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Quantum computation capability verification protocol for noisy intermediate-scale
quantum devices with the dihedral coset problem
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In this article, we propose an interactive protocol for one party (the verifier) holding a quantum computer to
verify the quantum computation power of another party’s (the prover) device via a one-way quantum channel.
This protocol is referred to as the dihedral coset problem (DCP) challenge. The verifier needs to prepare quantum
states encoding secrets (DCP samples) and send them to the prover. The prover is then tasked with recovering
those secrets with a certain accuracy. Numerical simulation demonstrates that this accuracy is sensitive to errors
in quantum hardware. Additionally, the DCP challenge serves as a benchmarking protocol for locally fully
connected quantum architecture and aims to be performed on current and near-future quantum resources. We

conduct a 4-qubit experiment on one of the IBM Q devices.
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I. INTRODUCTION

In 2019, Google succeeded in reaching quantum
supremacy with their Sycamore processor [1]. However,
it remains a long way to a fully functioning quantum
computer. At this moment, only noisy intermediate-scale
quantum (NISQ) [2] devices are available, and a method is
needed to verify their computing power.

Currently, instead of computation capability, random cir-
cuit sampling and cross-entropy benchmarking [3,4] are
primarily concerned with testing the quantum property of the
device. It is desirable to have a performance test on quantum
hardware, proving to a verifier and unable to falsify. Recent
works [5-8] demands a classical verifier. In particular, they
rely on the hardness of the learning with errors (LWE) prob-
lem and needs thousands of qubits, which is not applicable to
present quantum hardware.

This test should be designed based on two principles:
dynamic enough to adapt various processors and friendly to
NISQ devices, which can be directly applied in an experiment.
To be dynamic, we focus on locally fully connected (LFC)
quantum architecture. LFC means that the chip consists of
m unit cells of n 4 1 qubits, with m > 2 and n > 1. Within
each cell, n 4+ 1 qubits are fully connected, and each cell
has a leader qubit, m leader qubits are fully connected. LFC
shares many similarities with Chimera and Pegasus topologies
in quantum annealing processor D-Wave [9]. Notice that, in
reality, hardware for gate-based quantum computing rarely
follow this geometry, but SWAP gates can be applied. A test
based on LFC structure can cover any quantum chip with the
number of qubits >4 and not prime. Moreover, a quantum
device should pass a test based on LFC architecture to demon-
strate its potential for fully connected circuits, such as the

2469-9926/2022/106(1)/012430(9)

012430-1

Shor algorithm [10] and Grover algorithm [11]. Furthermore,
for applying to NISQ devices, the test should contain only
shallow circuits and not rely on quantum memory.

Nowadays, classical simulation programs for quantum cir-
cuits such as Cirq [12], Qiskit [13], and Qibo [14,15] can
mimic noisy or noiseless quantum devices for up to dozens of
qubits on classical hardware. It is hard to distinguish between
a quantum device and a simulator around this scale. Therefore,
we can consider introducing a quantum verifier. In previous
works [16,17], the quantum verifier(s) is (are) asked to wit-
ness particular states generated by the prover. However, in
Ref. [16], the target state is too complicated for NISQ devices.
Also, the method provided in Ref. [17] is designed for sparse
quantum chips with certain geometry restrictions.

This article presents the DCP challenge, a verification pro-
tocol of quantum computation capability, requiring a quantum
verifier and a one-way quantum channel from the verifier to
the prover. It is an interactive protocol for Alice, the verifier
holding a (n + 1)-qubit quantum device, to test the quantum
computing power of Bob, the prover holding a m(n + 1)-qubit
device, which runs on the LFC architecture. In contrast to the
method in Ref. [17], where the verifier needs more than half
of the qubits of the prover, the DCP challenge only needs a
fraction, implying a quantum channel with fewer qubits. In
particular, Alice needs to provide simple quantum states (DCP
samples) as a superposition of two possibilities, which can
be easily verified by measurement, and send them to Bob,
who solves the problem essentially using Quantum Fourier
transform on n qubits. The advantage of the prover being
the receiver of the quantum states is that the measurement
error is also tested. We have also performed simulations of
our protocol. On one side, we show that, in the error-free
model, the quantum computing capability of the prover can
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be successfully verified with overwhelming probability. On
the other side, in the noisy setting simulation, our protocol
is shown to be very sensitive to the presence of errors, while
it is still shown to be robust up to some restricted errors.
This property also makes the DCP challenge a promising
benchmarking protocol when preparing samples and solving
the problem are performed by the same quantum device.

II. PRELIMINARY
A. Dihedral coset problem

The dihedral coset problem has been a fundamental prob-
lem in studying the quantum hardness of the hidden subgroup
problem over (non-Abelian) dihedral group in the last two
decades [18-23]. Informally, it asks to recover the hidden
subgroup of a dihedral group given random cosets of the
hidden subgroup as superposition. A dihedral group is gener-
ated by reflections and rotations of a E-gon (regular polygon
with E edges). The first part of the superposition encodes the
reflection. From now on, we call it the reflection qubit. The
second part encodes the rotation. Normalization is omitted for
every equation in this article.

Definition 1. (Dihedral coset problem, DCP) The input of
the DCP!, with modulus E consists of ¢ samples. Each sample
is a quantum state of the form

[¥x.s) = 10) [x) 4+ [1) |(x 4 5) mod E) (1

stored in 1 + [log, E7 qubits, where x € {0, 1, ..., E — 1} is
randomly and uniformly selected for each sample and s €
{0,1,...,E — 1} is fixed throughout all the states. The task
is to output the secret s.

The problem is hypothesized to be unsolvable by direct
measurement on the computational basis, which means the
best-known classical solution is a random guess. We could
not obtain x and (x + s) mod E at the same time.

The DCP is known to be solvable in subexponential time
while given a subexponential number of samples [24-26].
These solving algorithms were designed with different opti-
mization targets. So far, Kuperberg’s algorithm [24] achieves
a smallest running-time 2°V1°&E) pyt requires 20V1°&(E)
space while Regev’s [25] variant requires only a polynomial
(in log,(E)) space but its running time is slightly worse as
20( log, (E)log, (log, (E)))

Both of them start by running quantum Fourier transform
on the given DCP samples (except the reflection qubit) and
measure them, which naturally possess a LFC structure. The
main drawback of these two algorithms is that some quantum
states need to be maintained throughout the whole process.

In this work, given the constraints of current quantum com-
puting devices (e.g., NISQ), the circuit depth and quantum
memory required by both Kuperberg’s and Regev’s algorithms
cannot be satisfied. Therefore, we consider a slightly different
variant of the DCP problem and algorithm by minimizing
circuit depth and limiting quantum registers.

Before introducing them, we first recall the quantum
Fourier transform.

Definition 2. (Quantum Fourier transform, QFT) The
quantum Fourier transform on the computational basis
[0),...,|N — 1) of an n-qubit state is defined to be a linear

0
0
0
0
0
0
o
0

B

[H]-10)

fan)
Ay

QFT

JUE

=
P
o

o
Ny

B
\J

)
)
)
)
)
)
) QFT
)

FIG. 1. A toy circuit for m =2, n =3, and s = 2. The first
four qubits correspond to the state when x = 0, |1/ ,) = |0) |000) +
[1) |010) and the second four qubits correspond to the state x = 2,
[¥2.2) = 10) |010) 4 |1) [100). The collision after QFT with %, =3
and X, = 7 is chosen randomly.

operator with the following action on the basis states,

N—1
i) = Y@ 1k )
k=0

where wy = ¥V,

The evaluation time of QFT is O(n?) [27, Section 5.1].

B. New variant

Currently, NISQ devices have limited registers, low co-
herence time, low relaxation time, and imperfect gate
implementation. They can only efficiently perform shallow
circuits. Therefore, we slightly modify the DCP adapting this
status. First, we set E = N = 2". Then, instead of solving the
secret s, we ask to solve the parity of s, which represents the
same order of complexity. Figures 1 and 2 are two example
circuits of this new variant.

Alice can prepare the state |y, ;) with only H, X and CNOT
(which are the Clifford gates) and it takes O(n) gates. She can

-

)
|0) &
0) {X}—&— QFT
0) = Ho)
0y {H#] &)
0) & H0)
0) {x} QFT
0) {x}— H0

FIG. 2. A toy circuit for m =2, n =3, and s = 3, first four
qubits correspond to the state when x =2, |y, 3) = |0)|010) +
[1) [101) and the second four qubits correspond to the state x = 3,
[¥33) = [0) [011) + |1) |110). The collision after QFT with £; =6
and ¥, = 2 is chosen randomly.
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verify the accuracy of |, ;) by measuring it. Notice that, for
a total of N2 combinations of x and s, there are a total of N2
combinations of X and CNOT gates. However, we do not have
a direct relation between x, s and each of these gates.

To solve the parity of s within m cells of n + 1 qubits,
using the shallowest circuit currently known, we use a highly
simplified version of Kuperberg’s algorithm [24], and name it
ParitySolve.

Bob performs QFT on the last n qubits and measures them.
Here we highlight that he always needs more computation
resources and operation steps than Alice; otherwise, it would
not be a challenge.

After QFT is applied on the last n qubits of the DCP
sample, the total state becomes

N—1
D0+ oy D) 1K), oy =N, 3)
k=0

Bob then checks the measurements after QFT. He needs
a pair of measurements that the most significant qubit is dif-
ferent and the rest are identical. We call it a collision. If he
does not have it, he resets all registers to |0) and starts another
ParitySolve.

After the measurement, the reflection qubit becomes

|$2.5) = 10) + @y 1) (4)
for some wuniform distributed random measured X €
{0,1,...,N —1}. Assume that Bob has a collision, X;

and X,; then the tensor product between |¢z, ;) and |¢z, )
gives

10,0) + @ |1,0) + w210, 1) + 0™ 11, 1) . (5)

Bob performs a CNOT gate on these two reflection qubits. The
state becomes

10,0) + @i |1, 1) + w210, 1) + {7 11,0) . (6)

Then he measures the target qubits, with % probability he can
measure |1). If |0) is measured, he needs to reset all registers
to |0) and start another ParitySolve. After |1) on the target
qubit is measured, the controlled qubit becomes

10) + @iy T 1) = [0) + (=D |1) . (7

The equality holds because if %; and X; is a collision, then
£1—% mod N =14.

Finally, the parity of s lies inside the phase of |1). Bob can
solve it by applying an H gate on the remaining qubit and
measuring it. If the result is |0), then s is even. He replies
0 to Alice. Otherwise, s is odd. He replies 1. The solution
is completely correct if the quantum channel and devices are
noiseless.

C. Measurement method

We have found a new method to solve the parity of s when
E = N. Asindicated previously, s is unsolvable by direct mea-
surement on the computational basis. However, it is possible
to have a minor advantage with single-qubit measurement on
a different basis, equivalent to applying one layer of same
single-qubit unitary gates before measuring on the computa-
tional basis, as shown in Fig. 3.

10) — Us H ™3

|0) — Us H ma2
DCP samples

10) — Us .71

0) — Us

FIG. 3. A toy circuit for the measurement method for n = 3.

The third general unitary gate Us can be written into

o= iB+0)/2 oo (%) —emih=0)/2 gin (%)
=02 gin (%) 1 B+0/2 cog (%) > @®)

with a € [0, 1), b € [0,4m), and ¢ € [0, 2r). When a = %,
b =0, and ¢ = , U is an H gate (with a global phase).

The parity of s can be distinguished with a =7, c €
{0, 7}, and an arbitrary b. The measurement is read as M =
mp2° + m; 2 + - -« + m,2". We denote as M, the value not
able to measure, M., as the value that is only measurable
when s is even, and M,q4q as the value that is only measurable
when s is odd. Therefore, Moy, and M,qq can be considered as
the feature values of the parity of s, which can be determined
when one of them appears. When ¢ =0, My, =N — 1,
Meyen = 2N — 2, and Myqq = N — 2. Whenc = 7, Myon = N,
Meyen = 1, and Myqq = N + 1. The probability of measuring
Meyen OF Mogq is 1/N. For example, Bob can measure every
DCP samples on an H basis, if any of them is 1, s is even, or
if any of them is N + 1, then s is odd. This new technique is
found by brute-force simulation for » < 10 and conjectured
to be valid for lager n; it potentially leads to a solution of the
DCP with only measurement.

Us(a, b, c) = (

III. PROTOCOL

In this section, we use an example to demonstrate the full
protocol of the DCP challenge. A diagram is in Fig. 4. Alice
is the verifier who has a quantum computer. Bob is the prover
who declares having a quantum computer and wants to prove
his quantum computation capability to Alice. To perform the
challenge, Alice needs to have n + 1 qubits to prepare DCP
samples, and Bob needs m(n + 1) qubits to solve them. Before
starting the challenge, they agree on the choice of m, n, the
number of iterations 7, and the number of repetitions r. In
every repetition, there are ¢ iterations.

In the first stage, Alice uniformly selects two numbers x €
{0,1,...,N—1} and s € {0, 1,...,N — 1}, both of which
she keeps secret. She generates |, ;) with x and s. Alice sends
m DCP samples one by one to Bob via a quantum channel in
every iteration. Bob stores them in his m cells of registers and
attempts to solve the parity of s using ParitySolve. In the first
repetition, every sample has the same s = s; and a different
random x. When Bob could not have a result after # iterations,
he randomly guesses a 0 or 1. Here we have £ = mt. Then
Alice starts new repetitions, each time with a different s until
she completes the challenge with a secret s,. The number
of repetitions r can be any number large enough to reflect
Bob’s probability of success, also called the accuracy p. In
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Alice Bob
m DCP samples with s1 Quantum channel ParitySolve
[ ——
n + 1 qubits
t
m DCP samples with s; Quantum channel ParitySolve

Guess from {0, 1}
if can't solve

Quantum channel

m DCP samples with s, —————— ParitySolve

Quantum channel

m DCP samples with s, ParitySolve

Guess from {0, 1}
if can't solve

Verify the accuracy p
compare with pg and p

Classical channel

Result

FIG. 4. The DCP challenge in a diagram.

this article, we use bold letters for a simulated or experimental
outcome. Bob sends his results in a bit string back to Alice via
a classical channel.

Finally, Alice verifies Bob’s probability of success p. If
Bob has an error-free device, his accuracy is expected to be
p, which can be calculated or simulated numerically. Further-
more, the choice of m, n, t depends on the number of qubits
from both parties, the maximum transmission of the quantum
channel, and the difference p — pp, where pp is the expected
accuracy of performing the measurement method. Details are
shown in Appendix A. Moreover, the presence of noise also
implies that the loss of computing power will reflect in the
accuracy. Since NISQ hardware is not likely to be error-free,
we expect to have p>p > % The quantum computation
capability of Bob’s processor is verified with p > pg. When
p & p, the device is qualified for a stricter test.

The numerical simulation of this verification protocol can
be found in Appendix B.

IV. POSSIBLE CHEATING METHODS

There is not any known method to cheat the DCP challenge
without a quantum computer of better performance unless a
new algorithm is found, reaching the expected accuracy p with
a shallower circuit than ParitySolve. However, it is possible to
cheat when having such a device and obtain p > p with even
less than m(n + 1) qubits. Two methods are outlined below.

The first method assumes Bob’s quantum computer has
a longer relaxation time, such that those unmeasured qubits
do not quickly return to |0). Instead of receiving m samples
and erasing them all if he could not find a collision, he can
erase one sample each time and receive another one. Once
a collision is found, and after a CNOT gate, he measures |0),
he can erase both of them and receive another two samples.
This method wastes fewer DCP samples and leads to a larger
probability of success.

The second method assumes that Bob’s quantum computer
has less noise to perform SWAP gates efficiently. Bob can
move reflection qubits to the register of measured qubits after
resetting them to |0); therefore, he has more room to store the
reflection qubit of every sample. This method increases the
probability of collision, thus increasing the accuracy.

Both methods rely on a more enhanced quantum compu-
tation capability, so they should not be considered cheating.
Once quantum computers become powerful enough to “cheat”
accurately, the “cheating method” can become the standard
protocol. All Alice needs to do is to reduce ¢ or raise p
accordingly. There are more methods to reach p > p when
Regev’s [20,25] and Kuperberg’s [24,26] complete algorithms
can be performed.

Nonetheless, we can prohibit all these cheating methods
by setting the time interval between iterations long enough
to bypass the possible relaxation time for the near future but
still short enough for an experiment. For example, we can
set the interval as one second (the Sycamore processor is
on the order of ws), so the device loses all memory of the
previous iteration. In this way, Bob has no cheating method
unless he has a quantum computer with an extremely longer
relaxation time.

V. OTHER APPLICATIONS

The DCP challenge has more applications than a verifi-
cation mechanism of quantum computation power. Here are
some examples.

This protocol can be used to benchmark a quantum
computer. It is a straightforward method for evaluating the
performance of NISQ hardware. Gate-based quantum devices
are usually manufactured by using various techniques and thus
have distinct connection geometries and parameters. Even
when they have the same number of qubits, direct comparison
of their computation capability is difficult. The readout of
the DCP challenge is the numerical accuracy p after apply-
ing a large amount of simple predefined circuits. It provides
us a quantitative insight into a quantum computer, which
can be regarded as a score. The numerical simulation of the
use of the DCP challenge as a benchmarking protocol is in
Appendix C. The smallest instance using the DCP challenge
for benchmarking only requires four qubits in a line. In this
case, QFT is an H gate. We perform this experiment on the
first four qubits of 5-qubit IBM Q processor ibmg_manila
[28], as detailed in Appendix D.

The DCP challenge helps benchmark a quantum channel. If
Bob tests on his processor and has a probability of success p.
They should anticipate a comparable level of accuracy when
Alice transmits the challenge to Bob. This protocol can also
help to spot eavesdropping on a quantum channel. If Alice
and Bob used to have a probability of success p, suddenly
the probability has dropped. If they are both certain there are
no technical issues with the channel or their hardware, then
perhaps Eve is intercepting. She steals some DCP samples
from the channel, and when she puts some fake samples back,
she is unaware of the parity of s. Even if Eve can also intercept
the classical channel from Bob to Alice and change the result,
she has no method to raise the probability unless she replaces
Bob completely.
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The DCP challenge is a very elemental puzzle game for
NISQ devices. Its numerous potential uses remain unexplored.

VI. GENERALIZATION

Here we give a more general interactive verification pro-
tocol. The central assumption is a question encoding a secret
in £ quantum states (samples), a quantum algorithm solves
the secret with a probability p, a classical or measurement
algorithm solves the secret with a baseline probability pp.
The key to verifying the quantum computing power lies in the
inequality p > pp. Alice sends a fixed amount ¢ of samples
in each repetition. Bob needs to solve the secret and sends
his result back to Alice, and she verifies the accuracy and
compares it with pg. By increasing the number of repetitions,
Alice can confirm Bob’s quantum computation capability. The
protocol can be optimized by lowering the number of qubits
and simplifying Alice’s process of preparing the samples,
creating a computation imbalance between the verifier and
prover.

The DCP is chosen with the extra advantage that its current
solutions naturally process a LFC structure. Moreover, even
within the DCP framework, our readers are free to design
new protocols for more advanced quantum computers; for
example, Alice can ask about the full s instead of its parity
or she can decide another E < N. New algorithm for solving
the DCP or its different variants will be invented in the fu-
ture and the protocol will be updated accordingly. However,
the subexponential quantum complexity of the DCP remains
relatively solid since it secures the hardness of the LWE
problem [29].

VII. CONCLUSIONS

In this article, the DCP challenge has been proposed.
Its computation has been shown, numerical simulations
have been done, and different cheating strategies have been
evaluated. Other applications have been described and a gen-
eralization has been produced. Our readers may perceive it
as a quantum game rather than a methodology for confirming
quantum processing capacity. Its rules are flexible and can be
adapted to different situations.

The DCP challenge is designed for NISQ devices and is
aimed to serve temporarily. One day, when quantum comput-
ers are powerful enough to outperform classical computers in
various tasks such as factoring big integers, the protocol will
lose its purpose as a proof of computation. Nevertheless, its
other applications remain.
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APPENDIX A: ANALYTICAL PROBABILITY

To obtain the ideal probability of success p, we need to
determine kcopision, the probability of not having a collision
in m cells among N possibilities. We can use the formula of

the “Birthday Paradox” to provide its upper bound and lower
bound.

kiower 18 a direct application of the formula to calculate
the probability of not having two identical elements when
choosing m times out of N possibilities,

m—1

N —i
kwr: .
lowe ll:([] N

(AL)

In order not to have a pair of identical elements, each
choice must be different. However, in the case of not having a
collision, we can keep the same choice. So it is slightly easier
to have a collision than to have a pair of identical elements.

For calculating kypper, We first consider the probability of
not having two identical elements when choosing m times out
of %’ possibilities (for n — 1 qubits except the most significant
one). Then, we take into account that the last qubit is different.
We have

m—1 .

1 17 N2—i
Kupper = = + = . A2
PP 2+2g N/2 (A2)

kupper ignores the case of having more than one pair of
identical elements when we are considering the first n — 1
qubits.

We have

(A3)

kupper > keollision > Kiower-

But each collision has only a probability of 1/2 to solve
the parity of s, so the chance of not being able to solve after ¢

iterations is
9 _ 2[’ — (1 + kcollision >r‘

> (A4)

Finally, when Bob is unable to solve, he has to randomly
guess a result, which has the probability 1/2 to be correct. So
in total, his probability of success is

1 + keottision \'
p:|:2_( +collso>:|/2. (AS)
2
And we have the relation,
Pupper = P > Plower (A6)
with
1 + kiower \'
Pupper = [2 - (%) } / 2, (A7)
and
1+ ky !
Plower = [2 - <—2 pper) i|/2 (A8)

Although we do not have the analytical expression of p,
we can obtain it numerically. We can generate m random bit
strings of length n and search for a collision. By repeating this
procedure, we can have the numerical kopision and use it for
calculating p.

To have a given p, we can have an estimation of ,

In(2 —-2p)

—_—. A9
ln ( 1+k210wer ) ( )
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FIG. 5. Combinations of m and n that we can have pypper

(b)

()

— pp > g with a ¢ < 25 are plotted in blue (darker). These three figures show

the situation of a small gap g = 0%, a medium gap g = 10%, and a big gap g = 25% for less than 1600 qubits. (a) Smallest instance: m = 6,
n=4,t =1 with pg = 66.05% and pyyper = 66.40%. (b) Smallest instance: m = 9, n = 6,1 = 4 with pp = 71.64% and pypper = 81.73%. and
(c) Smallest instance: m = 21,n =9, = 9 with pp = 65.45% and pypper = 90.66%.

We use Kiower instead of kypper because it is numerically
closer to keonision- The choice of ¢ is flexible, but setting it
too large is not just a waste of resources: if Bob can solve
the parity of s multiple times within ¢ iterations and take the
majority result, the protocol becomes less sensitive to error.

Here we consider only the case when measuring |0) after
CNOT; we reset all registers and pass directly into the next iter-
ation, ignoring the fact that there might be another collision in
the same group. This is because the probability of having two
collisions in the same group is significantly lower than having
one, and this difference vanishes in p with the exponent ¢. We
would like to keep the problem as simple as possible. Also, we
would like to maintain the shallowest circuit. This situation is
easy to simulate classically.

In some situations, especially when N >> m, t can be too
large (>1000) to fit in an experiment. In this case, we can set
a lower p and increase r for preciseness. The rules of this pro-
tocol are adjustable. For a numerical indication, for a device
with 1000 qubits, if we set n = 19 and m = 50, ¢ should be
=785 to have p > 80% according to our protocol. Therefore,
our protocol is still feasible for the advanced NISQ-era. At
that time, quantum computers might be capable of “cheating”
accurately (as in Sec. IV), we can even set a lower ¢.

There is a probability of 2 — 2p that a random guess needs
to be made. Using the standard deviation formula, we can
calculate the fluctuation from the expectation p:

(A10)

This formula of standard deviation is also valid for exper-
imental p. When p = %, the fluctuation becomes the same as
flipping a coin r times.

For the measurement method, the probability of measuring
Meyen OF Myqq is 1/N and the probability of measuring both of
them in the same repetition is zero. Therefore, the probability
of measuring none of them also means not being able to solve

the parity of s within ms samples and is

N _ 1 mt
2 —2pp = ) - (A11)
The expected accuracy is
N P " 2 (A12)
P = N .

The standard deviation can also be calculated with the
Eq. (A10).

From Eqgs. (A7) and (A12), we can compare pypper, Which
is numerically closer to p, and pg for the difference m,
n, and ¢. For less than 1600 qubits, a minor difference is
shown in Fig. 5(a) for an indication. The number 1600 is the
most up-to-date lower bound of a verification protocol with a
classical verifier [8], ideally a quantum verifier is no longer

m=9 ,n=6 ,t=4 ,r=1000

i 1
60 : === Pupper
. : ..... Ps
5 : Pclean
é 40 - : BN Phbasis
Z }
hel |
> 30 1 1
B I
E :
3 20 ]
o |
g |
10 A q
1
1
0 T T ! T
0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

FIG. 6. Normalized probability distribution of pcjean and Prpasis
over 100 trials, plotted with normal distribution N (Peieans Tpy.,, ) @nd
N (Privasis» Oprbasis )-
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TABLE I. Here we assume m = n + 1, so there are in total m?
qubits, and 7 is the minimal number of iterations for pypper > 80%.
Pclean and Perror are results of » = 10000.

m 3 4 5 6 7 8
t 3 3 4 5 7 9
Pupper 83.75% 82.47% 84.18% 83.22% 83.17% 80.62%
Diower  718.90% 76.86% 79.38% 79.59% 80.61% 78.91%
Poean  81.60% 80.86% 83.05% 82.45% 82.38% 80.69%
Perror  09.02% 65.38% 61.77% 58.74% 55.65% 53.30%

needed after this scale. A distinguishable difference is shown
in Fig. 5(b), ParitySolve and the measurement method can be
distinguished for » ~ 1000. A significant difference is shown
in Fig. 5(c); in this case, the quantum computation capability
of Bob can be verified even with moderated error.

APPENDIX B: NUMERICAL SIMULATION
FOR VERIFICATION

One advantage of the DCP challenge is that it is effortless
to simulate the whole process classically. Due to the LFC
structure and the shallowness of the circuit, instead of sim-
ulating the entire circuit of m(n + 1) qubits, we can simulate
each DCP sample individually and store the measurement bit
string and the state vector of the remaining qubit. Qibo can
efficiently simulate a quantum circuit for up to 31 qubits on
a laptop. Therefore, it can simulate a DCP circuit for up to
n = 30 qubits.

If Bob has a quantum chip of m = 9 and n = 6, Alice can
first choose with Fig. 5(b) that + = 4. Then she can calculate
Pupper With Eq. (A7) and pp with Eq. (A12), or even calculate
p using Eq. (AS) with a numerical kcopision t0 See the proba-
bility that she expects. She prepares r = 1000 repetitions to
challenge Bob, each with m = 9 samples of n + 1 = 7 qubits
and ¢t = 4 iterations. In total, she needs to prepare 36 000 DCP
samples, and Bob needs to perform about that many QFTs.

m=6 ,n=5 ,t=5,r=1000

i 1 1
60 : : === Pupper
| 1 === Plower
c 50 R
.L_) 1 1 Pclean
é 40 - i i B perror
ko A
© 1 1
> 30 1 1 1
E 1 |
2 1l
3 20 i |
° 1|l
a I 1
101 i
| 1
1 1
0 A T 'I 1 T
0.5 0.6 0.7 0.8 0.9 1.0

Accuracy

FIG. 7. Normalized probability distribution of Pcean and Perror
over 100 trials, plotted with normal distribution N (Peeans Opy,,, ) and
N (perrors apem,r)~

(8) (h)

FIG. 8. Eight possible cases for two DCP samples of n = 1. (a)
Case A, with s = 0, xp = 0 and x; = 0. (b) Case B, with s = 0, xo =
Oand x; = 1. (c) Case C, with s = 0, xy) = 1 and x; = 0. (d) Case D,
with s =0, xp = 1 and x; = 1. (e) Case E, with s = 1, xo = 0 and
x; = 0. (f) Case F, with s = 1, xo = 0 and x; = 1. (g) Case G, with
s=1,x)=1 and x; = 0. and (h) Case H, with s =1, xo = 1 and
X = 1.

Finally, Bob sends his 1000 answers back to Alice, verifying
his accuracy. Figure 6 is a simulation with Qibo of Piean,
the accuracy of the error-free simulation of ParitySolve and
Pubasis, the accuracy of solving by measuring on the H basis.
We have Pclean = p and Prpasis = pa- The code is on Github
[30]. We consider r = 1000 acceptable since it is trivial to
distinguish the probability distribution of the clean circuit
performing ParitySolve and the measurement method despite
fluctuation.
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TABLE 1II. Postselected measurements from IBM Q
ibmq_manila processor. In total there are 5426 shots measuring
¢ = 0 and 4425 shots measuring g; = 1. There are >1000 shots
per case, which allows us to reconstruct the DCP challenge with
r = 1000.

B9 A B C D E F G H
|0101) 517 638 624 642 89 73 61 78
[0111) 9 9 14 17 603 563 526 560
[1100) 682 575 632 583 56 50 51 75
[1110) 20 14 13 13 477 490 552 545
Error 24% 19% 2.1% 2.4% 11.8% 10.5% 9.4% 12.2%

APPENDIX C: NUMERICAL SIMULATION
FOR BENCHMARKING

We use p &~ 80% for simulation. It is not too close to 50%,
so we can notice the decrease of accuracy due to noise. Our
readers can also choose p & 90%, which means ¢ needs to
be ~1.75 times greater according to Eq. (A9). Table I is the
table of accuracy; a comparison between analytical piower,
Dupper> €rTor-free circuit simulation Pejean, and noisy circuit
simulation Perror [30]. For the noise map, we use 1% for bit
error and phase error, 3% for measurement error, the choice of
errors is inspired by Quantum Computer Datasheet [31] from
Google.

In the table, pupper > Pclean > Plower for m < 8, which is
what we expected. But p can be very close to pypper. As we can
see, when m = 8, Pclean 1 actually larger than pypper because
we obtain it through sampling and there is minor fluctuation.

To benchmark a quantum chip with n =5 and m = 6, we
can first predict with Eq. (A9) thatt = 5, then calculate pypper
with Eq. (A7) and pjower With Eq. (A8), or even calculate p
using Eq. (AS5) with a numerical kcopision, to see the probability
that we expect. If we set r = 1000, we need to prepare 30 000
DCP samples in total and perform about that many QFTs. Fig-
ure 7 is a simulation of P¢jean and Perror in this case. Comparing
with Pcean, the accuracy Pperor shifts towards 1/2 due to the
noise. We consider r = 1000 acceptable since it is trivial to
distinguish the probability distribution of the clean circuit and
the noisy circuit despite fluctuation.

APPENDIX D: IBM Q EXPERIMENT

We benchmark the DCP challenge on four superconducting
qubits provided by IBM Q quantum computers. Since the IBM
Quantum Composer interface does not allow applying gates
after measurement, the DCP challenge cannot be directly im-
plemented. We need to perform multiple experiments on every

m=2, n=1, t=3 ,r=1000

Pclean

B pim

(9]
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1
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1
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o
1
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FIG. 9. Normalized probability distribution of pcje., and pim
(reconstructed from experimental data) over 100 trials, plotted with
normal distribution A (Peieans Opyey, ) a0 N (PieM, Opysy )- The accu-
racy pigym iS very close to Peean- A larger r is needed to distinguish
them. The quantum device is considered promising.

possible configuration then use the output data to reconstruct
the DCP challenge.

When n = 1 and m = 2, there are in total 2° = 8 possible
cases for two DCP samples, as shown in Fig. 8. Notice that
the reflection qubits are in the center to avoid SWAP gates.
We perform five tests of each case on the first four qubits of
5-qubit quantum processor ibmq_manila, which has a linear
architecture. By default, each test consists of 1024 shots. Then
we select the measurements that have a collision and the result
is |1) on the target qubit of CNOT gate, gy # g3 and g, = 1. If
the device is noiseless, we should have ¢; = s.

The result is in Table II. We can see that the error when
s = 1 is more significant since the circuit has more CNOT gates
for preparing DCP samples. The difference will decrease with
larger n. Eventually, the essential gate-error will be on the
QF T's or SWAP gates depending on the structure of the device.

Furthermore, due to the imbalanced measurement error
[31], it is more likely to measure |0) than |1) on a current
quantum processor. The same situation can also be caused by
the low relaxation time. If Alice chooses s uniformly, Bob is
very likely to have more O than 1 in his result, and he can
have a rough estimation of his performance. However, this
extra information does not allow him to cheat since he does
not know which 0 should be replaced by 1.

We use the erroneous data to reconstruct the DCP chal-
lenge [30], the result is shown in Fig. 9. The performance of
ibmg_manila is not perfect but satisfying. Our reader can also
use the DCP challenge to benchmark other processors of IBM
Q, such as ibmgq_santiago.
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