bn. They are assumed to mutually
commute except for pairs Ai, Bi with i ∈ {1, . . . , n}, that is,

[Ai, Aj] = [Bi, Bj] = [Ai, Bj] = 0 (i �= j). (55)

We now describe our construction of the noncontextuality
inequalities. We first consider a sum of n expectation values
of the form Ci = 〈B1 · · · Bi−1AiBi+1 · · · Bn〉 for i = 1, . . . , n
which involve n − 1 different Bj observables and a single
observable Ai. Then, for any choice of three out of n such
different correlators Ci, Cj and Ck (i �= j �= k) we consider
another correlator that we subtract from the sum. It is given by

〈B1 · · · Ai · · · Aj · · · Ak · · · Bn〉 (56)

and consists of three observables Ai, Aj , and Ak and n − 3
observables Bm with m �= i, j, k. In this way we obtain
n + ( n

3 ) expectation values from which we construct our
noncontextuality inequality,

In = αn(〈A1B2B3B4 · · · Bn〉 + 〈B1A2B3B4 · · · Bn〉 + 〈B1B2A3B4 · · · Bn〉 + · · · + 〈B1B2B3B4 · · · An〉)

−〈A1A2A3B4 · · · Bn〉 − 〈A1A2B3A4 · · · Bn〉 − · · · − 〈B1 · · · Bn−3An−2An−1An〉 � η
(n)
C < η

(n)
Q = αnn +

(
n

3

)
, (57)

where the constant αn = ( n−1
2 ) has been added for further

convenience.
It is not difficult to see that for the case n = 3 the above

inequality reproduces the one in Eq. (20). While, as already
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FIG. 4. Hypergraphs of compatibility of subsets of observables
related with two choices of subsets of correlators in Eq. (58). On
the left we have the hypergraph associated with the subscripts 1, 2,
and 3, and on the right side with the subscripts 1, 2, and 4. These
two hypergraphs also represent the compatibility structures of the
observables corresponding to the simpler inequality (20) and another
such simpler inequality with the observables Ai and Bj , with i, j =
1, 2, 4, respectively. These two compatibility structures serve as the
building blocks to construct inequality (58).

mentioned, for n = 3 it is equivalent to the MABK inequality
[38–40] if the commutation relations between the observ-
ables are satisfied due to the spatial separation between the
subsystems, for n > 3 this is not the case. The number of
terms in the MABK Bell-type inequalities grows exponen-
tially with n, whereas in our noncontextuality inequalities this
number scales only polynomially with n. In Refs. [18,42,50]
other Bell-type inequalities were designed for the graph states
which again scale exponentially or linearly; thus, they differ
from our inequalities. Our inequalities (57) are designed such
that they are suitable for the purpose of certification. It is also
important to notice that our inequality is constructed in such
a way that for every three different correlators that enter In

with + and the associated “negative” one, the noncommon
observables appearing in all these four correlators adopt the
compatibility structure from the simplest inequality for n = 3.
To illustrate this with an example let us consider the inequality
for n = 4:

I4 = 3(〈A1B2B3B4〉 + 〈B1A2B3B4〉 + 〈B1B2A3B4〉
+ 〈B1B2B3A4〉) − 〈B1A2A3A4〉 − 〈A1B2A3A4〉
− 〈A1A2B3A4〉 − 〈A1A2A3B4〉

� η
(4)
C < η

(4)
Q = 16. (58)

Figure 4 presents the compatibility structures of the common
observables for two choices of such four-element subsets of
expectation values in I4. The first subset consists of the first
three terms with a + sign and the last one with a − sign, all
containing observables A1, A2, and A3, whereas the second set
is composed of the first, the second, and the fourth “+” terms
in I4 and the third “negative one,” all of them containing A1,
A2, and A4.

Inequality (57) is nontrivial for any n, i.e., η
(n)
C < η

(n)
Q . To

prove this statement, let us first notice that its quantum bound
is η

(n)
Q = nαn + ( n

3 ) and can be attained by the following ob-
servables,

Ai = Xi, Bj = Zj, (59)

and the unique graph state |Gn〉 associated to the complete
graph of n qubits and stabilized by the operators in Eq. (17).
In fact, plugging Eqs. (59) into the expression for In one real-
izes that all correlators with + correspond to the stabilizing
operators Gi, whereas those entering In with a minus sign
correspond to products of triples of different Gi’s.

Let us then estimate the maximal classical value η
(n)
C , and,

for pedagogical purposes, we first consider the case n = 4 for
which the expression I4 can be stated as

I4 = (〈A1B2B3B4〉 + 〈B1A2B3B4〉 + 〈B1B2A3B4〉
− 〈A1A2A3B4〉) + (〈A1B2B3B4〉 + 〈B1A2B3B4〉
+ 〈B1B2B3A4〉 − 〈A1A2B3A4〉) + (〈A1B2B3B4〉
+ 〈B1B2A3B4〉 + 〈B1B2B3A4〉 − 〈A1B2A3A4〉)

+ (〈B1A2B3B4〉 + 〈B1B2A3B4〉 + 〈B1B2B3A4〉
− 〈B1A2A3A4〉), (60)

where each line in the right-hand side of the above equa-
tion corresponds to a lifting of I3 to n = 4. Due to the fact
that in each line we have basically the inequality for n = 3,
it is not difficult to see that for noncontextual models, |I4| �
4 × 2 = 8, which is clearly smaller than the maximal quantum
value η

(4)
Q = 16. To prove that the same holds true for any n, it

suffices to notice that, analogously to I4, In can be rewritten as
a sum of ( n

3 ) terms that are liftings of I3, and thus η
(n)
C � 2( n

3 ).
At the same time, η(n)

Q = n( n−1
2 ) + ( n

3 ) and thus η
(n)
Q > η

(n)
C for

any n � 3.

B. Certification based on the noncontextuality inequality

Let us now show how the above inequality can be used for
certification of the complete graph state and n pairs of anti-
commuting observables. To this aim, we assume that a state
|ψ〉 ∈ H together with a set of 2n dichotomic observables
Ai and Bi acting on H maximally violate Eq. (57). Then, as
in the case n = 3, this implies the following set of n + ( n

3 )
equations:

B1 · · · Bi−1AiBi+1|ψ〉 = |ψ〉 (61)

with i = 1, . . . , n, and

B1 · · · Ai · · · Aj · · · Ak · · · Bn|ψ〉 = −|ψ〉 (62)

for any choice of i, j, k = 1, . . . , n such that i �= j �= k.
As a consequence of these equations, we have

A1B1|ψ〉 = A1A2B3B4 · · · Bn|ψ〉 = A2B2|ψ〉, (63)

where the first and the second equality stem from Eq. (61) for
i = 2 and Eq. (61) for i = 1, respectively. Then, by applying
Eq. (62) for i = 1, j = 2, and k = 3, one obtains

A1B1|ψ〉 = −B3A3|ψ〉. (64)

On the other hand, using Eq. (61) with i = 3 we can write

A1B1|ψ〉 = A1A3B2B4 · · · Bn|ψ〉 = A3B3|ψ〉, (65)

where the second equation is a consequence of Eq. (61) for
i = 1. Simultaneously, an application of Eq. (62) for i = 1,
j = 2, and k = 3 to the second terms in the above gives

A1B1|ψ〉 = −B2A2|ψ〉. (66)
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Note that our inequality is designed in a such way that
it is symmetric under any permutation of subscripts; i.e., it
is invariant under the transformations Ai ↔ Aj together with
Bi ↔ Bj . This when applied to Eqs. (63)–(66) results in the
following relations:

AiBi|ψ〉 = AjBj |ψ〉 = −BiAi|ψ〉 (67)

for i, j ∈ {1, 2, . . . , n}. In particular, Ai and Bi anticommute:

{Ai, Bi}|ψ〉 = 0 (i = 1, . . . , n). (68)

Having established the key relations between the state and
the observables, let us now, analogously to the case n = 3,
identify a subspace of the Hilbert space H which is invariant
under the action of all observables Ai and Bi. The subspace is
given by

Vn = span{|ψ〉, Bi1 |ψ〉, Bi1 Bi2 |ψ〉, . . . , Bi1 Bi2 · · · Bik |ψ〉,
. . . , Bi1 Bi2 · · · Bin−1 |ψ〉, B1 · · · Bn|ψ〉}, (69)

where i j = 1, . . . , n for any j and i1 < i2 < · · · < ik < · · · <

in−1.
For instance, in the simplest cases of n = 3 and n = 4, the

above construction gives

V3 = span{|ψ〉, Bi|ψ〉, BiBj |ψ〉, B1B2B3|ψ〉} (70)

and

V4 =span{|ψ〉, Bi|ψ〉, BiBj |ψ〉, BiBjBk|ψ〉, B1B2B3B4|ψ〉}
(71)

with i, j, k = 1, . . . , n and i < j < k. In particular, V3 is ex-
actly the same as the one defined in Eq. (31); due to Eq. (61),
BiBj |ψ〉 = Ak|ψ〉 with i �= j �= k and B1B2B3|ψ〉 = A1B1|ψ〉.

Let us then notice that the number of vectors spanning
Vn is 2n. This is because each subset of vectors of the form
Ai1 · · · Aik |ψ〉 for i1 < · · · < ik contains ( n

k ) elements, and we
have n + 1 such subsets indexed by k = 0, . . . , n. Thus the
total number of vectors can be counted as

n∑
k=0

(
n

k

)
= (1 + 1)n = 2n, (72)

meaning that dim Vn � 2n. In fact, as we show later dim Vn is
exactly 2n.

Our aim now is to identify the form of the operators Ai and
Bj projected onto the subspace Vn. The idea of the proof of
self-testing is similar to those we used in the case n = 3.

Lemma 4. The subspace Vn of Hn is invariant under the
action of the operators Ai and Bj for i, j = {1, 2, . . . , n}.

Proof. It can be checked that the action of any operator Ai

or Bj over all the set of 2n elements that generate the subspace
Vn is, up to the factor −1, a permutation over this set. Indeed,
the action of Bm on vectors of the form Bi1 · · · Bik |ψ〉 with i1 <

· · · < ik for k = 1, . . . , n returns vectors of a similar form
with k → k − 1 if m equals one of the subscripts i1, . . . , ik , or
with k → k + 1 otherwise. In both cases the resulting vectors
are already in Vn.

Let us then consider the Ai observables. Due to Eq. (61)
and taking into account the commutation (55) or anticom-
mutation (68) their action on the vectors spanning Vn can
always be represented as an action of a product of n − 1
different Bi observables. Thus, when applied to Bi1 · · · Bik |ψ〉

with i1 < · · · < ik for k = 1, . . . , n they will again produce
vectors involving products of Bi operators that are already in
Vn. This completes the proof. �

This is a key step of our considerations because, taking
into account the fact that Ai and Bi are quantum observables,
Lemma 4 implies that they can be represented as a direct sum
of two blocks,

Ai = Âi ⊕ A′
i, Bj = B̂ j ⊕ B′

j, (73)

where Âi and B̂i are projections of Ai and Bi onto Vn, that is,
Âi = PnAiPn and B̂i = PnAiPn with Pn : Hn → Vn denoting the
projector onto Vn. On the other hand, A′

i and B′
j are defined on

the orthocomplement of Vn in the Hilbert space Hn that we
denote V ⊥

n ; clearly, Hn = Vn ⊕ V ⊥
n .

Importantly, A′
i and B′

i act trivially on the subspace Vn, in
particular A′

i|ψ〉 = B′
i|ψ〉 = 0, and consequently it is enough

for our purposes to characterize Âi and B̂ j . Our first step to
achieve this goal is to prove the following lemma.

Lemma 5. {Âi, B̂i} = 0 for all i ∈ {1, . . . , n}.
Proof. In order to prove this statement we will show that

{Ai, Bi}Vn = 0; that is, all these anticommutators act trivially
on any vector from Vn. To this aim, let us investigate how
{Ai, Bi} acts on the vectors spanning Vn. We first see that
{Ai, Bi}|ψ〉 = 0 as a direct consequence of Eq. (67). Let us
then consider vectors Bj |ψ〉. If i �= j, we can directly use the
commutation relations (55) to write

{Ai, Bi}Bj |ψ〉 = Bj{Ai, Bi}|ψ〉 = 0. (74)

On the other hand, if i = j, one has

{Ai, Bi}Bi|ψ〉 = (Ai + BiAiBi )|ψ〉 = 0, (75)

where the last equality is again a consequence of the facts that
AiBi|ψ〉 = −BiAi|ψ〉 and that B2

i = 1.
It is not difficult to realize that the above reasoning extends

to any vector spanning the subspace Vn. Indeed, let us consider
vectors of the form Bi1 · · · Bik |ψ〉 with i1 < · · · < ik for k =
1, . . . , n and assume first that all i1, . . . , ik differ from i. Then,
due to the commutation relations, one directly has

{Ai, Bi}Bi1 · · · Bik |ψ〉 = Bi1 · · · Bik {Ai, Bi}|ψ〉 = 0. (76)

On the other hand, if one of the subscripts, say, i1, equals i,
then

{Ai, Bi}Bi1 · · · Bik |ψ〉 = Bi2 · · · Bik {Ai, Bi}B1|ψ〉
= Bi2 · · · Bik (Ai + BiAiBi )|ψ〉
= 0, (77)

where the last equality follows from the fact that Ai and Bi

anticommute when acting on |ψ〉 and from B2
i = 1.

Taking into account that each {Ai, Bi} is a Hermitian op-
erator and that it acts trivially on the whole subspace Vn, one
directly concludes that {Âi, B̂i} = 0. �

Our next lemma is a straightforward generalization of
Lemma 3.

Lemma 6. Suppose the maximal quantum violation of our
inequality (57) is observed. Then, there exists a basis of Vn for
which

Âi = Xi, B̂ j = Zj . (78)
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Proof. We will proceed recursively starting from the pair
Â1 and B̂1. It follows from Lemma 5 that {Â1, B̂1} = 0 which
means that the dimension d = dim Vn is an even number, i.e.,
d = 2k for some k = 1, . . . , 2n−1 (recall that d � 2n), and that
there exists a unitary U1 acting on Vn such that

U †
1 Â1 U1 = X ⊗ 1k, (79)

U †
1 B̂1 U1 = Z ⊗ 1k, (80)

where 1k is an identity acting on Ck .
Next, to determine the remaining observables Âi and B̂i

we exploit the fact that they all must commute with both Â1

and B̂1. With this aim, we use the fact that Vn = C2 ⊗ Ck to
decompose Âi and B̂i (i = 2, . . . , n) in terms of the Pauli basis
as

U †
1 R̂i U1 = 1 ⊗ MR

0 + X ⊗ MR
1 + Y ⊗ MR

2 + Z ⊗ MR
3 ,

(81)
where R = A, B, and MR

i are some Hermitian matrices act-
ing on Ck . Now, [R̂i, Â1] = 0 implies that MR

2 = MR
3 = 0,

whereas from [R̂i, B̂1] = 0 one concludes that MR
1 = 0. As

a result, all Âi and B̂i with i = 2, . . . , n admit the following
representation,

U †
1 Âi U1 = 12 ⊗ Mi, U †

1 B̂i U1 = 12 ⊗ Ni, (82)

where Mi and Ni act on Ck; in fact, they are Hermitian
and obey M2

A = M2
B = 1k , and thus are quantum observables.

Moreover, it follows from Lemma 5 that {Mi, Ni} = 0 for all
i = 2, . . . , n.

We have thus a set of 2(n − 1) quantum observables Mi and
Ni that satisfy the same commutation and anticommutation
relations as Âi and B̂i, and therefore we can use the above
reasoning again to conclude that the dimension k is even,
that is, k = 2k′ for some k′ = 1, . . . , 2n−4, and that there is
a unitary operation U2 : Ck → Ck such that

U †
2 M2 U2 = X ⊗ 1k′ , U †

2 N2 U2 = Z ⊗ 1k′ , (83)

where 1k′ is an identity acting on Ck′
. We then use the fact that

the other operators Mi and Ni with i = 3, . . . , n commute with
both M2 and N2 to see that they are of the form Mi = 12 ⊗ Pi

and Ni = 12 ⊗ Qi, where Pi and Qi are quantum observables
acting on Ck′

.
It is now clear that the above procedure can be applied it-

eratively many times until all the observables are proven to be
of the form (78), of course, up to certain unitary operation. In
fact, one finds that Vn = (C2)⊗n; that is, it is an n-qubit Hilbert
space. Moreover, there is a unitary operation U composed of
all the intermediate unitary operations Ui such that

U †Âi U = Xi, U †B̂i U = Zi, (84)

for any i = 1, . . . , n. �
One of the main messages that one takes from this lemma

is that the dimension of Vn is exactly 2n; in other words, Vn is
isomorphic to an n-qubit Hilbert space. In this sense our in-
equalities can be seen as dimension witnesses: the dimension
of the Hilbert space supporting a state and observables giving
rise to the maximal violation of our inequalities must be at
least 2n. Moreover, the above lemma implies that a set of n
pairs of anticommuting quantum observables with outcomes
±1 that satisfy the commutation relations (55) can always

be represented, up to a single unitary operation, as a tensor
product of single-qubit operators (78). We have thus arrived
at our main result.

Theorem 2. If a quantum state |ψ〉 and a set of dichotomic
observables Ai and Bj with i, j = {1, 2, . . . , n} give rise to
maximal violation of inequality (57), then there exist a pro-
jection Pn : Hn → C2n

and a unitary U acting on C2n
such

that

U †(P Ai P†)U = Âi, (85)

U †(P Bj P†)U = B̂ j, (86)

U (P|ψ〉) = |Gn〉, (87)

where Âi and B̂ j are defined in Eq. (78) and |Gn〉 is the
complete graph state of n qubits.

Proof. The state |ψ〉 ∈ Hn and observables Ai and Bj act-
ing on the Hilbert space Hn attain the maximal quantum
violation of inequality (57) if, and only if, they satisfy the
set of n + ( n

3 ) equations (61) and (62). The algebra induced
by this set of equations allows us to prove Lemmas 4, 5,
and 6; in particular, it follows that there exists a projection
Pn : H → Vn

∼= C2n
and a unitary U acting on Vn such that

U †(P Ai P†)U = Xi, (88)

U †(P Bj P†)U = Zj . (89)

In this way, the products of observables that appear in the first
n correlators in inequality (57) give stabilizing operators of
the graph state associated to the complete graph with n ver-
tices, whereas the correlators with negative sign correspond to
products of three different stabilizing operators for which the
graph state |Gn〉 is an a eigenvector with associated eigenvalue
−1. Thus the complete graph state will be the unique state that
attains the maximal quantum violation; then

U (P|ψ〉) = |Gn〉. (90)

This completes the proof. �

V. ROBUSTNESS

Here we obtain fidelity bounds on the state and measure-
ments leading to the given nonmaximal violation of inequality
(57) to demonstrate that our scheme is robust to errors and
experimental imperfections. For simplicity, let us focus on the
case of n = 3. Let us say that the maximal quantum violation
of inequality (20) is observed with an ε error, i.e., a non-
maximal violation of 4 − ε is observed. Then, the correlators
satisfy the following bounds:

〈ψ |A1B2B3|ψ〉 � 1 − ε,

〈ψ |B1A2B3|ψ〉 � 1 − ε,

〈ψ |B1B2A3|ψ〉 � 1 − ε,

−〈ψ |A1A2A3|ψ〉 � 1 − ε, (91)

for some ε > 0. We demonstrate that for a small enough value
of ε, the quantum realization is close enough to the optimal
quantum realization which leads to the maximal quantum
violation of the inequality. This is the purpose of robustness
analysis that will be presented here; i.e., we show that in the
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limit ε → 0 the quantum realization is close to the optimal
one.

In the presence of errors, it is not straightforward to
guarantee the existence of an invariant subspace under the
action of the operators Ai and Bj , as we have in the self-
testing of the optimal quantum realization. However, the
robustness of the protocol can be demonstrated, in a sim-
ilar way to that of Ref. [32], by proving the existence
of an eight-dimensional ideal subspace V̂ together with a
state |ψ̂〉 ∈ V̂ and observables Âi and B̂i acting on it such
that their fidelities with the actual state and measurements
approach one in the limit of ε → 0. We define the state fi-
delity as F (|ψ̂〉, |ψ〉) := |〈ψ̂ |ψ〉|2, and the operator fidelity
as F (X̂i, Xi ) := (1/8)Tr(X̂iXi ) (with Xi = Ai), where the 1/8
factor is used to normalize the fidelity since Tr(X̂iXi ) � 8, and
similarly defined between B̂ j and Bj . Formally, we have the
following theorem.

Theorem 3. Suppose a quantum state |ψ〉 and a set of
measurements Ai, Bj with i, j = {1, 2, 3} in a Hilbert space
H satisfy the ideal expectations corresponding to the maximal
quantum violation of inequality (20) to within error ε. Then
there exists a projection P : H → V̂ , where dim(V̂ ) = 8, a
state |ψ̂〉 ∈ V̂ and Âi, B̂ j which are Hermitian involutions
acting on V̂ for all i and j such that

〈ψ̂ |Â1B̂2B̂3|ψ̂〉 = 1,

〈ψ̂ |B̂1Â2B̂3|ψ̂〉 = 1,

〈ψ̂ |B̂1B̂2Â3|ψ̂〉 = 1,

and there exists some unitary U acting on V̂ such that

F (U |ψ̂〉, |ψ〉) � 1 − ε0,

F (UÂiU
†, Ai ) � 1 − ε1 ∀i,

F (UB̂jU
†, Bj ) � 1 − ε2 ∀i,

where ε0 = 25ε, ε1 = 0, and ε2 = 4ε.
The proof of the above theorem is given in Appendix A.

This theorem implies that there exists a subspace in which,
up to a small enough error, the quantum realization leading
to the nonmaximal quantum violation is close to the optimal
quantum realization up to a unitary. For instance, an error of
0.1% in each expectation value implies that the state fidelity
is not less than 97.5% and the operator fidelities of Bj are not
less than 99.6%. Following the proof of Theorem 3, one can
also obtain the fidelity bounds for any n demonstrating the
robustness of the scheme similarly as presented in Theorem 4.

In order to obtain a tight self-testing bound that is appli-
cable to a more noisy practical scenario in which the given
nonmaximal violation is not almost perfect, one may employ
the numerical method to bound the state fidelity as a func-
tion of violation of the noncontextual inequality based on
semidefinite programming relaxations of quantum contextual
sets introduced in Ref. [51] or the analytical method based on
operator inequalities introduced in Ref. [17].

VI. CONCLUSIONS

Quantum contextuality provides a notion of nonclassical-
ity for single systems. Motivated by extending the task of
self-testing based on Bell inequalities to scenarios where en-

tanglement is not necessary or spatial separation between the
subsystems is not required, self-testing of quantum devices
based on quantum contextuality has recently been explored.
In this work we have followed this research direction and have
introduced a family of inequalities revealing quantum contex-
tuality and have shown that they can be used for certification
of multiqubit quantum systems. An interesting feature of our
scheme is that it is scalable: the amount of information about
the observed nonclassical correlations needed to certify the
underlying quantum system grows only polynomially with the
number of qubits that are certified.

Such contextuality-based certification schemes rely, how-
ever, on compatibility relations between the involved mea-
surements and are thus generally difficult to implement in
practice. A natural follow-up of this work would be therefore
to design a scheme for certification built on our inequalities
that does not rely on the compatibility relations, but rather
allows one to deduce them from the observed nonclassicality.
Such schemes for single quantum systems have recently been
proposed in Refs. [33,34] within the sequential measurements
or temporal correlations scenario. It would be thus interesting
to see whether our results can be mapped to this scenario.
Another possible direction for further research is to explore
whether one can improve the scalability of our scheme with
the number of the certified qubits. From a general perspective
it is a highly nontrivial question to ask what is the minimal
information about the observed nonclassical correlations that
enables making nontrivial statements about the underlying
quantum system.
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APPENDIX A: PROOF OF THEOREM 3

Here we present the derivation of robustness of the scheme
given in Theorem 3. This will be similar to the proof of
robustness of the certification scheme given in Ref. [32].

For providing robust self-testing statements in the Bell
tests where dichotomic measurements are implemented [17],
Jordan decomposition for the state and measurements has
been employed to simplify the derivation. In Ref. [32], Jordan
decomposition has also been extended to the contextuality
scenario to provide robust certification of the two-qubit sys-
tem. In Appendix B, we extend this Jordan decomposition to
our scenario to provide the robust certification. According to
this decomposition, we can decompose the Hilbert space H in
which the state and measurements leading to the violation of
our inequality act as

H =
⊕

l

Hl , (A1)

where each Hl has dimension at most eight and is invariant
under the action of Ai and Bj .
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With respect to decomposition (A1), the state |ψ〉 can be
written as

|ψ〉 =
∑

l

√
pl |ψl〉, (A2)

where |ψl〉 ∈ Hl and
∑

l pl = 1. We express each |ψl〉 in the
computational basis {|abc〉l : a, b, c ∈ {0, 1}} as

|ψl〉 =
∑

a,b,c=0,1

c(l )
abc|abc〉l , (A3)

where c(l )
abc satisfies

∑
a,b,c |c(l )

abc|
2 = 1.

We define the subspace V̂ ⊆ H as the linear span of
{|ãb̃c̃〉 := ∑

l
√

pl |abc〉l}. We define the ideal state in this
subspace as

|ψ̂〉 := 1√
2

(|0̃0̃0̃〉 − |1̃1̃1̃〉), (A4)

which can be reexpressed as

|ψ̂〉 =
∑

l

√
pl |ψ̂l〉, (A5)

where

|ψ̂l〉 := 1√
2

(|000〉l − |111〉l ). (A6)

Note that for the ideal observables defined as

Â1 := ⊕
l (Â1l ⊗ 1l ⊗ 1l ), B̂1 := ⊕

l (B̂1l ⊗ 1l ⊗ 1l ),

Â2 := ⊕
l (1l ⊗ Â2l ⊗ 1l ), B̂2 := ⊕

l (1l ⊗ B̂2l ⊗ 1l ),

Â3 := ⊕
l (1l ⊗ 1l ⊗ Â3l ), B̂3 := ⊕

l (1l ⊗ 1l ⊗ B̂3l ),

where

Âil = Xi, B̂ jl = Yj, (A7)

where Xi and Yj are the Pauli operators acting on the ith qubit,
the ideal state defined in Eq. (A4) violates the noncontex-
tuality inequality (20) maximally. Note that the ideal state
projected onto Hl , i.e., |ψ̂l〉, has the form of the GHZ state
(16). We have chosen the above particular form of the ideal
state for our convenience.

We now express the nonideal observables with respect to
the Jordan decomposition. Due to the fact that we have three
pairs of dichotomic observables that do not commute on the
quantum state, which is a consequence of Lemma 7, the di-
mension of each of the subspaces Hl in Eq. (A1) can be taken
to be eight. From Corollary 1, it follows that

A1 = ⊕
l (A1l ⊗ 1l ⊗ 1l ), B1 = ⊕

l (B1l ⊗ 1l ⊗ 1l ),

A2 = ⊕
l (1l ⊗ A2l ⊗ 1l ), B2 = ⊕

l (1l ⊗ B2l ⊗ 1l ),

A3 = ⊕
l (1l ⊗ 1l ⊗ A3l ), B3 = ⊕

l (1l ⊗ 1l ⊗ B3l ),

where by using “local” unitary operations we can always
choose Ail and Bil acting on Hl to be other following forms:

A1l = X1, B1l = cos θlY1 + sin θlX1,

A2l = X2, B2l = cos φlY2 + sin φlX2,

A3l = X3, B3l = cos νlY3 + sin νlX3, (A8)

with θl , φl , νl ∈ [−π
2 , π

2 ].

We now proceed to calculate the state fidelity given by
|〈ψ̂ |ψ〉|2, where |ψ̂〉 is the ideal state given by Eq. (A4). Using
the fact that the global phase on each subspace can be chosen
freely, we can always set 〈ψ̂l |ψl〉 � 0, and therefore,

〈ψ̂ |ψ〉 =
∑

l

pl〈ψ̂l |ψl〉 �
∑

l

pl |〈ψ̂l |ψl〉|2. (A9)

Now, using the expressions of |ψl〉 and |ψ̂l〉 given by
Eqs. (A3) and (A6), respectively,

∑
l pl |〈ψ̂l |ψl〉|2 can be writ-

ten as ∑
l

pl |〈ψ̂l |ψl〉|2 =
∑

l

pl
1

2

∣∣c(l )
000 − c(l )

111

∣∣2
.

The expression in the right-hand side of the above equa-
tion can be written as

1

2

∣∣c(l )
000 − c(l )

111

∣∣2 = ∣∣c(l )
000

∣∣2 + |c(l )
111|2 − 1

2

∣∣c(l )
000 + c(l )

111

∣∣2
.

Using
∑

abc |c(l )
abc|

2 = 1 in the first term in the right-hand side
of the above equation, we arrive at∑

l

pl |〈ψ̂l |ψ〉|2 = 1 −
∑

l

pl

∑
abc �=000,111

∣∣c(l )
abc

∣∣2

−
∑

l

pl
1

2

∣∣c(l )
000 + c(l )

111

∣∣2
. (A10)

We will use the following lemma to obtain a lower bound on
the right-hand side of the above equation.

Lemma 7. Suppose that inequalities (91) are satisfied for
some ε > 0. Then, ‖{Ai, Bi}|ψ〉‖ � 4

√
2ε for all i.

Proof. We show that ‖{A1, B1}|ψ〉‖ � 4
√

2ε. From
Eqs. (91) and assuming that 0 � ε � 1, we have that

‖A1|ψ〉 + A2A3|ψ〉‖ =
√

2(1 + 〈ψ |A1A2A3|ψ〉)

�
√

2[1 − (1 − ε)]

=
√

2ε, (A11)

and, similarly, we have

‖B2|ψ〉 − B1A3|ψ〉‖ �
√

2ε, (A12)

‖B1|ψ〉 − A2B3|ψ〉‖ �
√

2ε, (A13)

‖B2|ψ〉 − A1B3|ψ〉‖ �
√

2ε. (A14)

Using then the triangle inequality for the vector norm and the
fact that it is unitarily invariant, we have

‖(A1B1 + B1A1)|ψ〉‖ � ‖(B1A1 + B1A2A3)|ψ〉‖
+ ‖(−B1A2A3 + A2B2)|ψ〉‖
+ ‖(−A2B2 + A1A2B3)|ψ〉‖
+ ‖(−A1A2B3 + A1B1)|ψ〉‖

� 4
√

2ε. (A15)

Due to the symmetry of the inequality, the same will hold for
any other i, which completes the proof. �
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First, let us bound
∑

l pl |c(l )
000 + c(l )

111|
2

in Eq. (A10). From
Eqs. (A11) and (A12), respectively, we obtain∑

l

pl
(∣∣c(l )

000 + c(l )
111

∣∣2 + ∣∣c(l )
001 + c(l )

110

∣∣2

+∣∣c(l )
010 + c(l )

101

∣∣2 + ∣∣c(l )
011 + c(l )

100

∣∣2) � ε,∑
l

pl
(∣∣e−iφl c(l )

000 − eiθl c(l )
111

∣∣2 + ∣∣eiφl c(l )
010 + eiθl c(l )

101

∣∣2

+∣∣e−iφl c(l )
001 − eiθl c(l )

110

∣∣2 + ∣∣eiφl c(l )
011 + eiθl c(l )

100

∣∣2) � ε.

From the first of these equations, it follows that∑
l

pl

∣∣c(l )
000 + c(l )

111

∣∣2 � ε. (A16)

It also follows that∑
l

pl

∣∣c(l )
001 + c(l )

110

∣∣2 � ε, (A17)

∑
l

pl

∣∣e−iφl c(l )
001 − eiθl c(l )

110

∣∣2 � ε. (A18)

Next, we proceed to bound
∑

l pl
∑

abc �=000,111 |c(l )
abc|2 in

Eq. (A10). We have∣∣c(l )
110

∣∣2|eiθl + e−iφl |2

= ∣∣(eiθl c(l )
110 − e−iφl c(l )

001

) + e−iφl
(
c(l )

001 + c(l )
110

)∣∣2
.

Using the fact that |x + y|2 � 2(|x|2 + |y|2) for any x, y ∈ C
in the above equation, we arrive at∣∣cl

110

∣∣2|eiθl + e−iφl |2

� 2
(∣∣eiθl cl

110 − e−iφl c(l )
001

∣∣2 + ∣∣c(l )
001 + c(l )

110

∣∣2)
.

From Eqs. (A17) and (A18),∑
l

pl

∣∣c(l )
110

∣∣2|eiθl + e−iφl |2

=
∑

l

pl

∣∣c(l )
110

∣∣2
(2 + 2 cos(θl + φl )) � 4ε. (A19)

Similarly,∣∣c(l )
001

∣∣2|eiθl + e−iφl |2

= ∣∣(−eiθl c(l )
110 + e−iφl c(l )

001

) + eiθl
(
c(l )

001 + c(l )
110

)∣∣2

� 2
(∣∣ − eiθl c(l )

110 + e−iφl c(l )
001

∣∣2 + ∣∣c(l )
001 + c(l )

110

∣∣2)
,

from which it follows that∑
l

pl

∣∣c(l )
001

∣∣2|eiθl + e−iφl |2

=
∑

l

pl

∣∣c(l )
001

∣∣2
(2 + 2 cos(θl + φl )) � 4ε. (A20)

Adding Eqs. (A19) and (A20),∑
l

pl
(∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)
(1 + cos(θl + φl )) � 4ε. (A21)

We now need the following lemma, which is similar to
Lemma 7.

Lemma 8. Suppose the ideal expectations are satisfied to
within error ε. Then ‖A1B2|ψ〉 + B1A2|ψ〉‖ � 2

√
2ε.

Proof.

‖A1B2|ψ〉 + B1A2|ψ〉‖ � ‖(A1B2 − A1B1A3)|ψ〉‖
+ ‖(A1B1A3 + B1A2)|ψ〉‖ � 2

√
2ε,

where the last inequality follows from Eqs. (A11) and
(A12). �

From the result of the lemma, we obtain∑
l

pl
((∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)|eiθl + eiφl |2

+ (∣∣c(l )
011

∣∣2 + ∣∣c(l )
100

∣∣2)|eiθl − e−iφl |2)
+

∑
l

pl
((∣∣c(l )

000

∣∣2 + ∣∣c(l )
111|2

)∣∣e−iθl + e−iφl |2

+ (∣∣c(l )
010

∣∣2 + ∣∣c(l )
101

∣∣2)|e−iθl − eiφl |2) � 8ε,

and therefore,∑
l

pl
(∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)|eiθl + eiφl |2 � 8ε,

or ∑
l

pl
(∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)
(1 + cos(θl − φl )) � 4ε. (A22)

Adding Eqs. (A21) and (A22),

8

2
ε �

∑
l

pl
(∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)
(1 + cos θl cos φl )

�
∑

l

pl
(∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)
, (A23)

where in the last inequality we used θl , φl ∈ [−π
2 , π

2 ], and
so cos θl � 0 and cos φl � 0. Similarly, from Eqs. (A13)
and (A14), we have found the following bounds on∑

l pl (|c(l )
010|

2 + |c(l )
101|

2
) and

∑
l pl (|c(l )

011|
2 + |c(l )

100|
2
):

8

2
ε �

∑
l

pl
(∣∣c(l )

010

∣∣2 + ∣∣c(l )
101

∣∣2)
, (A24)

8

2
ε �

∑
l

pl
(∣∣c(l )

011

∣∣2 + ∣∣c(l )
100

∣∣2)
, (A25)

respectively. Summing Eqs. (A23)–(A25), we obtain∑
l

pl

∑
abc �=000,111

∣∣c(l )
abc

∣∣2 � 24

2
ε. (A26)

Substituting Eqs. (A26) and (A16) in Eq. (A10), we obtain the
state fidelity as

F (|ψ̂〉, |ψ〉) �
(

1 − 25

2
ε

)2

� 1 − 25ε. (A27)

Next we bound the fidelity of the operators. From Eq. (A8)
and the definition of the ideal operators (up to a unitary free-
dom), it follows that for all i, tr(ÂiAi ) = 8 which implies that
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F (Âi, Ai ) = 1. From Eq. (A8), it also follows that

F (B̂1, B1) =
∑

l

pl cos θl . (A28)

Let us now obtain a lower bound on
∑

l pl cos θl . Using both
the result of Lemma 7 and Eq. (A8), we obtain

4ε � 1

8
‖{A1, B1}|ψ〉‖2

=
∑

l

pl sin2 θl . (A29)

Using cos2 θl + sin2 θl = 1 and
∑

l pl = 1, we can write∑
l pl sin2 θl as∑

l

pl sin2 θl = 1 −
∑

l

pl cos2 θl

� 1 −
∑

l

pl cos θl , (A30)

where the inequality follows from θl ∈ [−π
2 , π

2 ] and therefore
cos θl � 0. From the above two equations, it follows that

1 −
∑

l

pl cos θl � 4ε. (A31)

Using the above equation in Eq. (A28), we obtain

F (B̂1, B1) � 1 − 4ε.

This ends the proof of Theorem 3.
Theorem 3 can be straightforwardly extended to any n as

follows. Here the state fidelity is defined as earlier and the
operator fidelity is defined with the different normalization
factor as F (X̂i, Xi ) := (1/ dim(V̂n))Tr(X̂iXi ), where dim(V̂n) is
the dimension of the invariant subspace.

Theorem 4. If a quantum state |ψ〉 and a set of measure-
ments Ai, Bj with i, j = {1, 2, . . . , n} in a Hilbert space Hn

satisfy the ideal expectations corresponding to the maximal
quantum violation of inequality (57) to within error ε, then
there exists a projection P : Hn → V̂n, where dim(V̂n) = 2n,
a state |ψ̂〉 ∈ V̂n, and Âi, B̂ j which are Hermitian involutions
acting on V̂n for all i and j such that

〈ψ̂ |Â1B̂2B̂3B̂4 · · · B̂n|ψ̂〉 = 1,

〈ψ̂ |B̂1Â2B̂3B̂4 · · · B̂n|ψ̂〉 = 1,

...

〈ψ̂ |B̂1B̂2B̂3B̂4 · · · Ân|ψ̂〉 = 1,

and there also exists a unitary U acting on V̂ such that

F (U |ψ̂〉, |ψ〉) � 1 − ε0,

F (UÂiU
†, Ai ) � 1 − ε1 ∀i,

F (UB̂iU
†, Bi ) � 1 − ε2 ∀i,

where ε0 = [8(2n−1 − 1) + 1]ε, ε1 = 0, and ε2 = 25−nε.
Proof. The bounds of this theorem are obtained using the

similar steps used in the proof of Theorem 3. With respect to
the Jordan decomposition,

Hn =
⊕

l

Hl , (A32)

where each Hl has dimension at most 2n and is invariant
under the action of Ai and Bj . As before, the state |ψ〉 can
be decomposed as

|ψ〉 =
∑

l

√
pl |ψl〉, (A33)

where |ψl〉 ∈ Hl and
∑

l pl = 1. With respect to the computa-
tional basis {|n1n2 · · · nn〉l : ni ∈ {0, 1}}, we express each |ψl〉
as

|ψl〉 =
∑

ni∈{0,1}
c(l )

n1n2···nn
|n1n2 · · · nn〉l ,

where
∑

n1n2···nn
|cn1n2···nn |2 = 1.

We define the subspace V̂n ⊆ Hn as the linear span of
{|ñ1ñ2 · · · ñn〉 := ∑

l
√

pl |n1n2 · · · nn〉l}. We define the ideal
state in this subspace as

|ψ̂〉 := 1√
2

(|0̃10̃2 · · · 0̃n〉 − |1̃11̃2 · · · 1̃n〉), (A34)

which can be reexpressed as

|ψ̂〉 =
∑

l

√
pl |ψ̂l〉, (A35)

where

|ψ̂l〉 := 1√
2

(|0102 · · · 0n〉l − |1112 · · · 1n〉l ). (A36)

Note that for the ideal observables defined as

Âi :=
⊕

l

(
k−1⊗
i=1

1l ⊗ Âl
i ⊗

n⊗
i=k+1

1l

)
,

B̂ j :=
⊕

l

(
k−1⊗
i=1

1l ⊗ B̂l
j ⊗

n⊗
i=k+1

1l

)
,

where

Âil = Xi, B̂ jl = Yj,

with i, j = 1, 2, 3, and, for i, j = 4, 5, . . . , n,

Âil = −Yi, B̂ jl = Xj,

the ideal state defined in Eq. (A34) violates the noncontextu-
ality inequality (20) maximally.

From Appendix B, it follows that the nonideal observables
can be written as

Ai =
⊕

l

(
k−1⊗
i=1

1l ⊗ Al
i ⊗

n⊗
i=k+1

1l

)
,

Bj =
⊕

l

⎛
⎝ k−1⊗

j=1

1l ⊗ Bl
j ⊗

n⊗
j=k+1

1l

⎞
⎠,

for all i, j = 1, 2, . . . , n. We choose a unitary such that the
operators Ail and Bjl acting on Hl can be written as follows:

Ail = Xj, Bjl = cos θ jlYj + sin θ jl Xj, i, j = 1, 2, 3,

(A37)

Bil = Xk, Ajl = cos θ jlYk + sin θ jl Xk, i, j = 4, 5, . . . , n,

(A38)

with θ jl ∈ [−π
2 , π

2 ] for all j and k.
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Using the similar steps used to obtain Eq. (A10), we
have

〈ψ̂ |ψ〉 � 1 −
∑

l

pl

∑
n1n2···nn �=0102···0n,1112···1n

∣∣c(l )
n1n2···nn

∣∣2

− 1

2

∑
l

pl

∣∣c(l )
0102···0n

+ c(l )
1112···1n

∣∣2
. (A39)

Similarly to the case of n = 3, a bound on the right-hand side
of the above equation can be obtained as follows. The term
1
2

∑
l pl |c(l )

0102···0n
+ c(l )

1112···1n
|2 in Eq. (A39) can be bounded

using the inequality given by

‖A1|ψ〉 + A2A3B4 · · · Bn|ψ〉‖ �
√

2ε. (A40)

From this equation, we obtain∑
l

pl
(∣∣c(l )

010203···0n
+ c(l )

111213···1n

∣∣2

+ · · · + ∣∣c(l )
011213···1n

+ c(l )
110203···0n

∣∣2) � ε, (A41)

from which it follows that∑
l

pl

∣∣c(l )
0102···0n

+ c(l )
1112···1n

∣∣2 � ε. (A42)

Next, the second term in Eq. (A39) can be bounded using
the other inequalities such as

‖B2|ψ〉 − B1A3B4 · · · Bn|ψ〉‖ �
√

2ε, (A43)

from which we obtain∑
l

pl

( ∑
n4,...,nn

∣∣e−iθ2l c(l )
000n4···nn

− eiθ1l c(l )
111n̄4···n̄n

∣∣2

+
∑

n4,...,nn

∣∣eiθ2l c(l )
010n4···nn

+ eiθ1l c(l )
101n̄4···n̄n

∣∣2

+
∑

n4,...,nn

∣∣e−iθ2l c(l )
001n4···nn

− eiθ1l c(l )
110n̄4···n̄n

∣∣2

+
∑

n4,...,nn

∣∣eiθ2l c(l )
011n4···nn

+ eiθ1l c(l )
100n̄4···n̄n

∣∣2

)
� ε,

where n̄i, with i = 4, 5, . . . , n, denotes ni ⊕2 1. From the
above equation, using the steps similar to the ones used to
obtain the bound given by Eq. (A23), we obtain a bound on∑

l pl (|c(l )
0010···0|2 + |c(l )

1101···1|2) as follows:∑
l

pl
(∣∣c(l )

0010···0
∣∣2 + ∣∣c(l )

1101···1
∣∣2) � 8

2
ε. (A44)

The sum
∑

n1n2···nn �=00···0,11···1
∑

l pl |c(l )
n1n2···nn

|2 can be spilt into
the sum of (2n−1 − 1) terms which are a sum of the mod-
ulus of two coefficients c(l )

n1n2···nn
as in the left-hand side of

Eq. (A44). These (2n−1 − 1) terms have the same bound as
given in Eq. (A44). Therefore, we obtain∑

l

pl

∑
n1n2···nn �=00···0,11···1

∣∣c(l )
n1n2···nn

∣∣2 � 8(2n−1 − 1)

2
ε. (A45)

Using Eqs. (A42) and (A45) in Eq. (A39), we obtain the
bound on the fidelity as given in Theorem 4.

Next, we bound the fidelity of the operators. As in the case
of n = 3, we also have ‖{A1, B1}|ψ〉‖ � 4

√
2ε which implies

that

25−nε � 1

2n
‖{A1, B1}|ψ〉‖2

� 1 −
∑

l

pl cos θl , (A46)

leading to the following bound on the fidelity between B̂1

and B1:

F (B̂1, B1) � 1 − 25−nε,

employing the similar steps as in the case of n = 3. This ends
the proof of Theorem 4. �

APPENDIX B: JORDAN’S LEMMA

In this section we prove a corollary to Jordan’s lemma
which is a direct generalization of Corollary 7.1 proven in
Ref. [32]. For completeness we also state Jordan’s lemma
(see, e.g., Ref. [32] for a proof).

Lemma 9 (Jordan’s lemma). Let A and B be a pair of Her-
mitian operators acting on a Hilbert space H such that A2 =
B2 = 1. Then, H decomposes as a direct sum H = ⊕

l Hl ,
with dim Hl ∈ {1, 2}, and A and B act invariantly on each Hl .

In this way, since the set of eigenvectors of AB span H,
we can decompose the Hilbert space H = ⊕

l Hl where the
dimension of such Hl is at most 2.

Corollary 1. Let Ai and Bj with i = 1, 2, 3 be Hermitian
operators acting on a Hilbert space H that square to identity
and satisfy the following commutation relations:

[Ai, Aj] = [Ai, Bj] = 0 (i �= j). (B1)

Then, H can be decomposed as

H =
⊕

l

(H1
l ⊗ H2

l ⊗ H3
l ), (B2)

where each local Hilbert space Hi
l is of dimension

at most two. Moreover, A1 = ⊕
l (A1l ⊗ 1l ⊗ 1l ),

B1 = ⊕
l (B1l ⊗ 1l ⊗ 1l ), A2 = ⊕

l (1l ⊗ A2l ⊗ 1l ),
B2 = ⊕

l (1l ⊗ B2l ⊗ 1l ), A3 = ⊕
l (1l ⊗ 1l ⊗ A3l ), and

B3 = ⊕
l (1l ⊗ 1l ⊗ B3l ).

Proof. This proof is a direct generalization of that of
Corollary 7.1 proven in Ref. [32].

First, let us notice that Eq. (B1) implies that [AiBi, AjBj] =
0 for any i, j = 1, 2, 3, which means that all three Hermitian
operators AiBi can be jointly diagonalized.

Let then |α, β, γ 〉 be an eigenvector of these
operators such that A1B1|α, β, γ 〉 = α|α, β, γ 〉 and
A2B2|α, β, γ 〉 = β|α, β, γ 〉 and A3B3|α, β, γ 〉 = γ |α, β, γ 〉.
Define the following vectors: |ᾱ, β, γ 〉 = A1|α, β, γ 〉,
|α, β̄, γ 〉 = A2|α, β, γ 〉, |α, β, γ̄ 〉 = A3|α, β, γ 〉, |ᾱ, β̄, γ 〉 =
A1A2|α, β, γ 〉, |ᾱ, β, γ̄ 〉 = A1A3|α, β, γ 〉, |α, β̄, γ̄ 〉 =
A2A3|α, β, γ 〉, and |ᾱ, β̄, γ̄ 〉 = A1A2A3|α, β, γ 〉. Then,
the subspace

span{|α, β, γ 〉, |ᾱ, β, γ 〉, |α, β̄, γ 〉, |α, β, γ̄ 〉,
|ᾱ, β̄, γ 〉, |ᾱ, β, γ̄ 〉, |α, β̄, γ̄ 〉, |ᾱ, β̄, γ̄ 〉} (B3)
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is isomorphic to span{|α〉, |ᾱ〉} ⊗ span{|β〉, |β̄〉} ⊗
span{|γ 〉, |γ̄ 〉}. It follows from Lemma 9 that both A1 and B1,
both A2 and B2, as well as both A3 and B3 act invariantly on
the first, second, and third tensor factors, and trivially on the
others, respectively. �

The above corollary can be trivially generalized to any
n � 3: let Ai and Bj (i, j = 1, . . . , n) be Hermitian operators
acting on Hn that square to the identity and satisfy

[Ai, Aj] = [Bi, Bj] = 0 (i �= j). (B4)

Then, Hn decomposes as Hn = ⊕
l (H1

l ⊗ H2
l ⊗ · · · ⊗ Hn

l ),
with dim Hi

l � 2, and

Aj =
⊕

l

(
j−1⊗
i=1

1l ⊗ Al
j ⊗

n⊗
i= j+1

1l

)
(B5)

and

Bj =
⊕

l

(
j−1⊗
i=1

1l ⊗ Bl
j ⊗

n⊗
i= j+1

1l

)
. (B6)
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