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In strongly interacting systems with a separation of energy scales, low-energy effective Hamiltonians help
provide insights into the relevant physics at low temperatures. The emergent interactions in the effective model
are mediated by virtual excitations of high-energy states: For example, virtual doublon-hole excitations in the
Fermi-Hubbard model mediate antiferromagnetic spin-exchange interactions in the derived effective model,
known as the t − J − 3s model. Formally this procedure is described by performing a unitary Schrieffer-Wolff
basis transformation. In the context of quantum simulation, it can be advantageous to consider the effective
model to interpret experimental results. However, virtual excitations such as doublon-hole pairs can obfuscate the
measurement of physical observables. Here we show that quantum simulators allow one to access the effective
model even more directly by performing measurements in a rotated basis. We propose a protocol to perform
a Schrieffer-Wolff transformation on Fermi-Hubbard low-energy eigenstates (or thermal states) to dynamically
prepare approximate t − J − 3s model states using fermionic atoms in an optical lattice. Our protocol involves
performing a linear ramp of the optical lattice depth, which is slow enough to eliminate the virtual doublon-hole
fluctuations but fast enough to freeze out the dynamics in the effective model. We perform a numerical study
using exact diagonalization and find an optimal ramp speed for which the state after the lattice ramp has maximal
overlap with the t − J − 3s model state. We compare our numerics to experimental data from our Lithium-6
fermionic quantum gas microscope and show a proof-of-principle demonstration of this protocol. More generally,
this protocol can be beneficial to studies of effective models by enabling the suppression of virtual excitations in
a wide range of quantum simulation experiments.

DOI: 10.1103/PhysRevA.106.012428

I. INTRODUCTION

In recent years, quantum simulation experiments have been
established as a valuable tool to investigate strongly correlated
quantum many-body systems. Using the microscopic control
of quantum simulators, Hamiltonians can be engineered in ex-
periments and complex nonlocal correlators can be studied via
site-resolved measurements. Further, quantum simulators also
enable basis transformations to be engineered to effectively
perform measurements in different bases to reveal the under-
lying physics. A canonical example of a basis transformation
performed in cold-atom experiments is via time-of-flight
imaging, which allows measurements in the momentum basis
rather than the position basis. In a similar vein, measurement
of off-diagonal observables may be possible using a local
unitary transformation realized via time-evolution under a
quenched Hamiltonian such as in Refs. [1–3]. Measurements
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may also be performed in a randomized basis by applying
local Haar-random unitary transformations to extract higher-
order observables such as in Refs. [4,5].

In a quantum system with strong interactions, a basis trans-
formation of particular interest is one that traces out the fast
timescales in the system, revealing a low-energy effective
model. Such effective models are frequently encountered in
particle physics and studies of strongly correlated electronic
systems, and can greatly facilitate physical insights, since they
directly represent the relevant emerging interactions.

From a theoretical perspective, an effective model can be
obtained from a system with a separation of energy-scales
via the Schrieffer-Wolff transformation [6], which involves
a unitary transformation Û = eiŜ to make the Hamiltonian
block diagonal in the new basis. Importantly, new effective
interactions emerge due to virtual excitations of high-energy
states when the original Hamiltonian is written in the dressed
basis.

In the context of quantum simulation, it can be ad-
vantageous to consider the effective model to interpret the
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experimental results. Examples include spin-exchange inter-
actions in the strongly interacting regime of the Bose-Hubbard
and Fermi-Hubbard model [7], as well as the realization
of an effective U (1) gauge field, starting from a Bose-
Hubbard model [8]. However, if experimental measurements
are performed in the original basis, the measured state
could lie outside the low-energy sector due to quantum
fluctuations (virtual excitations). Quantum simulation ex-
periments are now exploring new regimes and accessing
novel observables, such as spin-charge correlations [9,10],
with increasing accuracy. Details of the measurement pro-
cedure are therefore becoming more and more important.
In order to accurately measure observables in the ef-
fective model, and thus avoid undesired virtual occupa-
tions, measurements should ideally be performed in the
dressed basis, which is experimentally quite challenging in
general.

In this work, we propose a protocol and demonstrate a
proof-of-principle experiment to perform this required trans-
formation from dressed to original basis, which dynamically
eliminates virtual excitations thereby implementing approx-
imately the Schrieffer-Wolff transformation eiŜ to a quantum
state before performing measurements. In particular, we focus
on the case of using the Schrieffer-Wolff transformation to
study the t − J − 3s model, which is the low-energy effective
model of the doped Fermi-Hubbard Hamiltonian for large
interaction strengths. However, our protocol can be readily
generalized to other systems.

The Fermi-Hubbard model, which is believed to constitute
a minimal model for the physics of the cuprate materials, con-
tains only two terms in the Hamiltonian: tunneling of fermions
to neighboring lattice sites with amplitude t and interaction
energy U between fermions on the same site:

ĤFH = −t
∑

〈i, j〉,σ=↑,↓
ĉ†

i,σ ĉ j,σ + H.c. + U
∑

i

n̂i,↑n̂i,↓, (1)

where ĉi,σ is a bare annihilation operator for a fermion with
spin σ in a Wannier orbital on lattice site i and n̂i,σ =
ĉ†

i,σ ĉi,σ is the number operator. Despite its apparent simplic-
ity, theoretical and numerical studies of the Fermi-Hubbard
model have shown to be prohibitively difficult in two or
more dimensions due to its strong correlations and large
entanglement. It can, however, be realized experimentally
with ultracold atoms in optical lattices. Experimental stud-
ies with fermionic quantum gas microscopes have started
to explore the physics of the Fermi-Hubbard model in
regimes that are extremely difficult to simulate on classical
computers [11–18].

A low-energy effective Hamiltonian, called the t − J − 3s
Hamiltonian, can be derived from the Hubbard Hamiltonian in
the limit of large interaction energy U � t via the Schrieffer-
Wolff transformation [19]. This allows one to exclude states
with doubly occupied sites and thus significantly reduces
the Hilbert space dimension of the model (3N vs. 4N with-
out taking symmetries into account). The derived t − J − 3s
Hamiltonian is given by [20]

Ĥt−J−3s = P̂s(Ĥt + ĤQHM + Ĥ3s)P̂s, (2)

where P̂s is a projection operator onto the subspace containing
no doubly occupied sites, and

Ĥt = −t
∑

〈i, j〉,σ
c̃†

i,σ c̃ j,σ + H.c.

ĤQHM = J

2

∑
〈i, j〉

(
ˆ̃Si · ˆ̃S j − 1

4
ˆ̃ni ˆ̃n j

)

Ĥ3s = −J

8

i �=k∑
〈i, j〉,〈 j,k〉

[∑
σ

( ˆ̃c†
i,σ

ˆ̃ck,σ
ˆ̃n j ) − ˆ̃c†

i σ
ˆ̃ck · ˆ̃c†

jσ
ˆ̃c j

]
,

where ˆ̃ci,σ is the dressed fermionic operator, which is related
to the bare fermionic operator via the Schrieffer-Wolff trans-
formation, ˆ̃ci,σ = e−iŜ ĉi,σ eiŜ . The operator Ŝ is defined exactly
as in Ref. [19]. Here J = 4t2/U is the superexchange energy,
ˆ̃Si = ˆ̃c†

i,aσa,b ˆ̃ci,b is a spin operator on site i defined in terms of
the dressed fermionic operators, and ˆ̃ni is a dressed particle
density operator on site i. Note that the three-site term Ĥ3s is
often neglected to simplify the effective model. However, we
use the full Ĥt−J−3s Hamiltonian since Ĥ3s appears at the same
order as ĤQHM in t/U in the expansion.

The t − J − 3s model is also believed to contain much of
the essential physics of the cuprate materials. In addition, the
reduced Hilbert space dimension facilitates numerical stud-
ies of the model. There have been extensive theoretical and
numerical studies of the t − J and t − J − 3s model over
the years, see, e.g., Refs. [21–26], which renders quantum
simulation of this model particularly interesting.

Additionally, the t − J − 3s model does not display the
quantum fluctuations in the Fermi-Hubbard model that cause
virtual excitations of holes and doublons, i.e., doubly oc-
cupied sites. Close to half-filling, these fluctuations appear
as virtual doublon-hole pairs that can still be observed ex-
perimentally, for example, in density snapshots obtained by
quantum gas microscopy [27,28]. The presence of virtual
doublons and holes may obfuscate the density distribution
of the system especially at low doping, such as in studies of
single holes injected in a Mott insulator [14,16,29] and studies
of spin-charge as well as charge-charge correlations at finite
doping [10]. In such cases it can therefore be desirable to
eliminate virtual density excitations by studying the simpler
t − J − 3s model.

Here we propose a protocol to perform an approximate
Schrieffer-Wolff transformation in a Fermi-Hubbard simula-
tor via an optical lattice ramp, which suppresses doublon-hole
fluctuations and enables one to approximate correlators of
the t − J − 3s model. The rest of this paper is organized as
follows. In Sec. II, we explain the details of the protocol
involving the optical lattice ramp. In Sec. III, we present a
simple two-site model, which analytically explains the sup-
pression of virtual doublon-hole pairs after the ramp. We also
present numerical results and experimental data for larger
system sizes. In Sec. IV, we examine the spin correlations
after the lattice ramp and its implications to thermometry.
In Sec. V, we examine how the lattice ramp time-evolution
operator effectively implements the approximate Schrieffer-
Wolff transformation. In Sec. VI, we end with a conclusion
and outlook.

012428-2



SCHRIEFFER-WOLFF TRANSFORMATIONS FOR … PHYSICAL REVIEW A 106, 012428 (2022)

FIG. 1. Schematic of the protocol: (a) The protocol involves a
linear ramp of the optical lattice depth V (τ ) at a rate α ≡ dV/dτ ,
followed by an imaging sequence to measure correlators. Colors
indicate different ramp speeds. (b) If the lattice ramp is very fast, i.e.,
diabatic, then the initial low-temperature Fermi-Hubbard state with
doublon-hole virtual excitations and antiferromagnetic spin order
is effectively frozen and remains the same after the ramp. If the
lattice ramp is very slow, i.e., adiabatic, the quantum state flows
towards vanishing virtual excitations but also possibly modified spin
order. In the intermediate regime, for an optimal ramp speed virtual
excitations are suppressed while also maintaining spin order, approx-
imately mapping the initial state onto the effective model. See text for
details.

II. PROTOCOL

In the following section we explain the details of the pro-
tocol. Our goal is to dynamically map the dressed basis onto
the original basis, so that we can measure observables of the
effective model in the natural basis of the full model as long
as their ground states are adiabatically connected. In the case
of the t − J − 3s model, this corresponds to mapping ˆ̃ci,σ

onto ĉi,σ [see Eq. (2)]. Our protocol to perform this mapping
( ˆ̃ci,σ → ĉi,σ ) involves a slow linear ramp of the optical lattice
depth at the end of an experimental shot, followed by the usual
fluorescence imaging sequence. The protocol is schematically
illustrated in Fig. 1. The linear ramp at a certain optimal
speed acts as an approximate Schrieffer-Wolff transforma-
tion on low-energy Fermi-Hubbard eigenstates and suppresses
the doublon-hole fluctuations. This approximately maps the
Fermi-Hubbard eigenstates onto corresponding eigenstates of
the t − J − 3s model, as long as the ground states of the Hub-
bard and t − J − 3s models are adiabatically connected and
there is no significant contribution from higher-order terms in
t/U that were neglected in deriving the effective t − J − 3s

model. These t − J − 3s model eigenstates can then be im-
aged in the natural basis of Fermi-Hubbard experiments.

The lattice ramp results in a ramp of the Hamiltonian
parameters. Increasing the strength of the lattice potential V0

increases the localization of the Wannier functions, leading
to a reduced tunneling amplitude t . Simultaneously, the in-
creased localization also increases the interaction strength U .
As a result, U/t increases and J/t decreases. In particular, the
Hamiltonian parameters t and U scale as

t

Er

 4√

π

( V

Er

)3/4

exp(−2
√

V/Er ) (3)

U

Er


√

8

π
kLa
( V

Er

)3/4

, (4)

where V is the lattice depth, the recoil energy Er =
h̄2k2

L/2m sets the energy scales of particles in the lattice and
kL = 2π/λL is the laser wave vector. For a detailed derivation
see Refs. [30,31] and references therein.

The effect of ramping the Hamiltonian parameters can be
understood intuitively for the two extremal ramp speeds. Sup-
pose the initial state is a low-energy Fermi-Hubbard eigenstate
|�〉. If U/t is increased instantaneously to U/t → ∞,
the quantum state has no time to evolve and remains an eigen-
state of the original Fermi-Hubbard model at finite U/t . This
lattice freeze is generally performed in cold atom experiments
prior to performing single-site resolved measurements, for
example in Ref. [16]. In the opposite limit, if U/t is increased
fully adiabatically (i.e., slowly compared to all the many-
body energy gaps), then the state adiabatically follows the
instantaneous eigenstates towards the U/t → ∞ limit, which
qualitatively changes the nature of the state in general (with
the exception of the insulating half-filled ground state).

For intermediate ramp speeds, the time evolution of |�〉
can be better understood by writing it in the time-dependent
basis |φ̃i(τ )〉 defined as,

|φ̃i(τ )〉 = eiŜ( t (τ )
U (τ ) )|φi〉, (5)

where {|φi〉} is the Fock basis of the original fermionic op-
erators of Fermi-Hubbard model. Note that by definition,

|φ̃i(τ = 0)〉 = eiŜ( t0
U0

)|φi〉 are the Fock states of the dressed
operators ˆ̃c†

j,σ of the t − J − 3s Hamiltonian. Also note that

at the end of the ramp, |φ̃i(τ → ∞)〉 = eiŜ( t
U →0)|φi〉 = |φi〉

since e−iŜ(t/U ) → 1̂ as t/U → 0. The state |�(τ )〉 can be
expanded in this basis as

|�(τ )〉 =
∑

i

βi(τ )|φ̃i(τ )〉, (6)

where βi(τ ) are the time-dependent coefficients. As the lat-
tice depth is ramped up, the state evolves in two ways: the
coefficients {βi} evolve and the dressed basis states {|φ̃i(τ )〉}
themselves evolve. If the lattice ramp is fast compared to t
and J , the coefficients {βi(τ )} of the dressed basis can be
considered essentially frozen since their dynamics is governed
by the t − J − 3s Hamiltonian. Within the low-energy Hilbert
space this corresponds to the diabatic limit. Additionally, if
the ramp is slow with respect to U , which is the typical gap
separating the low-energy sector from higher-energy sectors,
the dressed basis states {|φ̃i(τ )〉} evolve adiabatically and flow

012428-3



ANANT KALE et al. PHYSICAL REVIEW A 106, 012428 (2022)

FIG. 2. (a) Doublon density 〈ρ̂D〉 after the lattice ramp for the double-well case plotted as a function of ramp speed α. Comparison of
the analytical approximation of Eq. (9) (dashed lines) with numerical simulations (solid lines) for initial U/t = 8 (purple, top) and U/t = 16
(brown, bottom). Vertical dash-dotted lines indicate the critical ramp speed α∗ from Eq. (10) below which the doublon density is strongly
suppressed. The double-well Fermi-Hubbard Hamiltonian is schematically shown in the inset. (b) Doublon density 〈ρD〉 vs. normalized ramp
speed α/α∗ for U/t = 8. Solid lines are numerical results for a 12-site system at half-filling, 1D chain with periodic boundary conditions
(orange dashed line) and 2D cluster, 4 × 3 (green solid line). Experimental data points at half-filling shown in gray markers. The dashed line
indicates the imaging fidelity limit to measuring doublon density in the experimental snapshots.

towards t/U → 0 where they get mapped onto the original
basis states {|φi〉}. When both conditions on the ramp speed
are satisfied, the final state can be approximated as:

|� ′〉 ≈ eiϕ�

∑
i

βi(0)|φi〉 = eiϕ� eiŜ(t0/U0 )|�〉, (7)

where eiϕ� describes an overall dynamical phase picked up
during the ramp and eiŜ(t0/U0 ) is the Schrieffer-Wolff trans-
formation corresponding to the initial tunneling to interaction
ratio.

Thus if the ramp speed is slow compared to U but fast
compared to t and J , then the lattice ramp approximately
acts as a Schrieffer-Wolff transformation on Fermi-Hubbard
low-energy eigenstates, mapping them (up to order t/U ) onto
corresponding eigenstates of the t − J − 3s model written in
the original basis. This allows for approximate measurements
of observables of the t − J − 3s model in the natural basis of
the Fermi-Hubbard simulator.

III. ELIMINATING DOUBLON-HOLE PAIRS

In this section, we examine how the lattice ramp suppresses
virtual doublon-hole fluctuations. The population of virtual
doublons tells us about how close the dressed operators c̃i,σ

are to original operators ci,σ . If the population of virtual
doublons vanishes, the dressed basis gets mapped onto the
original basis. We use the case of two fermions in a double-
well potential (half-filling) to derive an approximate analytical
result for the doublon population after the lattice ramp. We
also numerically study larger one-dimensional (1D) and 2D
systems and compare to experimental data for 2D systems.

For the double-well system, the Hamiltonian is illustrated
in Fig. 2(a). The Hilbert space of interest with total spin
S = 0 contains one spin-up and one spin-down particle and
is spanned by the four states {|LL〉, |LR〉, |RL〉, |RR〉} written
following the convention of Ref. [32]. Further, examining the
symmetries of the Hamiltonian (see Appendix A), we can
see that the dynamics of the system lie in a two-dimensional

Hilbert space spanned by the two spin-singlet states:

|�s〉 = |LR〉 + |RL〉√
2

(singlet state)

|�dh〉 = |LL〉 + |RR〉√
2

(symmetric doublon-hole state). (8)

For U/t > 0, the ground state of the double-well system is
predominantly the singlet state |�s〉 with a small admixture
of the symmetric doublon-hole state |�dh〉 of order (t/U )2. If
we start in the ground state with a finite U/t and adiabatically
increase U/t → ∞, the system flows towards a purely singlet
state with a vanishing doublon density.

When the lattice depth is ramped up linearly in time (which
is non-adiabatic, due to the exponential dependence of tun-
neling on lattice depth), the system does not perfectly follow
the instantaneous ground state of the system. We can ana-
lytically solve the resulting dynamics in the two-dimensional
Hilbert space by making the following approximations. First,
we Taylor expand U/t as a function of time to linear or-
der and cast the problem into a Landau-Zener-like problem
(see Appendix A). Then we derive an analytical result for
the state after a linear lattice ramp, when starting from the
Fermi-Hubbard ground state with a given U0/t0. We compute
the doublon density defined as 〈ρ̂D〉 = 1/N

∑N
i 〈ni↑ni↓〉 in the

state after the ramp for a given ramp speed α ≡ dV/dτ :

〈ρ̂D〉 ≈
∣∣β (0)

dh

∣∣2
2

α2

α2 + (α∗)2
, (9)

where |β (0)
dh |2 is the probability of the symmetric doublon-hole

state for the initial Hamiltonian parameters U0, t0 and

α∗ = U0
√

V0Er

[
1 + 8

( t0
U0

)2
]

(10)

is a critical lattice ramp speed where the doublon density
has an inflection point. The Landau-Zener calculation predicts
that in the adiabatic limit, i.e., ramp speed α → 0, the doublon
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density 〈ρ̂D〉 vanishes quadratically with α. In the opposite
limit of an instantaneous lattice ramp, α → ∞ the doublon
density converges to its value in the ground state |β (0)

dh |2/2.
The crossover in the behavior from quadratic to asymptotic
occurs at a critical ramp speed α = α∗ ∼ U

√
V0Er .

In Fig. 2(a), we compare the analytical result (dashed lines)
with a numerical simulation of the full lattice ramp in the
double-well system without any approximations (solid lines)
for two different initial values of U0/t0 = 8 (purple, top), and
U0/t0 = 16 (brown, bottom). Here and in the following, the
initial lattice depth is V0 = 8Er to match the experimental
values of Ref. [12], and the final lattice depth is Vfinal = 48Er .
Increasing the value of Vfinal does not affect the numerical
results. The critical ramp speed α∗ is marked with dash-dotted
vertical lines. The analytical results match asymptotically
with the full numerics in both limits α → ∞ (the doublon
density is frozen to its value before the ramp) and α → 0 (the
doublon density adiabatically vanishes).

For a given value of U0/t0, the crossover between adiabatic
and frozen regime occurs at a larger α in the numerical results
compared to the analytical formula. This discrepancy can be
attributed to the different effective ramps realized by the two
models: U/t (τ ) increases linearly with time in the analytical
approximation, whereas V (τ ) increases linearly in the nu-
merical model, resulting in an exponential ramp of U/t (τ )
according to Eqs. (3) and (4). We expect the analytical result
to be a good approximation to the numerics because most
of the dynamics occur very early in the ramp where we can
linearize the Hamiltonian parameters.

Next, we extend our numerical simulations to systems of
up to 12 sites by computing the Fermi-Hubbard ground state
using exact diagonalization (ED) and by evolving it accord-
ing to Hamiltonian (1) with time-dependent parameters (3)
and (4). Here and henceforth U0/t0 = 8 [12] (see Appendix B
for details). Figure 2(b) shows results obtained at half-filling
with one-dimensional chains and periodic boundary condi-
tions (orange dashed line) as well as two-dimensional 4 × 3
clusters with open boundary conditions (green solid line).

The doublon density after the lattice ramp is plotted as
a function of the normalized ramp speed α/α∗ with α∗ de-
fined in Eq. (10) to compare timescales with the double-well
case. For large ramp speeds α, the doublon density reaches
its ground-state value, which partially depends on the lattice
coordination number and is different in the double-well, 1D,
and 2D cases. Remarkably, the crossover speed α/α∗ ∼ 1
below which doublon density vanishes is in good qualitative
agreement with the double-well case. This suggests that the
time and energy scales determining doublon suppression are
mostly determined by the initial Hamiltonian parameters and
are relatively independent of system size. Further, we also per-
formed numerics for systems away from half-filling with low
hole doping and found similar doublon-density suppression.
We explore this further in the next section.

We also compare our numerics to experimental data from
our Lithium-6 Fermi-Hubbard quantum simulator [12,33],
shown with gray markers in Fig. 2(b). The experimental data
is for a spin-balanced mixture at half-filling with a system
size of ∼ 370 sites. The tunneling is set to t = 0.90(2) kHz
and interaction strength is tuned using a Feshbach resonance
to give U/t = 8.1(2). The system is loaded into a lattice of

depth 7.5(1)Er , where Er = 25.6 kHz, and the lattice is then
ramped up by a factor of 8 at varying ramp speeds to freeze
the tunneling. The fastest ramp shown corresponds to a ramp
duration of 50 μs, while the slowest one corresponds to 10 ms.
In the experimental snapshots, doublons and holes both appear
as empty lattice sites as a result of the parity projection in
the imaging scheme [33,34]. The doublon density is extracted
from the density snapshots by assuming that doublons and
holes are equally likely since the system is at half-filling.

The experimental data points are consistent with the 2D
numerics (green solid line). The larger critical speed com-
pared to the numerical data may be explained by technical
limitations on the ramp rate of the lattice depth, leading to
deviations from a linear ramp at the shortest ramp times and
to an overestimation of the effective ramp speed. We find that
the experimentally obtained doublon density reduces with the
ramp speed α on a similar timescale as the 2D numerics.
For the experimental data, the density converges to about 1%,
which is consistent with the imaging fidelity of approximately
98% during these experiments.

IV. SPIN CORRELATIONS

In this section, we examine the spin correlation functions
in the state after the lattice ramp and compare to correlations
in the t − J − 3s model. As spin correlations are strongly
affected by the presence of virtual doublon-hole excitations,
they act as a proxy for how well the lattice ramp implements
the Schrieffer-Wolff transformation on the initial state. In ad-
dition we also study the effect of hole doping on the lattice
ramp protocol.

In the presence of hole dopants, the dynamics during the
lattice ramp are qualitatively different than the two-site case
or the half-filling case. In particular, for half-filling the low-
energy effective Hamiltonian for Fermi-Hubbard model is
simply the Heiseneberg term HQHM from Eq. (2); the tun-
neling Ht and three-site H3s terms vanish at half-filling since
there are no holes in the system. As a result, the effective
Hamiltonian has a single parameter J and thus the eigenstates
and their ordering do not depend on the value of J but only the
sign (which is always positive here). On the other hand, in the
presence of hole doping, all three terms of Eq. (2) play a role.
Thus we expect to see some competing time scales from the
adiabaticity of the ramp and the energy scales of the effect-
ive Hamiltonian.

In Fig. 3(a), we show the nearest-neighbor spin correlation
〈�ramp|Ŝz

i Ŝz
j |�ramp〉C of the state after the lattice ramp as a

function of the ramp speed α and for different hole dopings
δ. The nearest-neighbor spin correlations are negative, which
confirms the presence of antiferromagnetic order expected
close to half-filling due to a positive superexchange coupling
J . The spin correlations are expected to decrease with hole
doping as mobile holes tend to disrupt the antiferromagnetic
order [9,12]. To facilitate comparison between doping levels,
we normalize correlations with the absolute value of the cor-
relator |〈�t−J |Ŝz

i Ŝz
j |�t−J〉C | in the t − J − 3s model ground

state, and further normalize the ramp speed α by the critical
ramp speed α∗ from the double-well case [Eq. (10)].

At nonzero hole-doping δ > 0, the magnitude of the neg-
ative correlations shows a maximum at ramp speeds close
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FIG. 3. (a) Normalized spin correlation function (z - component)
for nearest neighbors 〈Ŝz

i Ŝz
j〉ramp/|〈Ŝz

i Ŝz
j〉t−J | plotted as a function

of normalized ramp speed α/α∗ from numerical simulations at
zero temperature. Colors (markers) indicate different doping lev-
els. Dashed line indicates the normalized t − J model correlator.
Spin correlations are normalized by the magnitude of the t − J − 3s
model correlators to plot different doping levels on the same plot.
System size is 12 sites (4 × 3). (b) Spin correlation function for
nearest neighbors 〈Ŝi · Ŝ j〉C at finite temperature. Solid lines indi-
cate numerical results for a nine-site (3 × 3) system at half-filling
with temperatures ranging from T/t = 0 at the bottom (purple) to
T/t = 0.5 at the top (red). U0/t0 = 8 for both plots.

to the critical ramp speed, α ∼ α∗. The correlations for this
ramp speed are about �85% of the value in the ground
state of the t − J − 3s model for the finite system size of
4 × 3 sites. Further, we point out that these correlations
are significantly modified from the correlations in the initial
state, i.e., the ground state of the Fermi-Hubbard model. The
Fermi-Hubbard ground-state correlations can be seen as the
asymptotic limit of α → ∞.

The presence of a maximum in the correlations can be
explained as the result of two competing effects. On the one
hand, decreasing the ramp speed from the instantaneous ramp
limit α → ∞ decreases the density of doublon-hole pairs,
as observed in Fig. 2. This effect contributes to decreasing

the local magnetization on neighboring sites and therefore
to increasing the magnitude of the spin correlations as α is
decreased. On the other hand, in the adiabatic regime α < α∗
the quantum state follows the instantaneous ground state of
the Hamiltonian during the ramp. In the fully adiabatic limit
α → 0, the final state is described by a Hamiltonian with
U/t → ∞, i.e., J/t → 0 and no spin correlations are present
due to the Nagaoka effect [35]. In this case, increasing α

towards α∗ increases the magnitude of the correlations.
The half-filled case δ = 0 [blue circles in Fig. 3(a)] is

a special case as mentioned before. The effective Hamilto-
nian is simply the Heisenberg Hamiltonian ĤQHM and its
ground state is independent of the magnitude of J with
constant, nonzero nearest-neighbor correlations, even in the
limit J/t → 0. When approaching the adiabatic limit α → 0,
doublon-hole pairs get increasingly suppressed and there is no
competing Nagaoka effect. Thus nearest-neighbor spin corre-
lations monotonically increase in magnitude with decreasing
ramp speed α and converge to their expectation value in the
Heisenberg model.

Numerical simulations so far considered initial states at
zero temperature, i.e., the ground states of the Fermi-Hubbard
model. We now examine the case of finite-temperature en-
sembles in the Fermi-Hubbard model with temperatures T
below the initial interaction energy U0 at half-filling. We
perform full ED in a smaller system of 3 × 3 sites, simu-
late the time-evolution for the lowest ∼150 eigenstates (from
each magnetization sector) and average over the thermal en-
semble by assigning appropriate Boltzmann weights to each
state (see Appendix B for details). As shown in Fig. 3(b)
for T/t ∈ [0, 0.5], temperature leads to an expected decrease
of the nearest-neighbor spin correlations after the lattice
ramp. Furthermore, spin correlations monotonically increase
in magnitude by up to 25% for decreasing ramp speed α/α∗,
similar to the T = 0, δ = 0 case in Fig. 3(a).

In quantum gas microscope experiments, single-site re-
solved measurements are performed after ramping up the
lattice potential used for quantum simulation to much larger
depths in order to ensure lossless fluorescence imaging. Our
simulations indicate that finite ramp speeds can lead to an
overestimation of nearest-neighbor spin correlations and an
underestimation of doublon-hole densities in Fermi-Hubbard
systems close to half-filling. Taking into account these ef-
fects is therefore crucial to accurately estimate temperature
in such systems, which often relies on comparing spin-spin
or density-density correlation observables with numerical
data obtained, for example, through numerical cluster linked
expansion (NLCE) or quantum Monte Carlo (QMC) meth-
ods [12,28].

V. ANALYSIS OF THE LATTICE RAMP UNITARY

In this section we take a more careful look at the unitary
operator describing time evolution during the lattice ramp and
how it is related to the Schrieffer-Wolff transformation. For a
given ramp speed α, we define the time-evolution operator of
the lattice ramp as Ûramp(α) = T [ exp{(−i

∫ τ

0 dτ ′ĤFH(τ ′))}].
To probe the fidelity of the unitary operator at zero tem-

perature, T = 0, we compute the state overlap defined as
F = |〈�tJ

0 |Ûramp(α)|�0〉|2 where |�tJ
0 〉 is the t − J − 3s
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FIG. 4. (a) Fidelity of mapping to the t − J − 3s model ground
state starting from the Fermi-Hubbard ground state, defined as
F = |〈�tJ

0 |Ûramp(α)|�0〉|2. Solid lines show numerical results for
a 12-site cluster (4 × 3) with colors (markers) indicating different
doping levels. Dashed lines indicate the squared overlap of the initial
state with the t − J ground state, i.e., |〈�tJ

0 |�0〉|2. (b) Comparison
of the optimal lattice ramp unitary Û opt

ramp and the Schrieffer-Wolff
unitary transformation eiŜ for low-energy eigenstates of the Fermi-
Hubbard model. Fidelity F1 (blue circles) shows how close Ûramp

and eiŜ are when acting on Fermi-Hubbard eigenstates, F2 (orange
triangles) shows the fidelity of mapping to a t − J − 3s eigenstate
when starting from the corresponding Fermi-Hubbard low-energy
eigenstate, and F3 (green crosses) shows the squared overlap of t −
J − 3s eigenstates and corresponding Fermi-Hubbard eigenstates.
U0/t0 = 8 for both plots.

ground state, |�0〉 is the Fermi-Hubbard ground state (initial
state), and Ûramp(α) is the lattice ramp time-evolution opera-
tor. This fidelity is shown in Fig. 4(a) as a function of ramp
speed α and doping δ (solid lines). Dashed lines indicate
the squared overlap of the initial state with the t − J − 3s
ground state, i.e., |〈�tJ

0 |�0〉|2. For computing the overlap, the
t − J − 3s model ground state is written in terms of the bare
fermionic operators ĉi,σ rather than the dressed operators ˆ̃ci,σ ,
i.e., the t − J − 3s ground state written in the Fermi-Hubbard
basis since this is the target state at the end of the ramp.

The results are qualitatively similar to the nearest-neighbor
spin correlations shown in Fig. 3(a). Very fast ramps α � α∗
have no effect on the state and thus the overlap is given
by that of the Fermi-Hubbard ground state with the t −

J − 3s model ground state. For nonzero dopings δ > 0,
the overlap vanishes in the adiabatic limit α � α∗. Re-
markably, it reaches a maximum at αopt ≈ 0.4α∗, within
an order of magnitude of the critical ramp speed predicted
for the double-well case. The peak value is comparatively
large (above 80% for the 12-site system considered here).
As discussed in Sec. IV, the case of half-filling is special
since the t − J − 3s model ground state becomes indepen-
dent of |J/t | then. As a result, the squared overlap with the
t − J − 3s ground state monotonically increases to near unity
with decreasing ramp speed. These results quantitatively show
that the lattice ramp protocol dynamically maps the Fermi-
Hubbard ground state onto the t − J − 3s model ground
state close to the critical ramp speed α∗, allowing for mea-
surements of t − J − 3s observables in the Fermi-Hubbard
basis.

We now numerically examine the relation between the
Schrieffer-Wolff unitary transformation eiŜ and the lattice
ramp time-evolution operator Ûramp. Starting from a low-
energy eigenstate of the Fermi-Hubbard model |�n〉, by defi-
nition, the state after the ramp is given by |� ′〉 = Ûramp|�n〉.
The overlap of this ramped state with a Schrieffer-Wolff trans-
formed initial state tells us the fidelity of performing the
Schrieffer-Wolff transformation using the lattice ramp. We
call this fidelity F1 defined as F1 = |〈�n|e−iŜÛ opt

ramp|�n〉|2.
Further, the overlap of the ramped state with the cor-

responding t − J − 3s eigenstate |�tJ
n 〉 tells us the fidelity

of preparing a t − J − 3s eigenstate using this protocol,
which we call F2 = |〈�tJ

n |Û opt
ramp|�n〉|2. Note that F2 is dif-

ferent from F1 because the Schrieffer-Wolff transformation
is only perturbative to order (t/U ). As a result, even a per-
fect Schrieffer-Wolff unitary will only map a Fermi-Hubbard
eigenstate onto the corresponding t − J − 3s eigenstate
within O[(t/U )2]. To quantify this fidelity, we define F3 =
|〈�tJ

n |eiŜ|�n〉|2, which tells us how close a Schrieffer-Wolf
transformed Fermi-Hubbard eigenstate is to the corresponding
t − J − 3s eigenstate.

In Fig. 4(b), we plot the fidelity F1 (blue circles) as a
function of energy En for the optimal ramp speed αopt =
0.4α∗. We work with a small system size (eight sites,
one-hole dopant) where the unitary operators can be fully
computed. We find that the fidelity F1 is quite high (above
90% for this system) for all low-energy eigenstates with
energy, En − E0 � t .

We also plot the fidelity F2 (orange triangles) of prepar-
ing a t − J − 3s eigenstate starting from a Fermi-Hubbard
eigenstate and find F2 is above 90% for most of the low-
energy eigenstates, with some outliers above 80%. Similarly,
we plot F3 (green crosses) and find a strong correlation be-
tween F3 and F2. This implies that the variation in the fidelity
F2 of preparing t − J − 3s eigenstates comes from the in-
trinsic variation between the eigenstates of the t − J − 3s
model and the Schrieffer-Wolff transformed Fermi-Hubbard
eigenstates.

The numerical evidence from Fig. 4 verifies that the lat-
tice ramp unitary acts like a Schrieffer-Wolff transformation
with high fidelity for not just the ground state but also for
low-energy eigenstates and thermal states, and can be used to
prepare the t − J − 3s model eigenstates (or thermal states).
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VI. CONCLUSION AND OUTLOOK

In this work, we proposed a protocol for measuring observ-
ables of low-energy effective models in quantum simulators
by performing a ramp of Hamiltonian parameters that ex-
ecutes an approximate Schrieffer-Wolff basis rotation. We
focused on the case of the t − J − 3s model derived from
the Fermi-Hubbard model. In this case, the ramp of Hamil-
tonian parameters is performed by linearly increasing the
lattice depth in time at an optimal ramp speed αopt. Us-
ing a simplified analytical model, numerical evidence as
well as existing experimental data we demonstrated how the
lattice ramp eliminates virtual doublon-hole fluctuations, in-
creases spin-spin correlations in the system, and executes
an approximate Schrieffer-Wolff transformation, mapping
the initial Fermi-Hubbard eigenstate onto the corresponding
t − J − 3s model eigenstate. This mapping is possible in
regimes where the (ground) states of the effective (t − J − 3s)
and microscopic (Hubbard) Hamiltonians are adiabatically
connected.

While we discussed our protocol for studying observ-
ables in the effective model at equilibrium, we believe it
can also be generalized for experiments studying nonequi-
librium physics. For an out-of-equilibrium initial state, for
the case of the Fermi-Hubbard, and t − J − 3s models, we
may be able to modify this protocol to separate the freezing
of atomic motion from the elimination of doublon-hole fluc-
tuations. For example, one could first use an energy offset
on neighboring lattice sites to freeze the atomic motion as
shown in Ref. [36], followed by the slow lattice ramp to elimi-
nate doublon-hole fluctuations. The generalization to complex
nonequilibrium initial states remains to be explored in future
work.

The proposed protocol can also be applied in a larger
range of systems whenever effective interactions are induced
through virtual higher-order processes. Examples include
U(1) lattice gauge theories in Bose-Hubbard systems [8], ring-
exchange interactions [37], and Z2 lattice gauge theories with
superconducting qubits [38].
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APPENDIX A: ANALYTICAL HALF-LANDAU ZENER
FORMULA

Our goal in this section is to analytically calculate the
effect of a linear ramp of lattice depth on the quantum
state of a two-site Fermi-Hubbard system. Starting from the
ground state of the two-site system, as the lattice depth is
increased, the Hamiltonian parameters U and t evolve in
time and the state undergoes dynamics. If the change in
Hamiltonian parameters is Taylor expanded and linearized
in time and the initial lattice depth is sufficiently deep, we
can make use of the Landau-Zener formalism to solve the
dynamics.

However, our case is different from the usual Landau-
Zener problem involving an avoided crossing because in our
case, the Hamiltonian parameters always remain on one side
of the avoided crossing (U/t goes from U0/t0 > 0 to U/t →
∞). The lattice ramp is thus more like the latter half of a
Landau-Zener problem.

Consider the Hamiltonian of the two-site Fermi-Hubbard
system at half-filling (two particles):

Ĥ = −t (τ )
∑

σ

(c†
Lσ cRσ + c†

Rσ cLσ ) + U (τ )
∑

i={L,R}
n̂i↑n̂i↓.

(A1)

We first find the ground state of the Hamiltonian for U > 0.
Considering the spin rotation and inversion symmetries of the
system, the eigenstates of the Hamiltonian are also total spin
eigenstates (singlet or triplet) and have a defined parity (even
or odd). In the spin triplet sector, we find three eigenstates of
the Hamiltonian, all with zero energy. In spin singlet sector,
there are three states each with exactly one spin-up particle
and one spin-down particle. These states are spanned by the
basis states:

B =
{
|φ0〉 = 1√

2
(|LR〉 + |RL〉) = 1√

2

(
ĉ†

L↑ĉ†
R↓ + ĉ†

R↑ĉ†
L↓
)|vac〉 ≡ |�s〉,

|φ1〉 = 1√
2

(|LL〉 + |RR〉) = 1√
2

(
ĉ†

L↑ĉ†
L↓ + ĉ†

R↑ĉ†
R↓
)|vac〉 ≡ |�dh〉,

|φ2〉 = 1√
2

(|LL〉 − |RR〉) = 1√
2

(
ĉ†

L↑ĉ†
L↓ − ĉ†

R↑ĉ†
R↓
)|vac〉

}
. (A2)
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We have conveniently chosen these basis states to be parity
eigenstates. We can see that |φ0〉 and |φ1〉 are even parity
states while |φ2〉 is the only odd parity eigenstate in this spin
sector. Thus |φ2〉 must be an eigenstate of the Hamiltonian and
has energy E2 = U (can be easily verified). The remaining
two states are coupled by the Hamiltonian and form a simple
two-level system. Diagonalizing the two-dimensional Hilbert
space, we find the eigenstates of the Hamiltonian are given by:

|ψ0〉 = cos θ |�s〉+ sin θ |�dh〉, E0 = 1

2
(U −

√
U 2+ 16t2),

(A3)

|ψ1〉 = sin θ |�s〉− cos θ |�dh〉, E1 = 1

2
(U +

√
U 2+ 16t2)

(A4)

tan θ = (−U + √
U 2 + 16t2)

4t
. (A5)

For repulsive interactions U > 0, E0 < 0 < E2 < E1. Thus
|ψ0〉 has the lowest energy out of all six states in the full
two-site Hamiltonian, i.e., |ψ0〉 is the ground state.

Now we consider time-dependent tunneling t (τ ) and in-
teractions U (τ ) dependent on the lattice depth V (τ ). The
initial state of the system is the ground state |ψ0〉. As U
and t vary in time τ , the Hamiltonian mixes the state in the
two-dimensional Hilbert space of |φ0〉 and |ψ1〉. Let us write
the solution as

|�(τ )〉 = a0(τ )|φ0〉 + a1(τ )|φ1〉, a0(0) = a0
0 = cos θ,

a1(0) = a0
1 = sin θ, (A6)

where θ is the same is in Eq. (A3).
To cast the Hamiltonian into the same form as the Landau-

Zener Hamiltonian, we rescale Eq. (A1) by t (τ ). Further, we
also rescale time by t (τ ) to recover the usual Schrödinger
equation.

i
1

t (τ )
∂τ |ψ (τ )〉 = Ĥ (τ )

t (τ )
|ψ (τ )〉 ⇒ i∂τ̃ |ψ (τ̃ )〉 = H̃ (τ̃ )|ψ (τ̃ )〉,

(A7)
where H̃ (τ̃ ) = Ĥ

t (τ ) and we intro-

duce τ̃ (τ ) such that 1
t (τ )∂τ ≡ ∂τ̃ .

The tunneling parameter is time dependent, therefore the
rescaling is not simply linear. However, since the majority of
the change occurs when U/t is small at the start of the ramp,
we can linearize the rescaling by Taylor expanding around
τ = 0,

∂τ̃

∂τ
= t (τ ) ⇒ τ̃ (τ ) =

∫ τ

0
dτ ′t (τ ′) 
 t0τ, t0 = t (0).

(A8)
From the Schrödinger equation, we get the following cou-

pled differential equations:

i∂τ̃ a0 = −ga1 i∂τ̃ a1 = −ga0 + U (τ̃ )

t (τ̃ )
a1, (A9)

where g = 2 is the time-independent coupling parameter ob-
tained by rescaling the Hamiltonian by the tunnelling strength.
When h̄ is set to 1, g, and 2 are interchangeable. However, it is
useful to use g instead of the numerical value 2 in our solution
because we can later restore h̄ via g = 2h̄ and recover unitful
quantities.

The lattice depth is linearly ramped up with a ramp speed
α ≡ dV/dτ . In particular, V (τ ) = V0 + ατ . As lattice depth is
increased, the fraction U

t increases exponentially in time [see
Eqs. (3) and (4)]. Since most of the dynamics occur very early
in the lattice ramp, we can Taylor expand U/t as a function of
time and only keep up to linear order terms (to make use of
the Landau-Zener solution later on):

U

t
(τ ) = kLa√

2
exp

{(
2

√
V (τ )

Er

)}
(A10)

≈ U0

t0
+
[

d

dτ

(U

t

)]
τ=τ0

(τ − τ0) (A11)

= U0

t0
+ U0

t0

1√
ErV (τ0)

[
d

dτ
V (τ )

]
τ=τ0

(τ − τ0)

(A12)

= U0

t0
+ U0

t2
0

α√
ErV (τ0)

τ̃ (A13)

≡ U0

t0
+ αLZ τ̃ . (A14)

Here we define a rescaled ramp speed αLZ given by

αLZ = U0

t2
0

α√
ErV (τ0)

. (A15)

To eliminate the constant offset in U
t (τ ), we define τ ∗ = τ̃ +

τ ∗
0 where τ ∗

0 = 1
αLZ

U0
t0

such that U/t = αLZτ ∗. The second-
order differential equation for c3 can then be written as

ä1 + iαLZ τ̃ ȧ1 + (g2 + iαLZ )a1 = 0, (A16)

where ȧ1 = da1
dτ ∗ . We can eliminate the ȧ1 term by going to

the rotating frame, a1(τ ∗) = ã1(τ ∗)e−i αLZ
4 (τ ∗ )2

. The differential
equation becomes

¨̃a1 +
(

g2 + iαLZ

2
+ α2

LZ

4
(τ ∗)2

)
ã1 = 0. (A17)

From here we use the linear transformation τ ∗ → z(τ ∗) =
ei π

4 (αLZ )1/2τ ∗ to obtain the standard form of the parabolic
cylinder equations (Ref. [39], ch. 12)

d2

dz2
ã1(z) − ã1(z)

(
1

4
z2 + a

)
= 0, (A18)

with a = ig2

αLZ
− 1

2 . There are two linear independent even and
odd solutions to this differential equation given by the conflu-
ent hypergeometric functions M [39,40]

even: f1(z) = e− 1
4 z2

M

(
1

2
a + 1

4
,

1

2
,

1

2
z2

)

odd: f2(z) = ze− 1
4 z2

M

(
1

2
a + 3

4
,

3

2
,

1

2
z2

)
. (A19)

Thus the coefficient ã1(z) = Ã1 f1(z) + Ã2 f2(z) is the su-
perposition of these two solutions where Ã1 and Ã2 are given
by the initial conditions of the problem. Going back to the

original frame, we have a1(z) = Ã1 f1(z)e− z2

4 + Ã2 f2(z)e− z2

4 .
If U0/t0 is sufficiently large, |z| is always large throughout
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the ramp. In this case, it is possible to write out an analyt-
ical expression for the asymptotic behavior of the solutions
Eq. (A19) for large z. This series expansion of the confluent
hypergeometric functions for large |z| is given by [39]:

M
(
ã, b̃, z̃

) ∼ �(b̃)

(
eiπ ã z̃−ã

�(b̃ − ã)
+ ez̃z̃ã−b̃

�(ã)

)
. (A20)

We plug this asymptotic expansion into the even and odd
solutions Eq. (A19), absorb all constants into new coefficients
B1 to B4 and find:

f1(z) = e− 1
4 z2

M

(
ig2

2αLZ
,

1

2
,

z2

2

)

⇒ f1(z) ≈ B1e
(
− z2

4 − ig2

αLZ
ln |z|

)
+ B2

z
e
(

z2

4 + ig2

αLZ
ln |z|

)

(A21)

f2(z) = ze− z2

4 M

(
ig2

2αLZ
+ 1

2
,

3

2
,

z2

2

)

⇒ f2(z) ≈ B3e
(
− z2

4 − ig2

αLZ
ln |z|

)
+ B4

z
e
(

z2

4 + ig2

αLZ
ln |z|

)
.

(A22)

Writing out a1(τ ∗) using these asymptotic expansions, we get

a1(τ ∗) = A1e− iαLZ
2 (τ ∗ )2

e− ig2

αLZ
ln (

√
αLZ τ ∗ ) + A2

1

τ ∗ e
ig2

αLZ
ln (

√
αLZ τ ∗ )

,

(A23)

where we defined new constants A1 = (Ã1B1 + Ã2B3) and
A2 = (Ã1B2 + Ã2B4) e−iπ/4√

αLZ
. We can now obtain the full so-

lution by solving for A1 and A2. The first constraint on
A1 and A2 comes from the initial state being the ground
state:

a1(τ = 0) = a0
1 ⇒ a0

1 = A1e− iαLZ
2 (τ ∗

0 )2
e− ig2

αLZ
ln (

√
αLZ τ ∗

0 ) + A2
1

τ ∗
0

e
ig2

αLZ
ln (

√
αLZ τ ∗

0 )

⇒ A2
1

τ ∗
0

e
ig2

αLZ
ln (

√
αLZ τ ∗

0 ) = a0
1 − A1e− iαLZ

2 (τ ∗
0 )2

e− ig2

αLZ
ln (

√
αLZ τ ∗

0 )
. (A24)

And the second constraint on A1 and A2 is given by the equation of motion, Eq. (A9):[
∂a1

∂τ ∗

]
τ ∗

0

= iga0
0 − i

U0

t0
a0

1 ⇒
(

iga0
0 − i

U0

t0
a0

1

)

= −A1e− iαLZ
2 (τ ∗

0 )2
e− ig2

αLZ
ln (

√
αLZ τ ∗

0 )
(

iαLZτ ∗
0 + ig2

αLZ

1

τ ∗
0

)
+ A2

1

τ ∗
0

e
ig2

αLZ
ln (

√
αLZ τ ∗

0 )
(

ig2

αLZ

1

τ ∗
0

− 1

τ ∗
0

)
(A25)

⇒
(

iga0
0 − i

U0

t0
a0

1

)
− a0

1

(
ig2

αLZ

1

τ ∗
0

− 1

τ ∗
0

)
= −A1e− iαLZ

2 (τ ∗
0 )2

e− ig2

αLZ
ln (

√
αLZ τ ∗

0 )
(

iαLZτ ∗
0 + 2ig2

αLZ

1

τ ∗
0

− 1

τ ∗
0

)

⇒ A1e− iαLZ
2 (τ ∗

0 )2
e− ig2

αLZ
ln (

√
αLZ τ ∗

0 ) =
(
iga0

0 − iU0
t0

a0
1

)− a0
1

(
ig2

αLZ

1
τ ∗

0
− 1

τ ∗
0

)
(

iαLZτ ∗
0 + 2ig2

αLZ

1
τ ∗

0
− 1

τ ∗
0

) (A26)

⇒ A2
1

τ ∗
0

e
ig2

αLZ
ln (

√
αLZ τ ∗

0 ) =
iga0

0 + ig2

αLZ

1
τ ∗

0
a0

1(
iαLZτ ∗

0 + 2ig2

αLZ

1
τ ∗

0
− 1

τ ∗
0

) . (A27)

In the second step Eq. (A25) we plugged in the relation
given by Eq. (A24). This fully specifies the solution for all
times.

For our purposes, we are interested in the density of dou-
blons in the system defined as

〈ρ̂D〉 = 1

N

∑
i

〈
�
∣∣n̂i↑n̂i↓

∣∣�〉,
where N is the number of sites and index i runs over all lattice
sites. For the two-site system, N = 2 and i ∈ {L, R}. Conve-
niently in our chosen basis, 〈φ0|ρ̂D|φ0〉 = 0 and 〈φ1|ρ̂D|φ1〉 =
1/2. Thus the doublon density is simply given by 〈ρD〉 =
|c1|2/2, i.e., half the population of the state |φ1〉. Knowing
the full solution to a1(τ ), we can easily compute the doublon
density as a function of time. In particular, at the end of the
ramp, τ ∗ → ∞. Hence, the doublon density at the end of the

ramp is given by

〈ρ̂D〉 = 1
2 |a1(τ ∗ → ∞)|2 = 1

2 |A1|2 (A28)

since the term with A2 falls off as 1/τ ∗ and vanishes for large
τ ∗. Simplifying the expression in Eq. (A26), we find:

|A1|2 =

(
a0

1αLZ
t2
0

U 2
0

)2
+ a2

0

(
1 + g2 t2

0

U 2
0

)2
(

a0
1

a0
0
− g t0

U0

1+g2 t2
0

U2
0

)2

(
αLZ

t2
0

U 2
0

)2
+
(

1 + 2g2 t2
0

U 2
0

)2 .

(A29)
We wish to show that the second term in the numerator of
Eq. (A29) can be neglected when U0 � t0. To see this, we first
identify a0

1/a0
0 = tan θ where θ is given by Eq. (A3). We can

then Taylor expand the second term in orders of t0/U0 when
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t0 � U0:

⎛
⎝a0

1

a0
0

− g t0
U0

1 + g2 t2
0

U 2
0

⎞
⎠

2

=

⎛
⎜⎜⎝

(−1 +
√

1 + 16 t2
0

U 2
0

4t0
U0

−
2t0
U0

1 + 4 t2
0

U 2
0

⎞
⎟⎟⎠

2

≈
(

−32
t5
0

U 5
0

+ O

(
t6
0

U 6
0

))2

. (A30)

Thus the second term in the numerator of Eq. (A29) is of the
order O[(t0/U0)10] and can thus be neglected when U0 � t0.
Plugging in the value of αLZ in terms of the ramp speed α, we
find

|A1|2 ≈ (a0
1)2 α2

α2 + U 2
0 ErV0

(
1 + 8t2

0

U 2
0

)2 . (A31)

We define a critical ramp speed α∗ where |A1|2 has an inflec-
tion point:

α∗ = U0
√

ErV0

(
1 + 8t2

0

U 2
0

)
. (A32)

This gives us the doublon density 〈ρ̂D〉 as a function of ramp
speed α as:

〈ρ̂D〉 =
(
a0

1

)2
2

α2

α2 + (α∗)2
. (A33)

APPENDIX B: NUMERICAL SIMULATIONS

The numerical simulations in this work were performed
using code developed in house in the PYTHON program-
ming language. The numerical libraries Numpy and Scipy
were heavily used for efficient computations, as well as
PYTHON multiprocessing to parallelize computations across
CPU cores. In addition, we used CYTHON to precompile
PYTHON functions into C code to greatly speed up key func-
tions that required branching (loops, if statements). With this
code, we are able to study systems of up to 14 sites in the
Fermi-Hubbard model on a standard desktop computer.

We work in the fixed particle number and fixed magnetiza-
tion sector, i.e., fixed N↑ and N↓. The Hilbert space dimension
of the largest magnetization sector scales as ∼22N/N . In the
fixed magnetization sectors, all operators in the Hilbert space
can be constructed from the generalized hopping operators
ĉ†

iσ ĉ jσ , which conserve spin and particle number. All terms
in the Hamiltonian as well as all observables can be repre-
sented as sparse matrices using a matrix representation of
these hopping operators. We choose the Fock basis of the
Fermi-Hubbard model as the basis for writing out explicit ma-
trix representations of operators in our numerical simulations.
Since we are working with fermionic particles, we need to be
careful about the order of the creation operators ĉ†

iσ used to
define the Fock basis states. To be consistent, we use the rule
that all spin-up operators lie to the left of spin-down operators
and the site indices are arranged in ascending order. Once
we compute matrix representations of the hopping operators,
we no longer have to worry about fermionic signs, since the
hopping operators ĉ†

iσ ĉ jσ behave as bosons (they contain an
even number of fermions).

1. Two-site numerics

For Fig. 2(b), we simulate the two-site Fermi-Hubbard sys-
tem at half-filling using exact diagonalization (ED) and time
evolution with the time-dependent Fermi-Hubbard Hamilto-
nian [Eq. (A1)]. Throughout this work we use an initial lattice
depth of V initial

0 = 8Er . We calculate tunnelling strength t and
interaction U from the lattice depth V0 using Eqs. (3) and (4).
We tune the initial ratio U0/t0 by varying the s-wave scattering
length a from Eq. (4). We can treat a as a free parameter
because in experiment, we can vary the scattering length using
a Feshbach resonance. We work with two different values
of the initial interaction to tunnelling ratio U0/t0 = 8 and
U0/t0 = 16. We find the ground state of the Fermi-Hubbard
Hamiltonian using ED and use that as the initial state. We
ramp up the lattice depth linearly in time at a rate α up to a
final lattice depth V final

0 = 48Er again to match the conditions
of Ref. [12]. We calculate the doublon density in the final state
by directly computing the expectation value of the doublon
operator in the final state.

2. Ground-state numerics

For Figs. 2(c), 3(a), and 4(a), we work with system size
of 12 sites in a 1D periodic chain or 2D cluster (4 × 3,
periodic along x and open boundary conditions along y).
We use the ground state of the Fermi-Hubbard Hamiltonian
with U0/t0 = 8 as the initial state. The ground state is nu-
merically computed using a built-in sparse diagonalization
algorithm (scipy.linalg.sparse.eigsh) based on the Lanczos
method [41]. To perform the time-evolution with the time-
dependent Fermi-Hubbard Hamiltonian, we Trotterize the
time-evolution operator as

Ûramp = T

[
exp

{(
−i
∫ τ

0
dτ ′ĤFH(τ ′)

)}]

≈
τ/�τ∏
n=0,

τ ′=n τ
�τ

exp{(−i�τ ĤFH(τ ′))}

≈
τ/�τ∏
n=0,

τ ′=n τ
�τ

exp

{(
− i�τ

2
Ĥint (τ

′)
)}

× exp {(−i�τ Ĥkin(τ ′)
)} exp

{(
− i�τ

2
Ĥint (τ

′)
)}

,

(B1)

where Ĥkin and Ĥint represent the kinetic energy and interac-
tion term of the Fermi-Hubbard Hamiltonian given by the first
and second term of Eq. (1), respectively. Since we perform
the numerical simulations in the Fock basis of the Fermi-
Hubbard Hamiltonian, Ĥint is a diagonal operator and thus so
is exp{(− i�τ

2 Ĥint (τ ′))}. On the other hand, Ĥkin is off diag-
onal in the Fock basis. Instead of computing the full matrix
corresponding to exp{(−i�τ Ĥkin(τ ′))}, we directly compute
the action of the operator on the wave function using built-in
sparse matrix functions (scipy.sparse.linalg.expm_multiply).
We choose a step size �τ small enough that the Trotter error
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is negligible, which is confirmed by checking convergence of
the wave function as a function of decreasing step size.

We also make comparisons of the time-evolved Fermi-
Hubbard state with the ground state of the t − J − 3s model.
The ground state of the t − J − 3s model [see Eq. (2)] is
numerically computed using sparse diagonalization by writing
the t − J − 3s Hamiltonian in the Fermi-Hubbard-Fock basis
(i.e., replacing c̃iσ with ciσ ). We use the Fermi-Hubbard basis
to write the t − J − 3s Hamiltonian since the goal of the
lattice ramp protocol is to perform the Schrieffer-Wolff basis
rotation, which maps ˆ̃ciσ → ĉiσ .

3. Finite-temperature numerics

In Fig. 3(b), we perform numerical simulations at finite
temperature T � U0 in a system of 3 × 3 sites at half-filling
and with open boundary conditions. For the finite temperature
computations, the initial state of the system would be a ther-
mal ensemble of the Fermi-Hubbard model with eigenstate
populations given by the Boltzmann distribution. Further-
more, we need to consider eigenstates of the Hamiltonian in
all the magnetization sectors, not just the largest sector as is
the case for the ground state.

We perform wave function time evolution as opposed to
density matrix time evolution because of computer memory

constraints. For each magnetization sector, we use ED to find
all the eigenstates in that sector. We can use full ED since the
Hilbert space is small enough for a 3 × 3 system. Starting with
a given eigenstate |�n〉 with energy En, we perform the nu-
merical time evolution same as described above and compute
observables 〈Ô〉n in this time-evolved state. We then assign
the observable 〈Ô〉n a coefficient Pn given by the Boltzmann
weight of the eigenstate |�n〉, i.e., Pn = e−EnT /Z (T ) where T
is the temperature of the initial state and Z (T ) is the partition
function for that temperature. We sum up the contributions
from the lowest ∼150 eigenstates from each magnetization
sector to compute the observable in the finite-temperature
time-evolved state. We find that ∼150 states were enough for
the numerical results to converge.

For Fig. 3(b), we plot the full 〈Ŝi · Ŝ j〉 spin correlator
instead of just the z component 〈Sz

i Sz
j〉 because for a fixed mag-

netization sector, the z-component correlator is nonmonotonic
with respect to temperature. While the Fermi-Hubbard Hamil-
tonian has SU(2) total spin rotation symmetry, by choosing
to work in a fixed magnetization sector, we break the SU(2)
symmetry and only make use of the U(1) symmetry arising
from charge conservation. For ground-state numerics, it is still
sufficient to only look at 〈Sz

i Sz
j〉 correlations since in that case,

〈Ŝz
i Ŝz

j〉 = 〈Ŝx
i Ŝx

j 〉 = 〈Ŝy
i Ŝy

j〉 = 〈Ŝi · Ŝ j〉/3.
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