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Nonclassical correlations in subsystems of globally entangled quantum states

Chandan Mahto ,1,* Vijay Pathak ,1,† Ardra K. S. ,1,2 and Anil Shaji 1

1School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
2Centre for Quantum Dynamics, Griffith University, Gold Coast QLD 4222, Australia

(Received 31 December 2021; accepted 30 June 2022; published 20 July 2022)

The relation between genuine multipartite entanglement in the pure state of a collection of N qubits and the
nonclassical correlations in its two-qubit subsystems is studied. Quantum discord is used as the quantifier of
nonclassical correlations in the subsystem while the generalized geometric measure [A. Sen(De) and U. Sen,
Phys. Rev. A 81, 012308 (2010)] is used to quantify global entanglement in the N-qubit state. While no definite
discernible dependence between the two can be found for randomly generated global states, for those with
additional structure like weighted graph states we find that local discord is indicative of global multipartite
entanglement. Global states that admit efficient classical descriptions like stabilizer states furnish an exception in
which, despite multipartite entanglement, nonclassical correlation is absent in two-qubit subsystems. We discuss
these results in the context of mixed state quantum computation where nonclassical correlation is considered a
candidate resource that enables exponential speedup over classical computers.
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I. INTRODUCTION

Pinpointing the resources that allow quantum comput-
ers to solve certain problems exponentially faster than the
best known classical algorithms remains an open question
in quantum information theory. In the special case of pure
state quantum computing it is known that multiparty entan-
glement that grows unboundedly with problems size is an
essential quantum computational resource [1]. Quantum co-
herence and, closely related to it, quantum superposition are
also considered potential resources for quantum computing
and in-depth investigation into the roles of these quantum phe-
nomena in computational speedup has led to the development
of detailed resource theories about them [2–8].

While substantial progress has been made in identifying
the quantum resources that can give computational advantage
in various scenarios involving pure quantum states, the same
cannot be said about mixed state quantum information pro-
cessing. On the one hand there is ample evidence that quantum
information processors operating on mixed quantum states
can provide exponential speedups over classical algorithms
for certain computational tasks [9–11]. On the other, readily
identifiable quantum resources like entanglement, coherence,
and superposition need not always be present in these states
in meaningful quantities for the quantum advantage to be
attributable to them [12–17]. Nonclassical correlations other
than entanglement that can be present in mixed quantum states
are considered to be candidate resources that can explain the
power of mixed state quantum computing [18]. These corre-
lations can be quantified in terms of measures like quantum
discord [19,20], measurement induced disturbance [21], etc.
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Conclusive evidence to support this suggestion is however still
not available.

An ensemble interpretation is not always available for the
mixed state in an information processor since one often con-
siders individual runs of an algorithm on a single device. A
fixed number of subsequent runs come into the picture only
for collecting measurement statistics just as in the case of pure
state quantum computing. A single copy of a quantum state
can be mixed only if it is a subsystem of a larger quantum
system that, without loss of generality, can be in a pure state
[22,23]. Additionally, for the subsystem to be mixed it should
be entangled with the rest of the larger quantum system also.
Can the mixed state leverage the computational resources of
the larger system under certain conditions thereby explaining
the quantum advantage furnished by mixed state algorithms?
If so, is there a tell-tale signature of the potential to leverage
the global resources that can be identified in the mixed states
of the subsystems? We investigate these questions under spe-
cific scenarios in this paper.

We limit our discussion to quantum systems that are made
up of several qubits. We consider mixed states of a few qubits
among them as representative of those used in mixed state
quantum computing. We refer to the quantum state of these
few—typically two—qubits as the subsystem state for brevity.
The state of the larger collection of qubits is called the global
state. The global state is assumed to be pure without loss of
generality since purification by adding more qubits into the
collection on which it is defined is always possible. In effect
we have idealized and simplified the picture of an arbitrary
mixed quantum state inside a quantum information processor
that can be entangled with a potentially large and unknown
portion of the rest of the universe down to the case of a
few-qubit subsystem of a larger collection that is in a pure
global state. We investigate the connection between genuine
multipartite entanglement involving all the qubits in the global
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state and the degree of nonclassical correlations in two-qubit
subsystems. This addresses the second question posed at the
end of the previous paragraph directly within the limitations
of our simplified model and surprisingly it also partially ad-
dresses the first one.

The structure of this paper is as follows. In the next sec-
tion we discuss the measure of multipartite entanglement in
the global state and the measure of nonclassical correlations
in the subsystem states that we use. Section III focuses on
random states of N-qubit global systems and their two-qubit
subsystems. In Sec. IV we narrow down the discussion to
global states that are also resource states for measurement
based quantum computation, motivating this case and looking
at the nonclassical correlations in subsystems of such states.
The subsequent section is on the N-qubit global state with
a specific, all-to-all, multipartite, entanglement structure. A
brief discussion of our results and our conclusions are in-
cluded in Sec. VI.

II. GENERALIZED GEOMETRIC MEASURE, DISCORD,
AND CONCURRENCE

Starting from a global state of N qubits, we are interested
in connecting the genuine N-party entanglement in it with the
nonclassical correlations in two-qubit subsystems. Suppose
we have only N − k qubit entanglement in the global state.
Since we have assumed that the global state is pure, it must
then be a product state of two subsystems with N − k and k
qubits, respectively, of the form ρN−k

1 ⊗ ρk
2 . If we now take

a two-qubit subsystem of the global state then two distinct
scenarios need to be considered. In the first scenario the sub-
system is either part of ρ1 or it is part of ρ2. In this case, we
can limit the global system to being either ρ1 or ρ2 as the
case may be and the remaining part can safely be ignored.
In the second scenario, one of the qubits is part of ρ1 and
the other is part of ρ2. Then there cannot be any nonclassical
correlations between the two by assumption since the reduced
state of the two qubits will also be a product state and the case
is not of interest to us. The same argument can be extended
to the case where the N qubits can be split up into multiple
subsystems that are not entangled with each other. For this
reason we restrict our discussion to N-qubit global states that
have genuine N-party entanglement.

The generalized geometric measure (GGM) of multipartite
entanglement is used as the quantifier for the entanglement
in the global state. The starting point for this measure is
the geometric measure of entanglement [24–26] defined for
a given pure state |ψN 〉 on N qubits as

G(|ψN 〉) = 1 − �2
max. (1)

Here �max = max|φN 〉 |〈φN |ψN 〉|, with the maximization
over all N-qubit pure product states of the form |φN 〉 =
⊗N

i=1|φi〉. In [27] this idea was generalized to the GGM by
extending the maximization in Eq. (1) to one over all states
|φN 〉 that are not genuinely N-party entangled. The measure
has the advantage that it is computable for pure states in terms
of the Schmidt coefficients across different partitions of the
N-qubit state as

G(|ψN 〉) = 1 − max
{
λ2

N−k;k, ∀ k
}
. (2)

Here λN−k;k represents the coefficients appearing in the
Schmidt decomposition of |ψN 〉 with respect to bipartitions
containing N − k and k qubits, respectively. The maximiza-
tion is not just over the size k of the bipartitions but also
over all possible bipartitions corresponding to each k =
1, 2, . . . , �N/2�. In practice, the GGM computation is sim-
plified further by symmetries in the global state that allow
one to consider reduced sets of bipartitions for each k. It
turns out that in many of the cases we consider, one typical
representative from the k = 1 case is all that is required to
compute the measure.

We use quantum discord [19,20] to quantify the nonclas-
sical correlations in two-qubit subsystems of the global state.
There are several choices of measures of nonclassical corre-
lations but discord is one of the most parsimonious among
entropy based measures [28], motivating our choice. It is
also one of the more widely investigated measurers of such
correlations [29,30], particularly in the context of identify-
ing enabling resources for mixed state quantum computation
[30–32]. Since we are dealing with the states of two qubits
only, the minimization over all possible projective measure-
ments on one of the subsystems that appear in the definition
of quantum discord can always be done numerically, in those
cases where an analytic result is not available.

Multiparty entanglement of the global state means that
bipartite entanglement in the subsystems is typically absent
or small due to the monogamy property of entanglement
[33–35]. We verify that the bipartite entanglement in the
subsystems is small by computing the concurrence in the two-
qubit subsystem states. A low value for concurrence coupled
with a high value for quantum discord allows one to pinpoint
the correlations in the subsystem states as nonclassical ones
other than entanglement. It also points to the genuine multi-
party character of the entanglement in the global state.

III. RANDOM PURE GLOBAL STATES

It is known that almost all multipartite pure states are
entangled [36,37] and it is also known that almost all mixed
states of such systems have nonclassical correlations [38]. In
the context of the question we are considering, it is therefore
natural to explore if there is a direct, quantitative relationship
between the multipartite entanglement of randomly chosen
global states and the quantum discord in its two-qubit subsys-
tems. We generated random N-qubit pure states numerically
and computed the GGM of these states as well as the average
and maximum discord across all possible two-qubit subsys-
tems. The average and maximum values of concurrence across
all the two-qubit subsystems of each randomly generated
global state were also computed. We were able to do this
optimally for the N = 5 case. Both the computation of GGM
and the computation of discord are numerically challenging
and in addition the number of possible two-qubit subsystems
also rises with N . The results of these computations are shown
in Fig. 1, where we have looked at 22 000 randomly generated
five-qubit pure states. We see that there is no discernible
definite relationship between the GGM of the global state and
the quantum discord in its two-qubit subsystems. In Fig. 1(a)
averages of the discord and concurrence taken over all two-
qubit subsystems of the five-qubit state are plotted against the
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FIG. 1. Average values of the discord (blue/darker dots) and
concurrence (yellow/lighter dots) of two-qubit subsystems of ran-
domly generated five-qubit states are plotted against the GGM of the
corresponding global state in (a). In (b) the maximum values of dis-
cord and concurrence are plotted instead of the averages and in (c) the
maximum discord is plotted against the maximum concurrence. The
values shown correspond to 22 000 randomly generated five-qubit
pure states.

GGM of the global state. We note that almost all the states
generated have moderate to high values of GGM as expected
and very few states have their GGM lower than 0.2. The
average discord in the two-qubit subsystems is also significant
given that the maximum possible value of two-qubit discord
is 1. The average concurrence in the two-qubit subsystems
is significantly lower than the average discord and reflects
the expected monogamy properties of quantum entanglement.
This also indicates that there is a significant amount of non-

classical correlations other than entanglement present in the
subsystem states. The inverse relationship between two-qubit
entanglement and the GGM is showing through, albeit much
weakly, in the correlation between discord and GGM. This
is further supported by Fig. 1(c) where the maximum dis-
cord is plotted against the maximum concurrence. We see
that the value of discord is effectively lower bounded by
concurrence since the nonclassical correlation quantified by
discord includes entanglement also. In Fig. 1(b), the maxi-
mum values of discord and concurrence, respectively, taken
over all possible two-qubit subsystems are shown against
the GGM of the global state. This plot also does not reveal
any definite relationship between the GGM and nonclassi-
cal correlations and follows the same general trends as in
Fig. 1(a).

The lack of a direct and obvious relationship between
global multipartite entanglement and nonclassical correlations
in the subsystems indicates that the connection between the
two may be more subtle. Concluding that such a connection
cannot exist is not justified either, because for certain classes
of states subsystem discord has been observed to be related
to global entanglement. For a multiqubit system modeled as
a quantum kicked top, it is known that as the overall system
transitions to a regime where its classical analog is chaotic,
the time-averaged discord across any two qubits goes up irre-
spective of the initial state of the system. It is also noted that
the behavior of the discord is opposite to that of the two-qubit
entanglement as quantified by the concurrence [39]. While the
global entanglement is not explicitly computed in this case,
it is known that when the kicked top system enters the clas-
sically chaotic regime, spreading of entanglement across the
system follows [40]. In particular, when the classical system
is chaotic, irrespective of the initial state chosen, the quantum
analog is expected to have high multipartite entanglement at
all times during the course of its evolution under the kicked
top Hamiltonian. We verified this by computing the GGM
of the global system in addition to the two-qubit subsys-
tem discord and concurrence choosing the system parameters
identical to Fig. 3(d) of [39]. The results of this computation
are shown in Fig. 2. We see that in the case of N qubits
that are initialized in a spin-coherent state and subsequently
evolve according to the kicked quantum top Hamiltonian, the
GGM is consistently high when the equivalent classical sys-
tem shows fully chaotic behavior. More importantly, for the
question we are considering, we see that the quantum discord
in an arbitrarily chosen two-qubit subsystem follows the GGM
closely.

One may, in the present context, treat the presence of chaos
in the classical analog of the kicked top as a witness for multi-
partite entanglement in the quantum case. In this sense a clear
connection between genuine multiparty entanglement in the
global state and subsystem discord is seen in the various other
cases considered in [39] as well. It is worth noting here that in
[39] the initial states chosen for the N qubits are spin coher-
ent states in order to facilitate a comparative study between
chaos related features exhibited by the classical version of the
kicked top and the behavior of the corresponding quantum
wave function. The spin coherent state is one endowed with
more structure than the random states we considered earlier. In
particular it has a definite value of the total angular momentum
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FIG. 2. The GGM of the global pure state of eight qubits (blue
line on top) is computed in addition to the quantum discord in an
arbitrarily chosen two-qubit subsystem (green line below the blue
one) and the concurrence between the two qubits (yellow line close
to the x axis) for the kicked quantum top model studied in [39]. The
initial state of the qubits as well as the parameters of the kicked top
Hamiltonian are chosen identical to the case presented as Fig. 3(d) in
[39]. Only the GGM is computed additionally here. In the main
plot, all three quantities have been smoothed out by averaging the
value at each point with four points each to its left and right to see
the trends clearly. The actual data without averaging are shown in
the inset. From the smoothed-out plot, we see that the subsystem
discord does follow the global multipartite entanglement very closely
while the lack of any appreciable concurrence between the subsystem
qubits indicates that the entanglement present in the global system is
genuinely multipartite in nature.

�J that is preserved by the time evolution under the kicked top
Hamiltonian.

Taking a cue from the kicked quantum top example,
we turn our attention towards multiqubit quantum states
endowed with additional structure and properties and ask
whether relationships between global entanglement and local
discord exist in such cases. A particularly interesting fam-
ily of states for which genuine multiparty entanglement is
assured by construction is the resource states for one-way
quantum computers [41] and measurement based quantum
computing (MBQC) in general [42,43]. Since MBQC involves
performing local measurements on globally entangled states
we expect a detailed study of the relationship between global
entanglement and local discord in MBQC resource states to
yield insight into the broader question of whether quantum
resources of the global state can play a role in enabling expo-
nential speedups in mixed state quantum computation.

IV. MBQC RESOURCE STATES

The paradigm of measurement based quantum compu-
tation is recognized as one that is particularly suited for
understanding the role of entanglement in quantum informa-
tion processing. The prototypical model of one-way quantum
computing [41,42,44] implements the computation using a
resource state that is a multiqubit entangled state defined on
an underlying lattice or graph. Starting from this entangled
resource, all further operations are nonentangling ones so that

one can zero in on the initial state exclusively while analyzing
the role of entanglement in any quantum algorithm imple-
mented as a one-way quantum computation. Graph states on
which these computational schemes are implemented have the
additional advantage that their structure allows the calculation
of reduced density matrices, GGM, etc., analytically. We start
with a brief recap of graph states and how to compute the
quantities of interest and then move on to specific examples
exploring the connection between global entanglement and
local discord.

A. Graph states and their subsystems

A set of vertices, V , together with a collection of edges,
E , between them form a graph. We limit our discussion to
graphs that are undirected, finite, and simple (without loops
or multiple edges between a pair of vertices). A graph state is
constructed by placing qubits on all the vertices and coupling
together each pair of qubits that are connected by an edge of
the graph through a two-qubit unitary transformation Ui j . The
qubits placed on the vertices are typically initialized in the
state |+〉 = (|0〉 + |1〉)/

√
2 and the graph state on N vertices

is

|G〉 =
∏

(k,l )∈E

Ukl |+〉⊗N . (3)

For simple undirected graphs all two-qubit unitaries Ukl

commute with one another and Ukl = Ulk . Typically MBQC
resources states are constructed by applying identical unitaries
on all pairs of linked qubits and very often the unitary that is
chosen is the controlled-Z (CZ) gate that has the representa-
tion diag(1, 1, 1 − 1) in the computational basis. Fixing the
unitary transformation in Eq. (3) leads to a single global state
of the N qubits. To obtain a one parameter family of states
for which we can explore the nonclassical correlations in their
subsystems, we generalize the CZ gate to the controlled-ϕ (Cϕ)
operation. The Cϕ gate has the following matrix representation
in the computational basis:

Cϕ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ.

⎞
⎟⎠ (4)

The general case wherein each of the unitaries generating
the links is a controlled phase gate with distinct phase, Ukl =
diag(1, 1, 1, eiϕkl ), corresponds to a weighted graph state. The
weight ϕkl defines the state and the family of states we first
look at is the special case corresponding to all the weights
being equal to ϕ.

The reduced density matrices for subsystems of weighted
graph states can be obtained analytically [45]. Two ap-
proaches for constructing the reduced density matrices are
described in [45], of which the one based on a generalization
of projected entangled pair states (PEPS) leads to a pictorial
language suited for our discussion. To briefly recap this ap-
proach, in lieu of every one of the N qubits in the weighted
graph state, N − 1 virtual qubits are considered. If we focus
on an original qubit with label k from the graph state, now rep-
resented as N − 1 qubits, then each one of these virtual qubits
is connected to the N − 1 remaining qubits, respectively, from
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the graph. The link between each virtual qubit kl belonging
to the kth original qubit and the virtual qubit lk belonging to
the lth original qubit of the graph state is determined by the
weight ϕkl between the two original qubits of the graph. If the
two original qubits are not linked to each other then ϕkl = 0
and Ukl = 1kl . Specifically, the virtual qubits kl and lk form a
generalized entangled pair, |ϕkl lk 〉 = Ukl |+〉kl |+〉lk . The entire
graph state of N qubits now gets expanded into N (N − 1)/2
pairs of qubits with no links across any of the pairs and this
state can be written as |�̃〉 = ⊗k<l |ϕkl lk 〉. The graph state
|G〉 is recovered from the PEPS state |�̃〉 by projecting at
each site k with Pk = |0k〉〈0k̄| + |1k〉〈1k̄|, where |0k̄〉 is the
N − 1 (virtual) qubit state |0102 . . . 0k−10k+1 . . . 0N 〉 with |1k̄〉
similarly defined.

The PEPS construction ensures that all the Ukl are mutually
commuting since the unitary operations performed are all
on independent pairs of qubits. It also shows that if one is
interested only in the reduced state of a subset, A, of qubits
then all the unitaries that act exclusively between elements of
the set B of remaining qubits are irrelevant and they can all be
taken to be equal to the identity operator. In other words, after
projecting down |�̃〉 at each site with Pk to obtain the N-qubit
graph state |G〉, one can consider a simpler state |G′〉 in which
all links between qubits belonging to B have been removed
and write the reduced state of the qubits in set A as

ρA =
∑
kk′∈A

Ukk′TrB[|G′〉〈G′|]U †
kk′ .

In the equation above, the unitaries that act among the qubits
in A are taken outside the trace over the qubits in B and
in the state |G′〉 = ∏

k∈A,l∈B Ukl |+〉N only the links that con-
nect qubits in set A with those in set B are considered. The
PEPS construction is summarized pictorially in Fig. 3 for the
case where the graph is a square lattice. In order to evaluate
TrB[|G′〉〈G′|] we go back to the PEPS picture for only those
qubits shown in the third panel of Fig. 3 and consider only
the links between A and B. Applying the projectors Pk only
on the virtual qubits associated with the blue colored sites, the
following state is obtained:

|� ′′〉 =
⊗
l∈B

⎡
⎣

⎛
⎝∏

k j

Ukj l

⎞
⎠|+〉k|+〉l

⎤
⎦.

Note that |� ′′〉 is a simple tensor product over all the qubits
belonging to B. In order to obtain the reduced state of the
virtual qubits in A, we can trace out each of the qubits in B one
by one out of this tensor product. Tracing out the lth qubit, the
reduced state ρ ′

A(l ) of each of the virtual qubits in subsystem
A is obtained as

ρ ′
A(l ) = 1

2
(|+〉A〈+| + |ϕl〉A〈ϕl |), (5)

where

|ϕl〉 =
⊗
k∈A

1√
2

(|0〉 + eiϕkl |1〉). (6)

The next step is to apply the projectors Pk on all the sites in set
A. The projection leads to a density operator ρ ′

A for the sub-
system of interest, except for the unitaries within subsystem A,

FIG. 3. The panel on the back represents |�̃〉 in which each qubit
of the graph state has been replaced with N − 1 virtual qubits. The
qubits in red represent the subsystem of interest to us (set A) while
those in blue are the remaining ones (set B). The yellow links are
those between qubits in set B while the red links are internal links
between qubits in set A. The links in black are the ones between
qubits in set A and those in B. The gray, dashed links represent those
links that appear in the PEPS construction with zero weight and these
are shown in the figure for only one representative qubit for the sake
of clarity. Notice that in the back panel no virtual qubit is linked
to more than one other virtual qubit so that we have a collection of
independent entangled pairs. The middle panel represents the graph
state that is obtained by projecting down |�̃〉 with Pk . The last panel
shows the qubits and the links we have to eventually consider if we
are to write down the reduced density matrix for the red qubits alone
that are in set A. Note that the links connecting only blue qubits can
now be ignored.

that is given by a Hadamard product (elementwise multiplica-
tion) of all the density operators ρ ′

A(l ) up to a normalization
factor. The proof of this last statement is given in [45], but
pictorially with reference to Fig. 3 one can understand this
as each of the blue qubits connected to the set of red qubits
contributing a multiplicative factor to each element of the
reduced density matrix of the red qubits. In the computational
basis, the matrix elements of ρ ′

A can be written down concisely
(setting ϕ0

kl ≡ 0) as

〈m|ρ ′
A|n〉 =

∏
l∈B

{
1 + exp

[
i
∑
k∈A

(
ϕ

nk
kl − ϕ

mk
kl

)]}
. (7)

The last step in obtaining the reduced density matrix, ρA, for
the qubits in set A involves applying the unitaries correspond-
ing to the internal links within the set and normalizing the
density matrix.

B. Two-qubit subsystem of a graph with identical weights

We are interested specifically in the cases where the set A
consists of two qubits only. From here on we assume that all
the phases ϕkl are equal to θ (all the weights in the weighted
graph state are the same). The two-qubit state corresponding
to an arbitrary graph can be obtained using two primitives
that are pictorially represented in Fig. 4. The first primitive
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FIG. 4. A generic two-qubit subsystem (red dots) of a graph state
is shown with all the remaining qubits and links of the graph that are
relevant for computing the reduced state of the subsystem. There are
m qubits (purple dots) connected to both the qubits in the subsystem
of interest while n1 qubits (blue dots) are connected independently to
one of the subsystem qubits and n2 are connected to the second.

is a single qubit connected to n qubits of set B as indicated in
the figure by one of the red dots along with all the blue ones
connected to it. The reduced density matrix of this qubit is
given by

ρn
1 = 1

2

(
1 ein θ

2 cosn θ
2

e−in θ
2 cosn θ

2 1

)
. (8)

If the subsystem we are considering consists of two qubits
that share no common linked qubit in the set B (no purple
qubits), then the two-qubit reduced state is just the product
state, ρ2 = ρ

n1
1 ⊗ ρ

n2
1 .

To account for qubits in B that are shared between qubits in
A, denoted by the purple dots in Fig. 4, we consider the second
primitive of two red qubits sharing a single purple qubit. The
two-qubit reduced density matrix in this case is

ρ ′
2 = 1

4

⎛
⎜⎝

1 Aθ/2 Aθ/2 Aθ

(Aθ/2)∗ 1 1 Aθ/2

(Aθ/2)∗ 1 1 Aθ/2

(Aθ )∗ (Aθ/2)∗ (Aθ/2)∗ 1

⎞
⎟⎠

where

Aθ/2 = ei θ
2 cos

θ

2
, Aθ = eiθ cos θ.

We can write this density matrix as

ρ ′
2 = (

ρ1
1 ⊗ ρ1

1

)

 η1

2,

where 
 represents elementwise multiplication (Hadamard
product) and ηm

2 is a “correction” introduced on the simple
tensor product on one-qubit states by the fact that the external
qubit is linked to both of the qubits we are interested in. We
have

ηm
2 =

⎛
⎜⎝

1 1 1 Pm

1 1 Qm 1
1 Qm 1 1

Pm 1 1 1

⎞
⎟⎠

where

Pm =
(

cos θ

cos2 θ/2

)m

, Qm = 1

cos2m θ/2
.

In general, for the two red qubits in Fig. 4 we obtain the
reduced density matrix by putting together the two primitives
as

ρ2(n1, n2, m) = Uθ

[(
ρ

n1+m
1 ⊗ ρ

n2+m
1

)

 ηm

2

]
U †

θ , (9)

where Uθ accounts for the direct link between the two qubits
in set A.

C. GGM for graph states

The squares of the Schmidt coefficients, λ2
N−k;k , that ap-

pear in Eq. (2) for computing the GGM are nothing but the
eigenvalues of the reduced density matrices of the subsystems
that appear when we take all possible bipartitions of the graph
state. If a graph state has a disconnected piece then that sub-
system will be in a pure state and λ2

N−k;k = 1. We are however
considering only connected graphs. If we further assume that
the weights on all the links are identical, we expect the subunit
(irrespective of the number of qubits in it) that has the least
number of external links to be closest to a pure state and
therefore have the largest eigenvalue. For all regular graphs
in which the number of links terminating on each qubit is
fixed, individual qubits will have the least number of links
terminating on them. The number of links terminating on
subsystems formed by larger, contiguous groups of qubits
will grow according to an area law [46]. If the multiqubit
subsystems considered are not contiguous then the number
of external links will be even higher. If all the links are
equally weighted, it follows that the GGM can then be easily
computed by finding the largest eigenvalue of the single-qubit
reduced density matrix (assuming all qubits have the same
number of links and ignoring the edges of the graph where
this assumption may not hold).

A possible exception to the argument above is when the
graph is such that all qubits are connected to all others. With
N qubits total, each qubit will have N − 1 links while a k
qubit subsystem will have k(N − k) external links. However,
if we count the number of distinct external qubits to which the
k-qubit subsystem is linked then there are only N − k such
distinct links. If we take k = 2, from Eq. (9) we find that
the elements on the counterdiagonal of the two-qubit density
matrix are changed substantially because of the large number
of shared external qubits. This typically leads to increase in
purity of the state with corresponding increase in its largest
eigenvalue. This makes it likely that the largest eigenvalue of
the reduced state of the two-qubit subsystem is larger than
that of the one-qubit subsystem. We numerically investigated
the largest eigenvalues of the reduced states of subsystems
of size ranging from 1 to �N/2� of N-qubit fully connected
graphs for large N . We observed that in all the cases, the
one-qubit subsystem has the highest eigenvalue and the largest
eigenvalues decrease with increasing size of the subsystems.
For small values of N (N � 4), the largest eigenvalue of the
two-qubit reduced state is marginally higher than that of the
one-qubit reduced state for certain values of θ . The takeaway
from this analysis is that for all the examples of global graph
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states we consider that are connected, equally weighted, and
invariant under exchange of qubits, the computation of GGM
for the global state effectively reduces to finding the largest
eigenvalue of the single-qubit reduced density matrix.

D. Cluster states on a two-dimensional square lattice

We focus initially on resource states defined on a square
lattice as per the original conception of the one-way quantum
computer [41]. Ignoring the edges of the lattice each qubit is
connected to four others and single qubits are also the subunits
with the lowest number of external links. The single-qubit
reduced density matrix is given by ρn

1 from Eq. (8) with n = 4
and its eigenvalues are λ2

± = (1 ± cos4 θ/2)/2 leading to the
GGM of the cluster state on a two-dimensional (2D) square
lattice as G(θ ) = 1 − λ2

+.
Let us now consider the quantum discord and concurrence

of two-qubit subsystems of the cluster state. If the two qubits
are completely disconnected from each other in the sense that
neither is connected directly by a lattice edge or indirectly
connected through shared edges to common qubits, then their
joint state is a product, ρ2 = ρ4

1 ⊗ ρ4
1 . This state is not entan-

gled and its discord is also zero. We look at pairs of qubits
that are connected directly or indirectly and for the 2D square
lattice there are three possible ways in which a pair of qubits
can be connected as shown in Fig. 5.

For the three cases of connected pairs of qubits, the re-
spective two-qubit reduced density matrices can be obtained
using Eq. (9) as ρ

(A)
2 = Uθ (ρ3

1 ⊗ ρ3
1 )U †

θ , ρ
(B)
2 = (ρ4

1 ⊗ ρ4
1 ) 


η1
2, and ρ

(C)
2 = (ρ4

1 ⊗ ρ4
1 ) 
 η2

2, respectively. The quantum dis-
cords corresponding to these three cases are obtained using
a numerical minimization of the conditional entropy over all
possible projective measurements on one of the two qubits and
these are plotted in Fig. 6. We note that case (A) where the
two qubits are directly linked by a joint unitary has higher
discord than the other two cases. However, it is also true
that two-qubit entanglement as quantified by the concurrence
is nonzero only in case (A) while in the other two cases it
is identically zero. The discords in cases (B) and (C) are
therefore entirely nonclassical correlations other than entan-
glement while in case (A) both entanglement and additional
nonclassical correlations are present contributing to the higher
value of discord.

A comparison between the GGM of the 2D cluster state and
the concurrence with the discord for case (A) is also given in
Fig. 6. In order to focus on the relative behavior of the three
quantities we have scaled the GGM and concurrence such
that all three graphs have the same range. The difference in
scales is for the most part because of the fact that we are using
different measures that are not directly comparable and this is
compensated for by the rescaling done in Fig. 6. The multi-
partite entanglement of the global state (GGM) saturates for θ

around π . As expected from the monogamy of entanglement
the concurrence drops to zero when the GGM increases, and in
the range in which GGM is maximal as well as around it the
concurrence is zero. Interestingly the discord does not go to
zero as the GGM saturates and continues to be nonzero except
for θ = π . The case of θ = π is particularly curious since
the corresponding Uθ is the CZ gate. Since CZ is a two-qubit
gate belonging to the Clifford group, at θ = π , it is easy to

FIG. 5. Three ways in which a pair of qubits that are part of
a cluster state on a 2D square lattice can be connected directly or
indirectly with each other so that their joint state is not a product
state. The two qubits being considered are marked by the red dots.
The red line in case (A) denotes a direct link between the two qubits
of interest wherein a link corresponds to the two-qubit unitary U (θ )
acting on them. In cases (B) and (C) there are no direct connections
between the two qubits of interest but they are indirectly linked
through shared links to common external qubits. In case (B) there
is one such external common linked qubit while there are two such
qubits in case (C).

see that the cluster state is also a stabilizer state. It is indeed
well known that stabilizer states admit an efficient classical
description [6,47]. However, for our present discussion it is
significant to note that only for this isolated case wherein the
global state can be classically simulated do the nonclassical
correlations in the subsystem state completely vanish. We take
this as a key point to be discussed in detail after exploring
more representative cases.

E. Universal cluster states on other lattices

Universal resources states for measurement based quantum
computation are studied in [48] and it is shown that in addi-
tion to the square lattice hexagonal, triangular, and Kagome
lattices are also universal. Possible ways in which two qubits
can be connected without their joint state being a product
are shown for the hexagonal lattice and triangular lattices in
Fig. 7.

The behavior of the GGM, two-qubit discord, and concur-
rence follows the same pattern as in the case of the square
lattice. The discord in all cases goes to zero only when θ = π

when the cluster state becomes a stabilizer state. The discord
as a function of θ for the hexagonal and triangular lattices is
shown in Fig. 8. Also shown in the same figure for comparison
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(rad)

FIG. 6. The solid lines labeled (A), (B), and (C), respectively,
show the quantum discord of a two-qubit subsystem of the cluster
state on a 2D square lattice computed for the three ways in which the
two qubits can be connected (see Fig. 5). Note that in all three cases,
the discord vanishes only at θ = π even if this is not evident from the
figure due to the scale used. The GGM of the cluster state on a 2D
square lattice (dashed line) and the the concurrence, C, of a pair of
directly connected qubits (dotted line) for case (A) are also plotted.
Since the form of the graphs is relevant for our discussion the values
of GGM and C are scaled down so that all three plots have the same
range.

is case (A) corresponding to the square lattice. From Fig. 8
we make the following observations. Comparison of case (A)
corresponding to the hexagonal, square, and triangular lattices
indicates that as the number of external qubits connected to
the two qubits we are interested in increases, the discord

FIG. 7. Two ways in which a pair of qubits (marked in red) that
are part of a cluster state on a 2D hexagonal lattice can be connected
directly or indirectly with each other are shown on the left. Also
shown (right side) are the three ways in which a pair of qubits that
are part of a cluster state on a 2D triangular lattice can be connected
directly or indirectly with each other. The red lines in case (A) for
both lattices denote a direct link between the two qubits of interest.
In the other cases the two qubits are indirectly linked through shared
links to common external qubits.

(rad)(rad)

FIG. 8. Discord between the two qubits marked in red in the
hexagonal lattice shown in Fig. 7 is plotted as a function of θ using
blue (solid) lines. The discords corresponding to the two cases shown
for the hexagonal lattice are labeled as H-(A) and H-(B), respectively.
Similarly, discords corresponding to the three cases for the triangular
lattice are plotted using red (dashed) lines with cases (A) and (C)
labeled as T-(A) and T-(C), respectively. The unlabeled red (dashed)
plot that is lying very close to the x axis corresponds to case (B)
of the triangular lattice. Discord corresponding to case (A) of the
square lattice from Fig. 5 is plotted using the green (dot-dashed) line
for comparison and labeled as S-(A).

between the two reduces. Each of the two (red) qubits is
connected to two external ones in the hexagonal cases, to
three each in the case of the square lattice, and to five each
in the case of the triangular lattice. A comparison of cases (B)
and (C) of the square and triangular lattices (see Fig. 6 also)
shows that as the number of shared external qubits connected
to both the red ones increases the discord also increases and
tends to have a higher value when θ is close to π . In case (B)
for both lattices, the two qubits considered are linked through
one shared external qubit each while in case (C) there are
two such shared external qubits. These observations prompt
us to consider clusters in which all qubits are connected to
one another.

V. FULLY CONNECTED CLUSTERS

Consider N qubits in a cluster state with a link between
every pair. If we assume that every link is identical and is
created by the application of Uθ , then the reduced state of any
two qubits in the cluster is given by Eq. (9) as

ρ2(N ) = Uθ ρ̃2(N )U †
θ , (10)

where

ρ̃2(N ) = (
ρN−2

1 ⊗ ρN−2
1

)

 ηN−2

2

= 1

4

⎛
⎜⎜⎜⎜⎝

1 AN−2
θ/2 AN−2

θ/2 AN−2
θ(

AN−2
θ/2

)∗
1 1 AN−2

θ/2(
AN−2

θ/2

)∗
1 1 AN−2

θ/2(
AN−2

θ

)∗ (
AN−2

θ/2

)∗ (
AN−2

θ/2

)∗
1

⎞
⎟⎟⎟⎟⎠,
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(rad)

FIG. 9. Discord between a pair of qubits that is part of a fully
connected N-qubit cluster state with links formed by Uθ is plot-
ted using solid lines for different values of N . As N increases,
the discord saturates to its maximum value except at θ = π . Also
shown as dashed lines (with red labels placed on the right side)
are the corresponding values of the concurrence. We see that as
N increases concurrence decreases, indicating that for the N-qubit,
fully connected cluster the nonclassical correlation in any two-qubit
system involves no bipartite entanglement as N becomes large. The
two black dotted lines show the discord in an N-qubit cluster state
avoiding the direct link between the two qubits considered. This
is shown for N = 5 and 1000. We see that for large N avoiding
the direct link hardly makes any difference to the quantum discord
between the two.

with A(ϕ) = eiϕ cos ϕ. The corresponding reduced, one-qubit
density matrix is

ρ1(N ) = 1

2

(
1 AN−1

θ/2(
AN−1

θ/2

)∗
1

)
.

The GGM can be calculated from the one-qubit reduced den-
sity matrix as

G(N ) = 1

2
− 1

2

∣∣∣∣ cos(N−1) θ

2

∣∣∣∣.
We see that for large N , the GGM saturates to the value 1/2
for all values of θ except for θ = 0, 2π .

The two-qubit discord computed using the density matrix
in Eq. (10) is shown for different values of N in Fig. 9. Also
shown in the figure is the two-qubit concurrence for different
N . We see that as N becomes large, the discord saturates to
its maximum value for all values of θ except zero, π , and 2π .
The concurrence, on the other hand, vanishes completely for
large N indicating that entanglement does not contribute to
the nonclassical correlations present in two-qubit subsystems.
Also shown in the figure as dotted lines is the quantum discord
between the two qubits considered if the direct link between
them is ignored and their state is taken to be ρ̃2(N ). We
see that as the number of qubits and the number of indirect
links connecting the two qubits increase, the relative impor-
tance of the direct link in producing discord between the
two diminishes. In other words D[ρ̃2(5)] �= D[ρ2(5)] while
D[ρ̃2(1000)] � D[ρ2(1000)].

FIG. 10. Discord between qubits 1 and 2 plotted against the
GGM for 635 000 instances of fully connected randomly weighted
graph states with N = 10. The link between qubits 1 and 2 is kept
the same in all instances and is chosen as the CZ gate (θ = π ). We
see that in contrast to the case in Fig. 1, there is a definite relationship
between the discord and GGM that can be discerned with higher
values of discord being associated with higher values of GGM also.

At θ = π , the GGM is still maximum but irrespective of N
the two-qubit discord goes to zero. As pointed out earlier, at
θ = π , the N-qubit state is also a stabilizer state that allows
for an efficient classical description. This means that for the
class of graph states considered here, global entanglement that
cannot be classically described is specifically reflected in the
subsystems through finite discord between them even if the
bipartite entanglement they share is zero.

A. Fully connected randomly weighted graphs

We now consider a pair of qubits randomly picked from a
collection of N qubits that are all assumed to have interacted
with one another. We relax the restriction that all the links
between the qubits have to be identical and consider a N-qubit,
fully connected cluster with random weights (angle θ ) chosen
for each of the links in the graph. We keep the link between the
two qubits we consider constant and choose it to be the CZ gate
while varying all the other links randomly. Keeping N = 10,
we generated 635 000 instances of such fully connected graph
states and in each case computed the GGM and the discord
between two qubits that are labeled as qubits 1 and 2. A
scatter plot of the quantum discord versus the GGM is given
in Fig. 10.

We see from Fig. 10 that there is a positive correlation
between the GGM of the global state and the quantum discord
in a two-qubit subsystem. It is instructive to compare Fig. 10
with Fig. 1 where we have plotted GGM versus discord for
global states that are generated by the application of random
N-qubit unitary transformations acting on an initial product
state. The fully connected structure of the N-qubit graph states
leads to higher values of subsystem discord being associated
with larger values of GGM of the global states. In this case
again subsystem entanglement is absent and concurrence val-
ues were found to be less than 10−8 for all randomly weighted
states that we generated. In the case of the random states
we considered in Fig. 1, bipartite entanglement is typically
nonzero and accounts for a part of the discord between in the
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subsystem considered. In the present case, there is hardly any
contribution from two-qubit entanglement to the nonclassical
correlations that exist between them.

VI. DISCUSSION AND CONCLUSION

We have explored the connection between nonclassical
correlations in two-qubit subsystems of N-qubit pure states
with genuine multipartite entanglement. We find that when the
global pure state has additional structure genuine multipartite
entanglement of the global state is correlated with the amount
of nonclassical correlations in its two-qubit subsystems. We
started with two questions about the quantum resources that
allow mixed state quantum computers to perform certain tasks
exponentially faster than classical computers. We asked if the
computational capabilities of the global state that the mixed
state in question is part of are reflected in a recognizable
manner in the subsystem mixed state. For global states that
are also graph states, we find that nonclassical correlation in
the subsystem state is indeed indicative of global multipartite
entanglement. The interesting exception to this is when the
global state is an entangled stabilizer state that admits an
efficient classical description. A graph state constructed using
CZ gates is a stabilizer state but not all stabilizer states are
graph states. However, as shown in [49], every stabilizer state
can be mapped to a stabilizer graph state through local sta-
bilizer operations. Moreover, stabilizer graph states provide a
means of efficiently simulating using classical means all other
stabilizer states as well as the action of additional stabilizer
operations on them. If we take a resource theoretical approach
and consider only those quantum states that cannot be sim-
ulated efficiently on classical computers as being resources
for quantum computation, we conclude that among graph
states, such resource states not only have global entanglement
but also that their subsystems typically contain nonclassical
correlations. This answers the second question we posed in
the affirmative for the global states with various kinds of
additional structures that we considered.

The previously studied example of a quantum kicked top
[39] also points in the same direction as our analysis of graph
states in that globally entangled states are accompanied by
local discord. The challenge in the case of the kicked top is in
quantifying using a suitable measure the global entanglement
signaled by the presence of chaos in the classical limit. The
computation of GGM in the examples we considered was
greatly simplified by the observation that in almost all cases,
it is sufficient to compute the eigenvalues of the single-qubit
reduced density matrix. This is not necessarily the case for
generic quantum states including the states of the kicked top
and calculating the GGM is computationally hard. The avail-
ability of a measure of genuine multipartite that is computable
relatively easily is the main challenge that must be overcome
for extending our results to more general cases.

It is instructive to imagine a hypothetical mixed state quan-
tum computer in which all n qubits of the input register are
part of a global pure graph state of N qubits. We assume that
there are links between all N qubits except for the direct links
between the n input ones. If the underlying graph state is a
stabilizer state then nonclassical correlations shared between
any pair of qubits in the input register would be zero. In
other words, the input register would be in a concordant state
[50,51]. Any computational process on the n-qubit register
can be idealized as a non-Clifford unitary that links all the
qubits in the input register together. In this picture, the com-
putational process starts introducing non-Clifford gates and
links between the n input qubits and thereby also completes
the N-qubit global pure graph state with non-Clifford links
and gates. Depending on the structure of the graph, it may
very well be that no entanglement is generated between the
n qubits in the quantum computer. Only nonclassical corre-
lations other than entanglement may be produced as in the
examples we have seen earlier of the fully connected graphs.
The global state however has genuine multipartite entangle-
ment and the introduction of the non-Clifford links means that
the Gottesmann-Knill route for describing it efficiently using
classical means is no longer available as the the computation
progresses on the n-qubit subsystem. In this picture, one finds
some support for the conjecture that entanglement of a com-
putationally useful type in the global state might be the key
resource that can explain the superior performance of mixed
state quantum computers relative to classical ones in certain
scenarios. This partially addresses the first question we had
posed at the outset.

Our investigation into the possible connections between
global multipartite entanglement and nonclassical correlations
in mixed states of subsystems is still very much only an inter-
esting and insightful starting point since it is limited to only a
few families of global states due to limitations in computing
quantitative measures of multipartite entanglement. However,
it gives further support for considering nonclassical corre-
lations as the candidate resource that endows mixed state
quantum computers with the ability to perform certain compu-
tations exponentially faster than classical ones as in the case of
the DQC1 circuit [18]. The results presented here point to an
understanding of how these nonclassical correlations in fact
may be signaling a role for the entanglement in an extended
state in enabling the computational speedup.
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