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Moving quantum states without SWAP via intermediate higher-dimensional qudits
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Quantum algorithms can be realized in the form of a quantum circuit. To map a quantum circuit for a specific
quantum algorithm to quantum hardware, qubit mapping is an imperative technique based on the qubit topology.
Due to the neighborhood constraint of qubit topology, the implementation of the quantum algorithm rightly, is
essential for moving information around in a quantum computer. Swapping of qubits using a SWAP gate moves
the quantum state between two qubits and solves the neighborhood constraint of qubit topology. Although, one
needs to decompose the SWAP gate into three controlled-NOT gates to implement the SWAP gate efficiently, but
unwillingly quantum cost with respect to the gate count and depth increases. In this paper, a formalism of moving
quantum states without using SWAP operation is introduced. Moving quantum states through qubits have been
attained with the adoption of temporary intermediate qudit states. This introduction of intermediate qudit states
has exhibited a three times reduction in quantum cost with respect to the gate count and approximately two times
reduction with respect to circuit depth compared to the state-of-the-art approach of the SWAP gate insertion. We
also exhibit that the adoption of the intermediate qudit makes the approach sublimer than the existing works by
obtaining a better fidelity. Furthermore, the proposed approach is generalized to any finite-dimensional quantum
system.
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I. INTRODUCTION

As it is experimentally quite established that the quan-
tum computing system can be realized on various physical
technologies, for example, continuous spin systems [1,2],
superconducting transmon technology [3], nuclear magnetic
resonance [4,5], photonic systems [6], an ion trap [7], topo-
logical quantum systems [8,9], and molecular magnets [10],
the physical implementation of quantum algorithms [11] is
now a blazing topic among the researchers for its asymptotic
improvements [12]. Transistors of the classical computer deal
with binary bits to accomplish information processing at the
physical level. On the other hand, qubit technology is the base
of quantum computers. A quantum system can have an infinite
arity of discrete energy levels, and, hence, the fundamental
physics behind the quantum system is not inherently binary.
As per the real scenario, the impediment lies in the fact is that
we need to control the system as per our requirements. The
inclusion of additional discrete energy levels for the goal of
computation enables us to realize the qudit technology quite
predominantly, which makes the system more malleable with
data storage and rapid processing of quantum information.

The first step towards implementation of a quantum
algorithm is logic circuit synthesis. Since physical quan-
tum computer only braces single-qubit gates and two-qubit
gates [13], thus, it becomes evident that the logical circuit
synthesis must be decomposed into single-qubit gates and
two-qubit gates so as to implement the algorithm on real
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quantum hardware devices. Every physical quantum computer
has its own architectural design and qubit topology. A logic
circuit design using only single-qubit gates and two-qubit
gates does not suffice to be implemented physically. For this
reason, there is the qubit mapping or qubit placement al-
gorithm [14–16] based on qubit topology, which makes the
implementation on physical quantum devices a reality. The
operation involving two-qubit gates are of most concern rather
than single-qubit gates whereas mapping them on physical
devices as the qubit topology may not support the place-
ment of the required two physical qubits adjacently. To solve
this constraint, ideally, SWAP gates [17,18] are used to move
quantum states between two logical qubits. The idea is to
exchange the qubits with repeated SWAP operations so that two
logical qubits associated with two-qubit gates can arrive at two
adjacent physical qubits, but some additional cost is incurred.

In this paper, we have aspired to reduce the additional
quantum cost that is incurred for the SWAP insertion [19]. We
propose a qubit-qudit approach [20–23] to move the quantum
states through qubits to circumvent the SWAP operation. This
is an approach and achieves optimized gate cost and depth.
One can simply have a higher-dimensional quantum state for
temporary use by easily introducing a discrete energy level.
However, these higher-dimensional quantum states are only
present as intermediate states in a qudit system, whereas the
input and output states still remain qubits [24]. We introduce
the |2〉 and |3〉 quantum states as temporary storage of ququad
quantum systems without hindering the fundamental opera-
tion of initialization and measurement on physical devices
since we are considering qubit systems where two quantum
states have to be temporarily stored. It is kind of approach
of moving quantum states through the qubit without SWAP
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insertion via intermediate qudits, which is later extended to
d-dimensional quantum systems with the use of |d〉, |d + 1〉,
. . ., |2d − 1〉 quantum states as temporary storage. Our major
contributions are the following:

(1) With the use of temporary intermediate qudit states,
moving quantum states through qubits have been studied.

(2) These temporary intermediate qudit states help to re-
duce a significant number of quantum cost with respect to
gate cost and circuit depth cost compared to the exchange of
qubit states using the SWAP gate. Hence, we also show that the
percentage increase in the probability of success is significant
for the intermediate qudit approach.

(3) Furthermore, we claim that with the help of temporary
intermediate higher-dimensional qudit states, quantum states
can be moved through qudits in any dimensional quantum
system or d-ary quantum systems with similar advancement
with respect to quantum cost as binary quantum systems,
which makes our approach generalized in nature.

The structure of the paper is as follows. Section II illus-
trates the SWAP gate and its usefulness. Section III exemplifies
the methodology of moving quantum states through qubits us-
ing intermediate qudit with some example of circuit instances.
Section IV exhibits how the proposed method can be extended
to any finite-dimensional quantum system. Section V analyzes
the circuit comparison between conventional and proposed
work. Section VI highlights the error analysis of the proposed
approach. Section VII captures our conclusions with a brief
discussion.

II. BACKGROUND

The schematic to represent quantum algorithm or quantum
program is known as a quantum circuit. Each line in the
quantum circuit is denoted as a qubit and the operations,
i.e., quantum gates are represented by different blocks on the
line [13,25]. There are mainly three basic cost metrics of a
quantum circuit in quantum computing, viz. qubit cost, quan-
tum gate cost and count (single- or two-qubit gates only) and
depth of a circuit. The qubit cost and the quantum gate count
are the number of qubits and the quantum gates, respectively,
that are presented in a circuit. In a circuit, the path length for
every case is an integer, which represent the number of gates
to be executed in that path. The longest path in a circuit is
the depth of the circuit. Since all the qubits are not physically
connected, the placement of the logical qubits needs to be
rearranged to make them executable on the physical quantum
devices. Fortunately, this can be performed quite comprehen-
sibly by using SWAP gates. Let us discuss more about the SWAP

gate.

A. SWAP gate

In Ref. [26], the authors have presented a SWAP gate imple-
mentation that interchanges the quantum states between two
qubits. Let there be the quantum states of two qubits as |φ〉
and |ψ〉, then the SWAP gate will work as

SWAP|φ〉|ψ〉 = |ψ〉|φ〉. (1)

Three controlled-NOT (CNOT) gates constitute the SWAP op-
eration as in Fig. 1. CNOT is the two-qubit universal gate that

FIG. 1. CNOT swapping circuit.

has a control qubit, portrayed as a black dot (•), and a target
qubit, portrayed with the XOR symbol (⊕). If the control qubit
of a CNOT gate is in quantum state |1〉, the target qubit’s value
alters from |0〉 to |1〉 or/and from |1〉 to |0〉. The CNOT gate
can be mathematically illustrated as

CNOT |x〉 |y〉 = |x〉 |x ⊕ y〉 . (2)

The XOR operation is mod 2 addition where target qubit is
incremented by 1 (mod 2) only when the control qubit value
is 1.

In following steps [Eqs. (3)–(5)], how the concatenation of
three CNOT gates implements the SWAP operation is shown

|x〉 |y〉 CNOTq1 ,q0−→ |x ⊕ y〉 |y〉 , (3)

|x ⊕ y〉 |y〉 CNOTq0 ,q1−→ |x ⊕ y〉 |y ⊕ x ⊕ y〉 = |x ⊕ y〉 |x〉 , (4)

|x ⊕ y〉 |x〉 CNOTq1 ,q0−→ |x ⊕ y ⊕ x〉 |x〉 = |y〉 |x〉 . (5)

Here, by convention, CNOTi, j is a CNOT gate controlled by
qubit i and with qubit j as target. In this paper, qubits are
labeled serially as {q0, q1, . . ., qn}. The unitary transformation
of the quantum states that we have illustrated here must give
a desired result even if the quantum states are superposed.

B. Qubit mapping problem

For explaining this qubit mapping problem with the help
of SWAP insertion, we have considered an example as shown
in Fig. 2(a). In Fig. 2(b), a three-qubit topology is used as
the hardware platform. Two-qubit gates are executable on the
following adjacent physical qubits: {P0, P1}, {P1, P2}, and not
on {P0, P2}. Now, suppose we have a CNOT to be executed

Block
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Gates

(a) (b)

(c)

Block
  of
Gates

Block
  of
Gates

Block
  of
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FIG. 2. (a) Example: circuit, (b) example: qubit topology, and
(c) SWAP insertion.
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on this three-qubit device. This quantum circuit consists of
several other gates [as shown in Fig. 2(a) as a block of gates].
Assuming the initial logical-to-physical qubits mapping is
{q0 −→ P0, q1 −→ P1, q2 −→ P2}. We can find that CNOT

gate (gr) as shown in Fig. 2(a) cannot be executed because
the corresponding qubit pairs are not connected on the device.
We need to change the qubit mapping during execution and
make the CNOT gate executable.

To overcome this issue, we employ SWAP operation to
change the qubit mapping by exchanging the states between
two qubits. It consists of three CNOT gates as shown in Fig. 1.
Figure 2(c) shows that the updated quantum circuit is now
executable after we insert one SWAP operation between q0 and
q1 as shown dotted. After the inserted SWAP, mapping is up-
dated to {q0 −→ P1, q1 −→ P0, q2 −→ P2}. Now, the CNOT

gate can be executed under this updated mapping. For further
execution of the remaining block of gates, we need to again
apply SWAP operation between q0 and q1 as shown dotted in
Fig. 2(c) to get back to the previous logical-to-physical qubits
mapping, which is {q0 −→ P0, q1 −→ P1, q2 −→ P2}.

With the introduction of additional SWAPs in the quantum
circuit, all the two-qubit gate dependencies can be solved
and a hardware-compliant circuit with unchanged original
functionality is generated. Furthermore, insertion of SWAPs
in the quantum circuit will lead to several problems because
of the limitations of quantum devices. There is an increase
in the number of operations in the circuit. The overall error
rate increases as the operations are not perfect, and noise
will also be introduced. There might also be an increase in
the depth of the circuit, i.e., there will be an increase in the
total execution time and due to qubit decoherence, there will
be an accumulation of too much error. If we compare the
original circuit and the updated circuit in Figs. 2(a) and 2(c),
the number of gates increases from 1 to 7 and the circuit depth
is also increased from 1 to 7. Significant overhead in terms
of fidelity and execution time will be brought with additional
SWAPs. Thus, in order to reduce the overall error rate as well as
total execution time for the final hardware-complaint circuit,
we look forward to discard the additional SWAPs.

III. MOVING QUBIT STATES VIA
INTERMEDIATE QUDITS

The most important aspect of our proposed paper is the
moving quantum states through qubits without SWAP so that
overall error rate can be optimized. In this regard, the states
|2〉 and |3〉 of higher-dimensional ququad systems have been
used in the intermediate levels during the computation. Since
we keep input and output as binary, it enables these cir-
cuit constructions to act similarly as any already existing
binary qubit-only circuits. Figure 3 describes how this can
be achieved for the circuit shown in Fig. 2(a) based on qubit
topology as shown in Fig. 2(b).

Although physical systems in classical hardware are typ-
ically binary, but common quantum hardware, such as in
superconducting and trapped ion computers, has an infinite
spectrum of discrete energy levels [24]. Quantum hardware
may be configured to manipulate the lowest four energy levels
by operating on ququads. In general, such a computer could be
configured to operate on any number of d levels. Qudit gates

FIG. 3. Moving of a quantum state via intermediate qudits.

have already been successfully implemented [3,7] indicating it
is possible to consider higher-level systems apart from qubit-
only systems. Thus, the question of higher states beyond the
standard two, being implemented and performed no longer
stands strong. Since, conventional binary quantum gates [13]
are not capable enough to get access to higher-dimensional
quantum states, hence, new qubit-qudit quantum gates are
needed to be introduced. First, let us consider an increment
gate as C+2

X (C: Control; X : NOT), where +2 denotes that the
target qubit is incremented by 2 (mod 4) as a four-ary quantum
system considered, only when the control qubit value is 1. For
visualization of the C+2

X gate, we have used a “black dot” (•)
to represent the control, and a “rectangle” (�) to represent
the targewt. X +2 in the target box represents the increment
operator. The mathematical representation of the C+2

X gate is
as follows:

C+2
X |x〉 |y〉 =

{|x〉 |(y + 2)%4〉 , if x = 1,

|x〉 |y〉 , otherwise. (6)

Since we are working with a qubit-qudit approach, this
does not encapsulate the complete scenario, so we need to
describe it with a matrix instead. The (8 × 8) unitary matrix
representation of the C+2

X gate is as follows:

C+2
X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00 01 02 03 10 11 12 13
00 1 0 0 0 0 0 0 0
01 0 1 0 0 0 0 0 0
02 0 0 1 0 0 0 0 0
03 0 0 0 1 0 0 0 0
10 0 0 0 0 0 0 1 0
11 0 0 0 0 0 0 0 1
12 0 0 0 0 1 0 0 0
13 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This gate operation is performed on the first and the second
qubits as shown in Fig. 3, where the first qubit is the control,
and the second qubit is the target. This upgrades the second
qubit to |2〉 or |3〉 by availing the higher-dimensional Hilbert
space as temporary storage if and only if the first qubit was
|1〉.

Then, a conditional CNOT gate as C+1
Xc

, where c: conditional
operator; and +1 denotes that the target qubit is incremented
by 1 (mod 2) as the target qubit is in a binary quantum system
if and only if the control qubit value is greater than 1 is applied
to the target qubit, i.e., the third qubit and the second qubit
as controls. In the schematic of the C+1

Xc
gate, we have used

“>1” in the conditional control circle (O) to represent the
qubit control, and XOR (⊕) in the target qubit to represent the
conditional CNOT operator. The mathematical representation
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of the C+1
Xc

gate is as follows:

C+1
Xc

|x〉 |y〉 =
{|x〉 |(y + 1)%2〉 , if x > 1,

|x〉 |y〉 , otherwise. (7)

The (8 × 8) unitary matrix representation of the C+1
Xc

gate
is as follows:

C+1
Xc

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00 01 10 11 20 21 30 31
00 1 0 0 0 0 0 0 0
01 0 1 0 0 0 0 0 0
10 0 0 1 0 0 0 0 0
11 0 0 0 1 0 0 0 0
20 0 0 0 0 0 1 0 0
21 0 0 0 0 1 0 0 0
30 0 0 0 0 0 0 0 1
31 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The conditional CNOT gate is executed only when the sec-
ond qubit was |2〉 or |3〉 as expected, it would happen only
when the first qubit was the |1〉 state. The controls are rein-
stated to their original states by a C−2

X gate, i.e., inverse of the
C+2

X gate, which reverses the effect of the first gate. Thus, the
|2〉 and |3〉 states from the four-ary quantum system can be
used instead of SWAP to store temporary information, which
is the most important aspect in this circuit composition. As
shown in Fig. 3, the input of the circuit can be a form of∑1

x,y,t=0 αx,y,t |x〉 |y〉 |t〉 where the first two are qubits q0 and

q1, the target qubit t is q2, αx,y,t ∈ C, and
∑1

x,y,t=0 |αx,y,t |2 =
1. Here, we show the action of the proposed gates [Eqs. (8)–
(11)] on such a superposition by ignoring the block of gates
for the sake of simplicity and understanding now and then,

1∑
x=0,y,t

αx,y,t |x〉 |y〉 |t〉 , (8)

C+2
X q0 ,q1−→

∑
x=0,y,t

αx=0,y,t |0〉 |y〉 |t〉

+
∑

x=1,y,t

αx=1,y,t |1〉 |(y + 2)%4〉 |t〉 , (9)

C+1
Xc q1,q2−→

∑
x=0,y,t

αx=0,y,t |0〉 |y〉 |t〉

+
∑

x=1,y,t

αx=1,y,t |1〉 |(y + 2)%4〉 |(t + 1)%2〉 , (10)

C−2
X q0 ,q1−→

∑
x=0,y,t

αx=0,y,t |0〉 |y〉 |t〉

+
∑

x=1,y,t

αx=1,y,t |1〉 |(y〉 |(t + 1)%2〉 . (11)

One more example of small four-qubit size [Fig. 4(a)] is
used for explaining the changes in circuit realization if there
is an increase in the number of qubit. In Fig. 4(b), a four-qubit
device model is utilized as the hardware platform. Two-qubit
gates are executable on the following physical qubit pairs:
{P0, P1}, {P1, P2}, and {P2, P3} not on {P0, P2}, {P0, P3}, and
{P1, P3}. Let there be a CNOT gate controlled by qubit q0 and

FIG. 4. (a) Example: circuit in binary quantum systems; (b) ex-
ample: qubit topology; (c) SWAP insertion; (d) SWAP depth optimiza-
tion; (e) proposed approach.

qubit q3 as a target to be executed on this four-qubit device.
Assuming the initial logical-to-physical qubits mapping is
{q0 −→ P0, q1 −→ P1, q2 −→ P2}, the CNOT gate (gr) as in
Fig. 4(a) cannot be executed due to the corresponding qubit
pairs being disconnected on the device. Hence, the qubit map-
ping needs to be changed during execution, and the CNOT gate
must be made executable.

Conventionally, SWAP operation is needed to be employed
for changing the qubit mapping with exchange of the quantum
states between two qubits as in Fig. 2(c). Likewise, Fig. 4(c)
shows that the updated quantum circuit is now executable
after we insert two SWAP operations between “q0 and q1” and
“q1 and q2” as shown dotted in Fig. 4(c). After the inserted
SWAPs, logical qubit to physical qubit mapping is updated
to {q0 −→ P1, q1 −→ P2, q2 −→ P0, q3 −→ P3}. Now, the
CNOT gate can be executed following this updated mapping.
For further execution of remaining block of gates, we need
to again apply SWAP operation between q0 and q1 and “q2

and q3” as shown dotted in Fig. 4(c) to get back to the
previous logical-to-physical qubits mapping. As per Gidney’s
work [27], the depth of the circuit shown in Fig. 4(c) can be
optimized to a circuit shown in Fig. 4(d). This optimization
shows that two series of SWAP gates can be implemented
parallelly. Two parallelly inserted SWAPs update the mapping
to {q0 −→ P1, q1 −→ P0, q2 −→ P3, q3 −→ P2}. Now, the
CNOT gate (gr) can be executed under this updated mapping.
Similarly, the mirror circuit can be applied parallelly as well,
which improves the depth of a circuit but the gate cost remains
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unchanged to the previous approach of circuit realization as
shown in Fig. 4(c).

To eradicate the SWAP operation from Fig. 4(d), we need
to introduce another new gate that is C+2

Xc
atarget rectangular

boxs the number of qubits have increased from 3 to 4. The
C+2

Xc
gate along with previously proposed C+2

X and C+1
Xc

gates
will lead to execute the circuit shown in Fig. 4(a) based on
the qubit topology as shown in Fig. 4(b). A conditional in-
crement gate as C+2

Xc
, where +2 denotes that the target qubit

is incremented by 2 (mod 4) as the four-ary quantum system
considered, only when the control qubit value is greater than 1.

In the design of the gate, >1 has been used in the conditional
control circle (O) to represent the qubit control, and X +2 in
the target rectangular box (�) to represent the increment op-
erator. The mathematical representation of the C+2

Xc
gate is as

follows:

C+2
Xc

|x〉 |y〉 =
{|x〉 |(y + 2)%4〉 , if x > 1,

|x〉 |y〉 , otherwise. (12)

The (16 × 16) unitary matrix representation of the C+2
Xc

gate is as follows:

C+2
Xc

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
03 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
22 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
32 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 4(e) shows how the proposed gates can execute the circuit shown in Fig. 4(a) based on qubit topology as shown
in Fig. 4(b) via temporary intermediate qudits. The initialization of Fig. 4(e) can be expressed as

∑1
x,y,z,t=0 αx,y,z,t |x〉 |y〉 |z〉 |t〉

where the first three are qubits q0, q1, and q2, and the target qubit t is q3, αx,y,z,t ∈ C, and
∑1

x,y,z,t=0 |αx,y,z,t |2 = 1. Here, we
show the action of a proposed gates on such a superposition [Eqs. (13)–(18)]. At first, the C+2

X gate operation is performed
on the first and the second qubits as illustrated in Eq. (14) where the first qubit is the control, and the second qubit is the
target. This upgrades the second qubit to |2〉 or |3〉 by availing the higher-dimensional Hilbert space as temporary storage if
and only if the first qubit was |1〉. Next, the C+2

Xc
gate operation is performed on the second and the third qubits as illustrated

in Eq. (15) where the second qubit is the control, and the third qubit is the target. This upgrades the third qubit to |2〉 or |3〉
by availing the higher-dimensional Hilbert space as temporary storage if and only if the second qubit was |2〉 or |3〉. Finally,
a conditional CNOT C+1

Xc
is applied to the target qubit q3 and the third qubit as control as describes in Eq. (16). This gate will

be executed only when the third qubit was |2〉 or |3〉 as expected and as discussed earlier, it would happen only when the first
qubit was the |1〉 state. The controls are reinstated to their original states by applying the C−2

Xc
gate followed by the C−2

X gate,
which reverses the effect of the first and second gates. Thus, the |2〉 and |3〉 states from the four-ary quantum system can be used
instead of SWAP to store temporary information in q1 and q2 qubits, which is the most important aspect in this four-qubit circuit
composition,

1∑
x=0,y,z,t

αx,y,z,t |x〉 |y〉 |z〉 |t〉 , (13)

C+2
X q0 ,q1−→

∑
x=0,y,z,t

αx=0,y,z,t |0〉 |y〉 |z〉 |t〉 +
∑

x=1,y,z,t

αx=1,y,z,t |1〉 |(y + 2)%4〉 |z〉 |t〉 , (14)

C+2
Xc q1 ,q2−→

∑
x=0,y,z,t

αx=0,y,z,t |0〉 |y〉 |z〉 |t〉 +
∑

x=1,y,z,t

αx=1,y,z |1〉 |(y + 2)%4〉 |(z + 2)%4〉 |t〉 , (15)

C+1
Xc q2 ,q3−→

∑
x=0,y,z,t

αx=0,y,z,t |0〉 |y〉 |z〉 |t〉 +
∑

x=1,y,z,t

αx=1,y,z,t |1〉 |(y + 2)%4〉 |(z + 2)%4〉 |(t + 1)%2〉 , (16)
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C−2
Xc q1 ,q2−→

∑
x=0,y,z,t

αx=0,y,z |0〉 |y〉 |z〉 |t〉 +
∑

x=1,y,z,t

αx=1,y,z |1〉 |(y + 2)%4〉 |z〉 |(t + 1)%2〉 , (17)

C−2
X q0 ,q1−→

∑
x=0,y,z,t

αx=0,y,z,t |0〉 |y〉 |z〉 |t〉 +
∑

x=1,y,z,t

αx=1,y,z |1〉 |(y〉 |z〉 |(t + 1)%2〉 . (18)

In Figs. 9(a) and 9(b), we have shown examples of a CNOT

gate with five qubits and six qubits, respectively, which is
portrayed in the Appendix. In these examples as in an earlier
example, let us assume CNOT’s control is in the first qubit, and
the target is in the last qubit. For executing the CNOT gate, we
need to move qubit states through the intermediate qubits by
accessing the higher-dimensional Hilbert space. In Figs. 9(a)
and 9(b), we show that these three proposed gates C+2

X , C+2
Xc

,
and C+1

Xc
are sufficient to execute a CNOT gate in higher qubit

systems as well. From this background, it can be inferred, for
any higher n-qubit system (q1, q2, q3, . . ., qn−1, qn where the
two-qubit gate is involved between q1 and qn), the proposed
three gates can be used for moving quantum states for physical
implementation without the use of the SWAP gate. We can
conclude that the C+2

X gate is used between the first and the
second qubits, i.e., q1 and q2, for intermediate operations, the
C+2

Xc
gate is used on {(q2, q3), (q3, q4), l . . . , (qn−2, qn−1)}, and

finally C+1
Xc

is executed with the control qubit qn−1 and target
qubit qn.

IV. MOVING d-DIMENSIONAL QUANTUM STATES VIA
HIGHER-DIMENSIONAL QUDITS

In this section, we consider the implementation of our pro-
posed qubit-qudit method generalized to any finite dimension
as the qudit–higher-dimensional-qudit method. Qudit technol-
ogy is concerned with d-ary quantum systems, where d >

2 [28,29]. We graduate to qudits for providing a larger state
space and simultaneous multiple control operations, which
in the long run reduce the circuit complexity and uplift the
efficiency of quantum algorithms [30–32]. For example, N
qubits can be depicted as N

log2d qudits, which straightway
reduces a log2d factor from the run time of a quantum al-
gorithm [33]. An akin construction of proposed binary gates
using a qudit have been extended for the d-ary quantum
system by generalizing the C+2

Xc
, C+2

X , and C+1
Xc

gates. The
aim is to move the d-dimensional quantum states through
qudits by accessing the higher-dimensional quantum space as
temporary storage. As we have shown the binary quantum sys-
tem needs to access |2〉 and |3〉 of the ququad system, likewise,
it generalizes for a d-dimensional quantum system by access-
ing additional d-dimensional Hilbert space since d quantum
states have to be temporarily stored with the use of |d〉,
|d + 1〉, . . ., |2d − 1〉 quantum states of the 2d-dimensional

FIG. 5. Qudit swapping circuit.

quantum system as temporary storage, we can avoid SWAP gate
in the qudit system to get a solution of our objective. Before
discussing more about our proposed method, let us enlighten
about the SWAP gate in the qudit system [34–36].

SWAP gate in qudit systems

In Ref. [26], the author proposed a gate CX̃ , a generaliza-
tion of the CNOT gate in qudit systems, which generally acts
on qudits |x〉 and |y〉 from the basis {|0〉 , |1〉 , . . . , |d − 1〉} so
that

CX̃ |x〉 |y〉 = |x〉 |−x − y〉 . (19)

|−x − y〉 denotes a state |i〉 in the range of i = 0, . . . , d − 1
with i = −x − y mod d .

The SWAP gate shown in Fig. 1 has been extended to qudit
systems using three CX̃ gates, which is described in Fig. 5. If
CX̃i, j is a CX̃ gate where the control is qudit i and the target

FIG. 6. (a) Example: circuit in d-ary quantum systems; (b) exam-
ple: qudit topology; (c) SWAP insertion; (d) SWAP depth optimization;
(e) proposed approach.

012429-6



MOVING QUANTUM STATES WITHOUT SWAP … PHYSICAL REVIEW A 106, 012429 (2022)

qudit j, the qudit SWAP gate that is evolved through

|x〉 |y〉 CX̃q2 ,q1−→ |−x − y〉 |y〉 , (20)

|−x − y〉 |y〉 CX̃q1,q2−→ |−x − y〉 |x + y − y〉 = |−x − y〉 |x〉 ,

(21)

|−x − y〉 |x〉 CX̃q2 ,q1−→ |−x + x + y〉 |x〉 = |y〉 |x〉 . (22)

This SWAP operation for qudit systems must be acted upon
appropriately for any possible arbitrary superposed input qudit
with quantum state from {|0〉 , |1〉 , . . . , |d − 1〉}.

As mentioned earlier, the proposed binary gates are needed
to be generalized for d-ary quantum systems. Let us consider
a generalized increment gate for d-ary quantum systems as
C+d

X , where +d denotes that the target qudit is incremented
by d (mod 2d ) as 2d-ary quantum systems considered, if and
only if the control qudit value is d − 1. For visualization of
the C+d

X gate, we have used a black dot (•) to represent the
control, and a rectangle (�) to represent the target. X +d in the
target box represents the increment operator. The mathemati-
cal representation of the C+d

X gate is as follows:

C+d
X |x〉 |y〉 =

{|x〉 |(y + d )%2d〉 , if x = d − 1;
|x〉 |y〉 , otherwise. (23)

A conditional increment gate can be extended to a gener-
alized conditional increment gate for d-ary quantum systems
as C+d

Xc
, where +d denotes that the target qudit is incremented

by d (mod 2d ) as 2d-ary quantum systems considered, only
when the control qudit value is greater than d − 1. In the
design of the C+d

Xc
gate, “>d − 1” has been used in the

conditional control circle (O) to represent the qudit control
and “X +d

c ” in the target rectangular box (�) to represent the
increment operator. The mathematical representation of the
C+d

Xc
gate is as follows:

C+d
Xc

|x〉 |y〉 =
{|x〉 |(y + d )%2d〉 , if x > d,

|x〉 |y〉 , otherwise. (24)

In a similar way, a conditional CNOT gate can be extended
to d-ary quantum systems. The generalized conditional CNOT

gate can be defined for d-ary quantum systems as C+a
Xc

, where
+a denotes that the target qudit is incremented by a (mod d )
as d-ary quantum systems considered if and only if the control
qudit value is greater than d − 1 whereas 1 � a � d − 1. In
the schematic of the C+a

Xc
gate, we have used >d − 1 in the

conditional control circle (O) to represent the qudit control,
and “X +a

c ” in the target rectangular box (�) to represent the
conditional CNOT operator. The mathematical representation
of the C+a

Xc
gate is as follows:

C+a
Xc

|x〉 |y〉 =
{|x〉 |(y + a)%d〉 , if x > d,

|x〉 |y〉 , otherwise. (25)

Figure 6(e) shows how the proposed gates can execute the
circuit shown in Fig. 6(a) based on qudit topology as shown in
Fig. 6(b) via temporary intermediate higher-dimensional qu-
dits. A conventional approach of executing the circuit having
generalized CNOT gate for d-dimensional quantum systems
shown in Fig. 6(a) using SWAP for qudit systems can be found
in Figs. 6(c) and 6(d). The initialization of Fig. 6(e) can be

expressed as
∑d−1

x,y,z,t=0 αx,y,z,t |x〉 |y〉 |z〉 |t〉 where the first three
are qudits q0, q1, and q2 and the target qudit t is q3, αx,y,z,t ∈
C, and

∑d−1
x,y,z,t=0 |αx,y,z,t |2 = 1. Here, we show the action of

proposed gates on such a superposition [Eqs. (26)–(31)],

d−1∑
x,y,z,t

αx,y,z,t |x〉 |y〉 |z〉 |t〉 , (26)

C+d
X q0 ,q1−→

∑
x,y,z,t

αx �=d−1,y,z,t |x �= d − 1〉 |y〉 |z〉 |t〉 +
∑

x,y,z,t

αx=d−1,y,z,t |d − 1〉 |(y + d )%2d〉 |z〉 |t〉 , (27)

C+d
Xc q1 ,q2−→

∑
x,y,z,t

αx �=d−1,y,z,t |x �= d − 1〉 |y〉 |z〉 |t〉 +
∑

x,y,z,t

αx=d−1,y,z,t |d − 1〉 |(y + d )%2d〉 |(z + d )%2d〉 |t〉 , (28)

C+a
Xc q2 ,q3−→

∑
x,y,z,t

αx �=d−1,y,z,t |x〉 |y〉 |z〉 |t〉 +
∑

x,y,z,t

αx=d−1,y,z,t |d − 1〉 |(y + d )%2d〉 |(z + d )%2d〉 |(t + a)%d〉 , (29)

C−d
Xc q1,q2−→

∑
x,y,z,t

αx �=d−1,y,z,t |x �= d − 1〉 |y〉 |z〉 |t〉 +
∑

x,y,z,t

αx=d−1,y,z,t |d − 1〉 |(y + d )%2d〉 |z〉 |(t + a)%d〉 , (30)

C−d
X q0 ,q1−→

∑
x,y,z,t

αx �=d−1,y,z,t |x �= d − 1〉 |y〉 |z〉 |t〉 +
∑

x,y,z,t

αx=d−1,y,z,t |d − 1〉 |(y〉 |z〉 |(t + a)%d〉 . (31)

At first, the C+d
X gate operation is performed on the first and

the second qudits as illustrated in Eq. (27) where first qudit
is the control, and the second qudit is the target. This upgrades
the second qudit to |d〉 or |d + 1〉 or · · · |2d − 1〉 by availing
the higher-dimensional space as temporary storage if and only
if the first qudit was |d − 1〉. Next, the C+d

Xc
gate operation is

performed on the second and the third qudits as illustrated in
Eq. (28) where second qudit is the control, and the third qudit
is the target. This upgrades the third qudit to |d〉 or |d + 1〉
or · · · |2d − 1〉 by availing the higher-dimensional space as
temporary storage if and only if the second qudit was |d〉
or |d + 1〉 or · · · |2d − 1〉. Finally, a generalized conditional
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TABLE I. Comparative analysis.

Number of qubits and Proposed work Conventional work
qudits involved in between

Gate count Depth Gate count Depthtwo-qubit and qudit gates

3 3 3 7 7
4 5 5 13 7
5 7 7 19 13
6 9 9 25 13
7 11 11 31 19
8 13 13 37 19
9 15 15 43 25
10 17 17 49 25
n 2(n − 2) + O(1) 2(n − 2) + O(1) 6(n − 2) + O(1) 6(� n

2 � − 1) + O(1)

CNOT C+a
Xc

is applied to the target qudit q3, and the third qudit
q2 as the control as described in Eq. (29). This gate will be
executed only when the third qudit was |d〉 or |d + 1〉 or
· · · |2d − 1〉, it would happen only when the first qudit was
the |d − 1〉 state. The controls are reinstated to their original
states by applying the C−d

Xc
gate followed by the C−d

X gate,
which reverses the effect of the first and second gates. Thus,
the |d〉 or |d + 1〉 or · · · |2d − 1〉 state from 2d-ary quantum
systems can be used instead of SWAP to store temporary in-
formation in q1 and q2 qudits as discussed earlier in binary
quantum systems as well. As in binary quantum systems, for
any higher n-qudit systems, the proposed three gates can be
used for moving quantum states for physical implementation
without the use of a SWAP gate.

V. COMPARATIVE ANALYSIS

In previous sections, we tried to implement a universal
two-qubit or two-qudit CNOT gate in which qubits and qudits
are not adjacent to each other with respect to qubit and qudit
topology. We considered the generalized CNOT gate as an
example to establish our claim for the simplicity of under-
standing, even though our approach stands good for any other
two-qubit or two-qudit gate with simple modification in the
proposed gates as per unitary operation at the target. To make
them adjacent, the conventional approach is to insert the SWAP

gates between two qubits and qudits. The optimal gate cost of
SWAP and its mirror circuit is six CNOT gates using the conven-
tional decomposition-based approach [27] where three qubits
are involved as shown in Fig. 2. This is also legitimate for
any d-dimensional quantum systems, but the only difference
is CX̃ replaces CNOT here. Correspondingly, the optimal depth
cost of SWAP and its mirror circuit is six using the conven-
tional decomposition-based approach for any d-ary quantum
systems. Furthermore, a four-qubits and a four-qudits circuit
implementation have been illustrated in Figs. 4 and 6, respec-
tively. Two SWAP operations have to be inserted to make the
circuit executable is shown in Figs. 4 and 6. A conventional
optimization technique yields the depth constant as compared
to the three qubit examples as shown in Fig. 2. Albeit, the
gate count increases by six for additional two SWAP insertion.
The conventional approach of SWAP insertion generalizes the
gate cost and the depth for any n-qubit and qudit circuit.

For the execution of one two-qubit gate on the n-qubit and
qudit circuit where n − 2 SWAP insertions are required to make
the control and the target qubit and qudit adjacent, the gate
count of the updated circuit becomes 6(n − 2) + O(1) and the
depth of the circuit becomes 6(� n

2� − 1) + O(1) [where O(1)
is for two-qubit and qudit gates that have to be executed].
As shown in Table I, we achieved a whooping reduction to
2(n − 2) + O(1) as the gate count and 2(n − 2) + O(1) as the
depth compared to the convention work whereas n qubits and
qudits are involved for a two-qubit and qudit gate. Figure 7
shows that the proposed paper outperforms conventional state-
of-the-art techniques with respect to gate count and circuit
depth. Thus, it can be concluded that for the employment
of intermediate qudits, our approach supersedes the current
techniques on the basis of circuit depth and circuit robustness.
The effect of various error models on our proposed approach
is discussed next.

VI. ERROR ANALYSIS

Any finite-dimensional quantum system is susceptible to
errors due to the decoherence of the system or noisy gates. It
has already been shown that other than binary systems, using
more higher-dimensional states cause the system to have more
errors [24,37]. The impact of these noises on the proposed
approach has been thoroughly investigated in this section. Al-
though the introduction of qudits increases noise, the overall
error probability of the proposed approach is lower than that
of the earlier SWAP decomposition [27] since the number of
gate count and depth is optimized.

A. Error model

The generalized quantum error or noise model is
for the gate and relaxation errors [24], which can
be expressed by the Kraus operator formalism [11]. If the
density-matrix representation of a (pure) quantum state is
σ = |�〉 〈�|, the evolution of this state for any channel is
represented as the function E (σ ),

E (σ ) = E (|�〉 〈�|) =
∑

i

KiσK†
i , (32)
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FIG. 7. (a) Gate count vs number of qubits and qudits for proposed work (lower curve) and conventional work (upper curve), (b) circuit
depth vs number of qubits and qudits for proposed work (lower curve) and conventional work (upper curve).

where Ki’s are called the Kraus operators and K†
i is the matrix

conjugate transpose of Ki, ∀ i. The Kraus operator formulation
represents the evolution of a state under a noise model. The
Kraus operators, for example, are simply the Pauli matrices in
the depolarization noise model.

1. Gate error

Since this paper only deals with two-qubit and qudit gates,
in this section, only two-qubit and qudit gate errors are con-
sidered. In a conventional binary quantum system, there are
four possible error channels for a quantum gate, which can
be expressed as products of the two Pauli matrices, a NOT

gate X = (0 1
1 0), and a phase gate Z = (1 0

0 −1). The possible

error channels are as follows: (i) no-error X 0Z0 = I , (ii) the
phase flip which is the product X 0Z1, (iii) the bit flip which is
X 1Z0, and (iv) the phase + bit flip channel given by X 1Z1.
A noisy gate is modeled as an ideal gate followed by an
unwanted Pauli operator [38]. In other words, a two-qubit gate
is followed by an unwanted Pauli ∈ {I, X,Y, Z}⊗2 \ {I, I} with
probability pi p j , where i, j ∈ {x, y, z}.

For two-qubit gates, an unwanted Pauli operator can occur
on each of the two qubits after the gate operation. There-
fore, there are 24 − 1 ways (excluding the identity operation
on both qubits) in which a gate can be noisy. If p2 is the
probability of two-qubit gate errors, then the evolution of the
system under noisy two-qubit operations is represented as in
Eq. (33),

E (σ ) = [1 − (24 − 1)p2]σ +
∑

jklm∈{0,1}2\0∗2

p jklmKjklmσK†
jklm,

(33)

where p jklm = p jk plm. The probability that the density matrix
remains error free is independent of whether the underlying
depolarizing channel is symmetric or asymmetric. Rather, it
depends on the total probability of error.

Our proposed approach here deals with two-ququad gates
only on quaternary quantum systems. In general, our proposed
method uses up to four dimensions. Therefore, for a four-
dimensional system, the error in our system scales as O(44)

as shown in Eq. (34),

E (σ ) = {1 − (44 − 1)p2}σ +
∑
jklm∈

{0–2,...,3}4\0000

p jklmKjklmσK†
jklm.

(34)
Hence, we conclude that the decrease in the probability

of no error for two-ququad gates due to the usage of higher
dimensions for quaternary systems is 1 − 255p2 as compared
to 1 − 15p2 for conventional binary systems.

Similarly, in a d-ary system for two-qudit gates, an un-
wanted Pauli operator can occur on each of the two qudits
after the gate operation. Therefore, there are d4 − 1 ways
(excluding the identity operation on both qudits) in which a
gate can be noisy. If p2 is the probability of two-qudit gate
errors, then the evolution of the system under noisy two-qudit
operations is represented as in Eq. (35),

E (σ ) = [1− (d4 − 1)p2]σ +
∑

jklm∈{0,1}d \0∗d

p jklmKjklmσK†
jklm,

(35)
where p jklm = p jk plm. The probability that the density matrix
remains error free is independent of whether the underlying
depolarizing channel is symmetric or asymmetric. Rather, it
depends on the total probability of error.

Since our proposed approach deals with two-qudit gates
only on higher-dimensional quantum systems. Our proposed
method uses up to 2d dimensions. Therefore, for a d-
dimensional system, the error in our system scales as O(2d )4

as shown in Eq. (36),

E (σ ) = {1 − [(2d )4 − 1]p2}σ

+
∑
jklm∈

{0–2,...,d+1}4\0000

p jklmKjklmσK†
jklm. (36)

Similarly, under this noise model, two-qudit gates in (2d )-
ary quantum systems are {1 − [(2d )4 − 1]p2}/[1 − (d4 −
1)p2] times less reliable than two-qudit gates in d-ary quan-
tum systems.

2. Idle error

In quantum devices, idle errors mainly focus on the relax-
ation from higher- to lower-energy levels. Amplitude damping
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is another name for this. This noise channel takes ququads
to lower states in an irreversible manner. For qubits, the only
amplitude damping channel is from |1〉 to |0〉, and we denote
this damping probability as λ1. For qubits, the Kraus operators
for amplitude damping are as follows:

K0 =
(

1 0

0
√

1 − λ1

)
and K1 =

(
0

√
λ1

0 0

)
. (37)

For ququads, we also model damping from |3〉 to |0〉, which
occurs with probability λ3. For ququads, the Kraus operator
for amplitude damping can be modeled as

K0 =

⎛
⎜⎜⎜⎝

1 0 0 0

0
√

1 − λ1 0 0

0 0
√

1 − λ2 0

0 0 0
√

1 − λ3

⎞
⎟⎟⎟⎠,

K1 =

⎛
⎜⎜⎝

0
√

λ1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, K2 =

⎛
⎜⎜⎝

0 0
√

λ2 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and,

K3 =

⎛
⎜⎜⎝

0 0 0
√

λ3

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (38)

For qudits, we also model damping from |2d − 1〉 to |0〉,
which occurs with probability λ2d−1. For qudits, the Kraus
operator for amplitude damping can be modeled as

K0 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

0
√

1 − λ1 0 . . . 0
0 0

√
1 − λ2 . . . 0

...
...

...
. . .

...

0 0 0 . . .
√

1 − λ2d−1

⎞
⎟⎟⎟⎟⎟⎠,

K1 =

⎛
⎜⎜⎜⎜⎝

0
√

λ1 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠,

· · · Kd−1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 . . .
√

λ2d−1

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠. (39)

In each Kraus operator Ki, the value of λi ∝ exp(−t/T1i ),
where t is the duration of the computation, and T1i ’s are the
relaxation time. We have qubit quantum devices, where T11 �
100 μs in some higher-end IBM quantum devices [39]. As
per the state-of-the-art qudit device [40], we have the value of
30 μs for qutrit (T12 ) and ququad (T13 ) quantum devices. How-
ever, due to the lack of qudit quantum computers, we do not
have explicit values of other T1i ’s for more higher-dimensional
systems. Nevertheless, the length of time depends on the cir-
cuit depth. As a result, by improving the circuit depth with the
proposed approach, idle errors are reduced. Therefore, since

FIG. 8. Probability of success for the proposed method (upper
curve) vs the conventional method (lower curve).

depth has been reduced, the decoherence owing to our em-
ployed approach is significantly lower than the conventional
approach.

B. Analysis of success probability

In this section, we have considered the method in Ref. [27]
with SWAP and our method in this article without SWAP to in-
vestigate the probability of success whereas moving quantum
states in a circuit. The number of gates and depth of the circuit
for the method in Ref. [27], and our proposed one is already
depicted in Table I. As explained in previous subsections,
small errors in quantum circuit gates can be characterized
as an ideal gate followed by an undesirable Pauli operator.
Instead of comparing the probability of minor circuit errors,
we compare the probability of the circuit remaining error free
(probability of success) as per Ref. [41] for the approach
in Ref. [27] and our proposed approach without sacrificing
generality.

The generalized formula for probability of success (Psuccess)
described in Refs. [37,41] is the product that the individual
components do not fail. In other words,

Psuccess = �gates[(Psuccess of gate )number of gatese−(depth/T1 )], (40)

where the first term’s product is the likelihood of all types of
gates incorporated (two qubit and two qudit in our case), and
the second term is the probability of no ideal error.

Current quantum devices are mostly binary, and the proba-
bilities of two-qubit gates in the IBMQ quantum devices are in
the range of 10−2 [39]. Moreover, the time T11 of most of the
IBM quantum devices are in the range of 100 μs. However,
in Ref. [40], the authors experimentally showed that the value
of T13 for each quaternary gate is 30 μs, which we have also
assumed for our paper. We assume that the probability of error
of each two-qubit and two-ququad gates is 10−2. We also
consider that the time T11 is 100 μs and T13 is 30 μs for our
simulation.

In Fig. 8, we exhibit the probability of success for the
method of Ref. [27] (which we label as conventional work)
and our proposed paper. We find that our proposed technique
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produces much fewer errors than the approach in Ref. [27].
This is due to the fact that our approach has fewer gates and
the circuit is shallower. Although our approach employs a few
ququad gates, which have a higher error probability due to the
curse of dimensionality, our technique is superior due to the
overall large reduction in gate count and depth. In fact, for
n = 80 in a circuit where n is the number of qubits involved
for a two-qubit gate, our proposed approach has a probability
of success of �0.21, whereas that of Ref. [27] has a probabil-
ity of success of �0.01. Therefore, we obtain a percentage
decrease in the probability of error by �20% for n = 80.
Thus, it can be concluded that the conventional method attain
approximately 100% error for n = 80 in a circuit, whereas our
method yields less erroneous results for n = 80 and above in
a circuit.

VII. CONCLUSION

In this paper, we proposed a qubit-qudit approach to move
the quantum states through qubits to eradicate the swap
operation. The higher-dimensional quantum states are used
as intermediate states in a qudit system, whereas the input
and output states still remain qubits to solve the nearest-
neighbor problem. We introduced the |2〉 and |3〉 quantum
states as temporary storage of ququad quantum systems with-
out hampering the fundamental operation of initialization and
measurement on physical devices. Later on the extension of
the proposed approach to d-dimensional quantum systems
with the use of |d〉, |d + 1〉, l . . . , |2d − 1〉 quantum states
of 2d-ary quantum systems as temporary storage has been
addressed. For this approach, we achieved an optimized gate
cost and depth with reduction to 2(n − 2) + O(1) as compared
to the conventional work whereas n qubits and qudits are
involved for a two-qubit and qudit gate for this problem.
Through numerical analysis, we established that even though
the use of qudits increases error since the number of gate count
and the depth are both reduced the overall error probability of
the proposed approach is lower than the existing ones. The
impact of various error models on the proposed approach is
discussed next.

FIG. 9. (a) Five-qubit circuit and (b) six-qubit circuit.

In a future scope of this paper, we would like to miti-
gate the error that might happen due to the accessibility of
higher-dimensional space as temporary storage. We would
further like to apply our proposed approach to the existing
qubit mapping algorithms to demonstrate the usefulness of
our approach with the benchmarks circuits. In the near fu-
ture, it can also be investigated that the proposed approach
may give some advantage in quantum communication as
SWAPs are involved there [42–44]. With the evolution of
qudit-supported quantum hardware, we would like to validate
our designs in the near future. The simulation of the pro-
posed circuits for the verification is carried out on thr Google
Colaboratory platform [45] and the code is available in
Ref. [46].

APPENDIX: CNOT GATE WITH A HIGHER NUMBER
OF QUBITS

Here, we have portrayed examples of a CNOT gate with five
qubits and six qubits, respectively, in Figs. 9(a) and 9(b).
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[18] G. A. Paz-Silva, S. Rebić, J. Twamley, and T. Duty, Perfect
Mirror Transport Protocol with Higher Dimensional Quantum
Chains, Phys. Rev. Lett. 102, 020503 (2009).

[19] C. Wilmott, A generalized quantum SWAP gate,
arXiv:0811.1684.

[20] T. C. Ralph, K. J. Resch, and A. Gilchrist, Efficient Toffoli gates
using qudits, Phys. Rev. A 75, 022313 (2007).

[21] B. Lanyon, M. Barbieri, M. Almeida, T. Jennewein, T. Ralph,
K. Resch, G. Pryde, J. O’Brien, A. Gilchrist, and A. White,
Simplifying quantum logic using higher-dimensional Hilbert
spaces, Nat. Phys. 5, 134 (2009).

[22] T. Bækkegaard, L. Kristensen, N. Loft, C. Andersen, D.
Petrosyan, and N. Zinner, Realization of efficient quantum gates
with a superconducting qubit-qutrit circuit, Sci. Rep. 9, 13389
(2019).

[23] W.-D. Li, Y.-J. Gu, K. Liu, Y.-H. Lee, and Y.-Z. Zhang, Efficient
universal quantum computation with auxiliary Hilbert space,
Phys. Rev. A 88, 034303 (2013).

[24] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown, K. R.
Brown, and F. T. Chong, Asymptotic improvements to quantum
circuits via qutrits, in Proceedings of the 46th International
Symposium on Computer Architecture, 2019 (ACM, New York,
2019), pp. 554–566.

[25] X. Wang, Continuous-variable and hybrid quantum gates,
J. Phys. A 34, 9577 (2001).

[26] J. C. Garcia-Escartin and P. Chamorro-Posada, A SWAP gate
for qudits, Quant. Inf. Proc. 12, 3625 (2013).

[27] C. Gidney, Breaking down the quantum SWAP (2017).
[28] A. Muthukrishnan and C. R. Stroud, Jr., Multivalued logic

gates for quantum computation, Phys. Rev. A 62, 052309
(2000).

[29] Y. M. Di and H. R. Wei, Synthesis of multivalued quantum logic
circuits by elementary gates, Phys. Rev. A 87, 012325 (2013).

[30] Y. Cao, S.-G. Peng, C. Zheng, and G. Long, Quantum fourier
transform and phase estimation in qudit system, Commun.
Theor. Phys. 55, 790 (2011).

[31] S. S. Ivanov, H. S. Tonchev, and N. V. Vitanov, Time-efficient
implementation of quantum search with qudits, Phys. Rev. A
85, 062321 (2012).

[32] A. Saha, S. B. Mandal, D. Saha, and A. Chakrabarti, One-
dimensional lazy quantum walk in ternary system, IEEE
Transactions on Quantum Engineering, 2, 1 (2021).

[33] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, Qudits and
high-dimensional quantum computing, Front. Phys. 8, 589504
(2020).

[34] S. Balakrishnan, Various constructions of qudit SWAP gate,
Phys. Res. Int. 2014 479320 (2014).

[35] C. Wilmott, On swapping the states of two qudits,
arXiv:1101.4159.

[36] C. Wilmott and P. R. Wild, Towards an optimal SWAP gate,
Quant. Inf. Proc. 13, 1467 (2014).

[37] A. Saha, R. Majumdar, D. Saha, A. Chakrabarti, and S. Sur-
Kolay, Asymptotically improved circuit for a d-ary Grover’s
algorithm with advanced decomposition of the n-qudit Toffoli
gate, Phys. Rev. A 105, 062453 (2022).

[38] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

[39] IBM Quantum, https://quantum-computing.ibm.com/ (2021).
[40] L. E. Fischer, D. Miller, F. Tacchino, P. K. Barkoutsos, D. J.

Egger, and I. Tavernelli, Ancilla-free implementation of gen-
eralized measurements for qubits embedded in a qudit space,
arXiv:2203.07369.

[41] R. Majumdar, D. Madan, D. Bhoumik, D. Vinayagamurthy, S.
Raghunathan, and S. Sur-Kolay, Optimizing ansatz design in
QAOA for max-cut, arXiv:2106.02812.

[42] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security
of Quantum Key Distribution using d-Level Systems, Phys.
Rev. Lett. 88, 127902 (2002).

[43] Y.-H. Luo, H.-S. Zhong, M. Erhard, X.-L. Wang, L.-C. Peng, M.
Krenn, X. Jiang, L. Li, N.-L. Liu, C.-Y. Lu, A. Zeilinger, and
J.-W. Pan, Quantum Teleportation in High Dimensions, Phys.
Rev. Lett. 123, 070505 (2019).

[44] X.-M. Hu, C. Zhang, B.-H. Liu, Y. Cai, X.-J. Ye, Y. Guo,
W.-B. Xing, C.-X. Huang, Y.-F. Huang, C.-F. Li, and G.-C. Guo,
Experimental High-Dimensional Quantum Teleportation, Phys.
Rev. Lett. 125, 230501 (2020).

[45] E. Bisong, Google Colaboratory (Apress, Berkeley, CA, 2019),
pp. 59–64.

[46] https://github.com/amitsaha2806/Moving.

012429-12

https://doi.org/10.1007/s11128-015-1016-y
https://doi.org/10.1038/35071024
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.72.024303
https://doi.org/10.1103/PhysRevLett.102.020503
http://arxiv.org/abs/arXiv:0811.1684
https://doi.org/10.1103/PhysRevA.75.022313
https://doi.org/10.1038/nphys1150
https://doi.org/10.1038/s41598-019-49657-1
https://doi.org/10.1103/PhysRevA.88.034303
https://doi.org/10.1088/0305-4470/34/44/316
https://doi.org/10.1007/s11128-013-0621-x
https://doi.org/10.1103/PhysRevA.62.052309
https://doi.org/10.1103/PhysRevA.87.012325
https://doi.org/10.1088/0253-6102/55/5/11
https://doi.org/10.1103/PhysRevA.85.062321
https://doi.org/10.1109/TQE.2021.3074707
https://doi.org/10.3389/fphy.2020.589504
https://doi.org/10.1155/2014/479320
http://arxiv.org/abs/arXiv:1101.4159
https://doi.org/10.1007/s11128-014-0741-y
https://doi.org/10.1103/PhysRevA.105.062453
https://doi.org/10.1103/PhysRevA.86.032324
https://quantum-computing.ibm.com/
http://arxiv.org/abs/arXiv:2203.07369
http://arxiv.org/abs/arXiv:2106.02812
https://doi.org/10.1103/PhysRevLett.88.127902
https://doi.org/10.1103/PhysRevLett.123.070505
https://doi.org/10.1103/PhysRevLett.125.230501
https://github.com/amitsaha2806/Moving

