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Multiparameter quantum metrology in the Heisenberg limit regime:
Many-repetition scenario versus full optimization
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We discuss the Heisenberg limit in the multiparameter metrology within two different paradigms: one where
the measurement is repeated many times (so the Cramér-Rao bound is guaranteed to be asymptotically saturable).
and the second one where all the resources are allocated into one experimental realization (analyzed with the
mimimax approach). We investigate the potential advantage of measuring all the parameters simultaneously
compared to estimating them individually, while spending the same total amount of resources. We show that
in general the existence of such an advantage, its magnitude, and conditions under which it occurs depends on
which of the two paradigms has been chosen. In particular, for the problem of magnetic field sensing using
N entangled spin 1

2 , we show that the predictions based purely on the Cramér-Rao formalism may be overly
pessimistic in this matter: the minimax approach reveals the superiority of measuring all the parameters jointly
whereas the Cramér-Rao approach indicates lack of such an advantage.
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I. INTRODUCTION

Quantum mechanics opens up new possibilities in metrol-
ogy, enabling the use of coherence and entanglement to
increase measurement precision [1–9]. The most prominent
example of this is the ability to overcome the shot-noise-limit
linear scaling of the estimation precision with the number
of resources n used in measurement (which can be under-
stood as number of photons, total energy, total time, etc.) and
obtain a quadratic scaling, the so-called Heisenberg scaling
[10–19]. Even if presence of decoherence makes the Heisen-
berg scaling fragile and virtually impossible to preserve in
the asymptotic limit [20,21], for many models the noise may
be completely or partially canceled by applying proper quan-
tum error correction protocols [22–26], which allows for the
observation of the quadratic precision scaling in certain finite-
resource regimes.

If an experiment aimed at estimation a parameter θ is
repeated k times and involves the use of n resources in each
repetition, then provided the Heisenberg scaling holds, the
variance of the estimator will scale as

�2θ̃ ∝ 1

kn2
. (1)

If k is sufficiently large, then the problem may be success-
fully analyzed with the use of the concept of quantum Fisher
information (QFI) and the related Cramér-Rao (CR) bound
(which is proven to be tight in the limit k → ∞). However, as
pointed out in [27–32], a subtle problem appears if one wants
to discuss the best precision achievable when all the available
resources N = nk are used optimally, which we will refer to
as the actual Heisenberg limit.

When inspecting Eq. (1) it is apparent that, when N = nk
is kept fixed, one should accumulate as much resources as

possible in a single repetition of an experiment and therefore
increase n at the expense of smaller k. Unfortunately, in gen-
eral it is not clear what is the minimal number of repetition k
needed to saturate the CR in practice (which may be different
for various models), and hence the sole notion of the QFI does
not provide a full understanding of the problem.

This case was broadly discussed for the problem of esti-
mating phase shift in the interferometer using an N-photon
state (within the Bayesian [33–35] or minimax [27] for-
malism) as well as for general problem of single-parameter
unitary estimation [32]. It was shown that the optimal state is
different than the one maximizing the QFI and that the final
estimator’s variance is π2 times larger then the one resulting
from the QFI-based analysis (see Sec. III A for more discus-
sion).

This implies that whenever the Heisenberg scaling occurs,
then in order to discuss the optimal measurement strategy, one
needs to strictly define which paradigm is under considera-
tion. The one where all resources N = nk may be used in
the optimal way and accumulated in a single experiment’s
realization (which in this work we analyze within minimax
formalism, labeled by MM) or the second one, where the
amount of resources used in single trial n is large but finite,
and the whole experiment is repeated many times k (analyzed
within Cramér-Rao formalism, labeled by CR). In the latter
case, the limit N → ∞ corresponds to k → ∞, n = const.
Only such a formulation allows us to apply the general ar-
gument about the asymptotical saturability of the CR bounds.

While the issues mentioned above appear now to be com-
pletely understood in a single-parameter estimation case, new
questions and challenges arise when discussing multiparame-
ter estimation models [36–42]. In some situations, a properly
designed multiparameter estimation protocol allows to reduce
the total error in estimation when compared with a strategy
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where all the parameters are measured separately in inde-
pendently prepared experiments [43,44]. Heisenberg scaling
in multiparameter metrology has been discussed in the liter-
ature using both paradigms. Many-repetition scenarios have
been considered in [45–49] (using multiparameter quantum
CR bound) and [26,50–52] (using tighter variants of quantum
CR bound), while single-experiment scenario where the total
amount of resources is limited has been analyzed mainly
within the Bayesian paradigm for models with underlying
group symmetry (covariant problems): SU(2)/U(1) [53,54],
SU(2) [55–58], SO(3) [59], SU(d) [60]. The quantitative anal-
ysis of the relation between the results obtained within these
two paradigms has started to be analyzed only very recently
[61].

The most pressing question is whether a gain can be
made by measuring all the parameters simultaneously instead
of separately, while consuming the same total amount of
resources? That the necessity of splitting these resources be-
tween experiments focusing on estimating a given parameter
in the separate case will in general have different conse-
quences in different paradigms [61]. If only the total amount
of resources N is restricted, and p parameters are to be
estimated, it is rather clear that one needs to spend ∼N/p re-
sources per parameters. Since we assume the quadratic scaling
of precision with the amount of resource used, we may expect
the scaling of the sum of variances to be

p∑
i=1

�2θ̃i ∝ p × 1

(N/p)2
= p3

N2
. (2)

In the many repetition scenario, different approaches to ana-
lyzing this problem may be found in modern literature. A quite
common method is to compare the optimal cost obtainable
with applying joint measurement with the one obtained by
dividing amount of resources achievable in single trial n be-
tween all the parameters, with the total number of repetitions
of the whole experiment k kept unchanged [45,46,62–64],
which leads to

∑p
i=1 �2θ̃i ∝ p × 1

k × 1
(n/p)2 = p3

kn2 . However,
one should notice that there is no point in dividing n, while
we have k � n trials at our disposal. It is much more efficient
to use ∼k/p trials for each parameter [65–67]. Only such for-
mulation of the problem allows for a fair comparison between
measuring parameters jointly vs separately, and guarantees
that the eventual superiority of the first one comes directly
from measuring parameters jointly, not from more efficient
resources distribution. As a result we obtain

p∑
i=1

�2θ̃i ∝ p × 1

k/p
× 1

n2
= p2

kn2
, (3)

which exhibits scaling with p with a different power than in
Eq. (2).

The nontrivial question is as follows: If the sum of vari-
ances for the optimal joint measurement will follow a similar
scaling, it may turn out that the existence of the advantage
depends on paradigm chosen. As recently shown in [61],
for the multiphase estimation problem in a multiarm inter-
ferometer, this issue does not lead to divergent conclusions,
even if the scaling of the total cost with the number of the
parameters depends on the paradigm, the potential advantage

obtainable by measuring all of the parameters jointly instead
of separately is very similar in both paradigms. In this paper
we analyze this issue more generally and show that result is
not universal; it may happen that existence or absence of the
advantage indeed depends on the paradigm chosen.

The paper is organized as follows: In Sec. II we remind
the basis of the quantum measurement theory, define precisely
what we mean by “measuring parameters separately,” and
introduce mathematical formalism useful when analyzing the
problem in both paradigms. In Sec. III we derive some gen-
eral bounds for the achievable precision. Finally, in Sec. IV
we study multiparameter estimation models representing a
variety of magnetic field sensing tasks, check the tightness
of introduced bounds, and discuss the relation between the
results obtained within both paradigms. We also contrast the
results of magnetic field sensing models with the multiple-arm
interferometry case.

The examples are intended to present to the reader in a
simple way the diversity and the complicity of the relationship
between optimal results obtainable within separate and joint
strategies in both discussed paradigms, therefore, most of
them are easily solvable with basic algebra or are based on
analyzing existing results [53–55,57]. However, in Sec. IV B
we present also original results about optimal joint measure-
ment within the minimax approach for spatially distributed
magnetic field sensing (which is a specific example with com-
muting evolution generators). The end results are summarized
in Table I and Sec. V.

II. PROBLEM FORMULATION

Let Eθ be a quantum channel depending on a vector of
unknown parameters θ = [θ1, . . . , θp]T . The aim is to estimate
the values of θ by sending through the channel some initial
state Eθ (ρin ) = ρθ , performing the measurement {Mx} (satisfy-
ing

∫
dx Mx = 1) on the ρθ [leading to probability distribution

of the result x given by pθ (x) = Tr(Mxρθ )] and assigning to
outputs of the measurement proper values of estimators θ̃i(x).
For such a strategy we define the estimators covariance matrix
by

� =
∫

dx pθ (x)[θ̃(x) − θ][θ̃(x) − θ]T , (4)

and the aim is to minimize its trace, i.e., the sum of squared
deviations of the estimator from the true value (for simplicity
we will refer to them as variances, implicitly assuming that
the estimators will likely be unbiased and their expectation
value will coincide with the true value of the parameter) of all
parameters:

�2θ̃ :=
p∑

i=1

�2θ̃i = Tr(�). (5)

We will compare the value of the above variance at some
reference point θ = θ0, keeping the condition that the mea-
surement should work well also in some small neighborhood
of this point (two alternative methods how to formalize this
condition will be given later).

In the literature, a more general cost function is some-
times considered, where the covariance matrix is additionally
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TABLE I. Optimal achievable sum of variances of estimated parameters for six different models with unitary evolution governed by the
Hamiltonian

∑
θi�i. Two paradigms are compared: the one where the channel ei

∑
θi�i is used N times in the optimal way and the second

where it is used n times in each single trial, which is repeated k times. All the values are presented in the limits of large k, n, N , and p (the
exact formulas may be found in the main text). We analyze the optimal strategy when all p parameters are measured separately, as well as
the case when they are measured jointly. The asymptotic values and inequalities are written for the parallel strategy case (if adaptiveness helps
the minimal cost obtainable is written in a bracket). The constants in the two last columns are proven to be 0.63 � c1 � 1 and 1.89 � c2 � 2.
The σ (i)

z in the definition of the Hamiltonian in the middle column is a shortcut for 1⊗i−1 ⊗ σz/2 ⊗ 1⊗(p−i). The relation between the costs
obtained by different strategies in general depends on the paradigm chosen.

min
p∑

i=1

Δ2θ̃i

model
magnetic field estimation multiphase

estimation scaling1 component 2 components 3 components 1 component, spatial distribution
p-atoms layers,

free spin orientation
single atoms,

free position and spin

Hamiltonian θσz/2
∑

i∈{y,z}
θiσi/2

∑

i∈{x,y,z}
θiσi/2

p∑

i=1

θiσ
(i)
z /2

p∑

i=1

θi |i〉 〈i| ⊗ σz/2
p∑

i=1

θi |i〉 〈i|
N = kn
probs.

separately π2 8π2 ≤? 27π2 ≤? π2p2 π2p3 π2p3
1

N2jointly − 2.34π2 4π2 π2p c1p
3 c2p

3

n probs.
k reps.

separately 1 4 9 p p2 p2
1

kn2jointly − 4 (2) 9 (3) p p2 p2/4

multiplied by a positive-semidefinite weight matrix under the
trace (which makes also nondiagonal elements of the covari-
ant matrix important). Note, however, that such a general
case can be reduced to the above after proper reparametriza-
tion. Indeed, if for some parametrization θ′ the cost is
given by Tr(W �′) (with W � 0), one may take A satisfying
W = AT A and then Tr(W �′) = Tr(AT A�′) = Tr(A�′AT ) =
Tr(�) (where in the last step we applied θ = Aθ′). Therefore,
for simplicity of further formulas we will only consider the
cost of the form as given in Eq. (5).

We will consider multiple use of the channel. It may be
seen as the action of N gates in parallel on an arbitrary entan-
gled N-probe state:

ρN,θ = E⊗N
θ (ρin ) (6)

or, even more general, as a general adaptive scheme, where we
apply N sequential usage of the channel, where arbitrary large
ancilla and arbitrary unitary controls between the actions of
the channel are allowed [1,23,68]:

ρN,θ = VN ◦ (Eθ ⊗ 1) . . .V1 ◦ (Eθ ⊗ 1)(ρin ) (7)

(where Vi ◦ ρ is a shortcut for ViρV †
i ). Note that the first one

may be simulated by the latter. In such a formulation, the
amount of resources corresponds to the number of uses of the
channel.

The potential advantage of measuring p parameters jointly
vs separately was extensively discussed in the literature with
different approaches, where alternatively the amount of re-
sources used in a single trial [45,46,62–64] or the total number
of trials [65–67] was divided between parameters in sepa-
rate strategy; another analysis free of the resource allocation
problem was also performed [43,44] (see Appendix A for
broader discussion). In this paper, we would like to focus
on the situation when the same task (i.e., estimation of the
set of parameters with a given cost function) is performed
with a joint or a separate strategy, when the same amount of
resources is used in the end. The problem is schematically
shown in Fig. 1, where Bob sends to Alice N copies of a

quantum gate depending on unknown parameters θ (where
each copy can only be used once) and expect from Alice that
she will send him back estimated values of parameters θ̃, in a
way that the total cost is minimized.

Alice may alternatively use N gates to measure all the
parameters jointly or separately. In the first case, labeled as
JNT, the minimal achievable cost is given by

�2θ̃JNT = min
N protocol

Tr(�), (8)

where by minimization over “N protocol” we understand
the minimization over the choice of the initial state ρin, the
unitaries Vi acting between N usage of the gate Eθ , the mea-
surement {Mx}x, and the estimator θ̃(x).

In the second case, labeled as SEP, Alice needs to divide
all N gates between her “minions,” sending to each of them Ni

gates and ordering to focus on the measurement of a single
parameter θi. Note that we consider the case when all the
parameters have some fixed (unknown) values which do not
fluctuate themselves. Hence, in the separate scenario, differ-
ent parameters are estimated from independent measurements
and the resulting covariance matrix will always be diagonal
(assuming that all estimators are unbiased):

� = diag(�2θ̃1, . . . ,�
2θ̃p). (9)

The minimal achievable cost for such a strategy is given by

�2θ̃SEP = min
{Ni}

(
p∑

i=1

min
Ni protocol

�2θ̃i

)
. (10)

However, this strategy may by further optimized (while
retaining the key feature that each of the minions measures
only a single parameter). Indeed, Alice may demand from
them to measure arbitrary linearly independent combinations
of original parameters θ ′

i = [A−1θ]i (where A is invertible
matrix):

�′ = diag(�2θ̃ ′
1, . . . ,�

2θ̃ ′
p), � = A�′AT . (11)

To distinguish this strategy from the one where parametriza-
tion is fixed, we will label it as SEP+. Note that the resulting
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GÓRECKI AND DEMKOWICZ-DOBRZAŃSKI PHYSICAL REVIEW A 106, 012424 (2022)

FIG. 1. Bob sends to Alice N quantum gates that depend on p
unknown parameters θi. Her goal is to send him back their estimated
values θ̃i, in order to minimize the total quadratic cost. In [JNT] she is
allowed to perform full optimization and measure all the parameters
jointly. In [SEP] she divides the gates between her minions, where
each of them is told to measure a single parameter θi. In [SEP+]
the minions are allowed to measure mutually linearly independent
combinations θ ′

i = [A−1θ]i and send the result back to Alice, who re-
constructs the initial parameters in postprocessing. Note that [SEP+]
may be seen as a special case of [JNT], while [SEP] as a special case
of [SEP+].

covariance matrix is diagonal in θ′ parametrization, but not
necessarily in the initial one. The resulting cost is given by

p∑
i=1

�2θ̃i = Tr(�) = Tr(A�′AT ) =
p∑

i=1

[AT A]ii�
2θ̃ ′

i , (12)

and therefore

�2θ̃SEP+ = min
A,{Ni}

(
p∑

i=1

[AT A]ii min
Ni protocol

�2θ̃ ′
i

)
. (13)

Note that for orthogonal transformations A = O where
OT O = 1, no additional term appears in Eq. (13). However,
it may happen that the optimal separate strategy indeed re-
quires a nonorthogonal transformation (see Appendix B for
an example). Therefore, in general we have

�2θ̃JNT � �2θ̃SEP+ � �2θ̃SEP, (14)

as for each inequality the right-hand strategy may be seen as
the special case of the one on the left side.

We now want to analyze these strategies further using the
two paradigms: the one when the constraint is imposed on
the number of gates used in a single trial n, and where the
number of trials k � n, and the second one where only the
total number of gates N is limited.

A. Resource distribution in separate strategies

Let us start with some general analysis of optimal resource
distribution in separate strategies, focusing on the limit of
large N . Assume that for each parameter θi, the minimal vari-
ance obtainable with the use of Ni gates (where

∑p
i=1 Ni = N)

scales, in the leading terms, like N−α
i :

�2θ̃SEP = min
{Ni}

p∑
i=1

min
Ni protocol

�2θ̃i = min
{Ni}

p∑
i=1

ci

Nα
i

+ o
(
N−α

i

)
,

(15)
where all ci have finite positive values. Neglecting term
o(N−α

i ), by applying the standard Lagrange multiplayers
method, we obtain the optimal resources redistribution to be

Ni = N
c1/(α+1)

i∑
j c1/(α+1)

j

, (16)

which leads to

�2θ̃SEP = 1

Nα

(
p∑

i=1

c1/(α+1)
i

)α+1

+ o(N−α ). (17)

Further in this paper, we focus only on the asymptotic behav-
ior and for simplicity of the formulas we will omit the term
o(N−α ), using the sign “
” instead. Introducing c̄α for the
proper power mean c̄α = ( 1

p

∑p
i=1 c1/(α+1)

i )α+1 we get

�2θ̃SEP 
 c̄α pα+1

Nα
, (18)

so (for models in which c̄α does not scales with p) we see
a pα+1 scaling of the cost with the number of parameters
involved.

Moreover, the optimal SEP and SEP+ strategies may be
bounded from above by

�2θ̃SEP+ � �2θ̃SEP � pα�2θ̃JNT, (19)

as one may always consider a suboptimal separate strategy,
where each of the minions performs a measurement corre-
sponding to the optimal JNT protocol (with N/p gates), but
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sends to Alice only the estimated value corresponding to a
single parameter θi.

B. Many-repetition scenario (n gates, k trials):
Cramer-Rao–type bounds

Consider now the situation where the number of gates
used in a single trial is restricted to some large but finite
number n. Then, total amount of resources is divided into k
trials, satisfying N = nk, and the limit N → ∞ corresponds to
k → ∞, n = const. Therefore, in the context of the discussion
from the previous section, the scaling of the cost with the
total amount of resources N is always linear here (as it scales
linearly with k), no matter how it depends on n.

Let us briefly remind the foundations of the CR bound
approach. The CR bound is based on the idea of local un-
biasedness. We consider only estimators satisfying∫

dx pθ0 (x)θ̃i(x) = θ0i,

∫
dx

d pθ (x)

dθi

∣∣∣∣
θ=θ0

θ̃ j (x) = δi j .

(20)

For a given output state ρθ the covariance matrix is bounded
by quantum CR inequality

� � 1

k
F−1, Fi j = Tr

[
ρθ0

1

2
(LiL j + LjLi )

]
, (21)

where the matrix inequality means that � − 1
k F−1 is positive

semidefinite and Li are the symmetric logarithmic derivatives

satisfying dρθ

dθi
|θ=θ0

= 1
2 (Liρθ0 + ρθ0 Li ). This leads to

Tr(�) � 1

k
Tr(F−1). (22)

Since measurements optimal for different parameters might be
mutually incompatible, the above inequality is asymptotically
saturable for large k if and only if [44]

ImTr(ρθ0 LiL j ) = 0. (23)

More precisely, if Eq. (23) is satisfied and additionally ρθ is
pure, then there exists a local measurement (performed on
a single copy of ρθ) and an estimator depending on k mea-
surement results θ̃(x1, x2, . . . , xk ), which is asymptotically
unbiased and saturates Eq. (22). However, if ρθ is the mixed
state, in may in general happen that a collective measurement
on all k copies of the state ρ⊗k

θ
is required in order to saturate

the CR bound [50,52]. Therefore, the minimal achievable cost
obtainable with k trials, where in each trial n gates are used,
may be bounded from below by the right-hand side of Eq. (22)
minimized over all feasible output states ρn,θ [i.e., states that
can be obtained when optimizing the protocol over ρin and all
V1, . . . ,Vn in Eq. (7)]:

�2θ̃
CR
JNT � 1

k
min
ρn,θ

Tr(F−1), (24)

where the inequality is tight iff Eq. (23) holds; in fact, in all
examples discussed in this paper, this will be the case.

Now let us consider a separate strategy and let ρ i
n,θ be the

output state designed to estimate the value of parameter θi.
Note that in principle it may by inefficient or even impossible
to fully isolate the dependence of the state on the remaining

parameters θ j �=i: their variations may affect the measurement
results, and they cannot be omitted in the analysis of the
optimal separate protocol. That means that the remaining pa-
rameters should in general be treated as nuisance parameters
[69,70]. Denoting by Fi the QFI matrix corresponding to ρ i

n,θ ,
the minimal variance of estimating parameter θi using ki rep-
etitions of an experiment is bounded by

�2θ̃i � 1

ki

[
F−1

i

]
ii
. (25)

Strictly speaking, it is not necessary for the whole matrix Fi to
be invertible: it is enough if limε→0+[(Fi + ε1)−1]ii converges
to a finite value. For example, if Fi has a block-diagonal
structure, it is enough if only the block containing [·]ii element
is invertible.

Note that in general [F−1
i ]ii � [Fi]−1

ii , where the right-hand
side of the inequality corresponds to a direct application of
the single-parameter estimation theorem, neglecting the role
of nuisance parameters. Moreover, Eq. (25) is always sat-
urable for large ki if collective measurements allowed [[52],
Sec. 2.7], and, therefore, Eq. (17) (with α = 1) takes the form

�2θ̃
CR
SEP 
 1

k

(
p∑

i=1

√
min
ρi

n,θ

[
F−1

i

]
ii

)2

. (26)

After optimization over the parametrization is performed we
get

�2θ̃
CR
SEP+ 
 1

k
min

A

(
p∑

i=1

√
[AT A]ii min

ρi
n,θ

[
A−1F−1

i A−1T
]

ii

)2

,

(27)
where the rule for the transformation of the QFI matrix F ′

i =
AT FiA has been used.

Using Eqs. (14) and (19) we can write

�2θ̃
CR
JNT � �2θ̃

CR
SEP+ � �2θ̃

CR
SEP � p�2θ̃

CR
JNT. (28)

C. Heisenberg limit (total N gates):
Asymptotic local minimax bound

The methods discussed in the previous section cannot be
used in a situation where only the total amount of gates N is
constrained since we can not invoke the general CR saturabil-
ity arguments which require a many-repetition scenario. In the
single-parameter case the problem has been discussed within
the MM [27] and the Bayesian [32] approaches.

In this paper we will follow the first one, as it is conceptu-
ally and technically simpler to apply in the case of estimating
values of a parameter in a vicinity of a single point. Let us
start by briefly reminding the idea of local asymptotic MM
approach applied to single-parameter estimation [27,71].

Instead of invoking the property of local unbiasedness
(as is done in the CR-based approach), we assume that the
true value of the parameter lies in some finite-size neigh-
borhood of θ0, named �(θ0, δ) = [θ0 − δ/2, θ0 + δ/2]. Then,
we consider a strategy, which minimizes the cost in the most
pessimistic scenario (we always choose the point in �, where
the strategy works the worst). Here, unlike in the previously
discussed approach, only a single realization of the measure-
ment is considered, and any measurement outcome is directly
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related with a given value of the estimator θ̃ . Due to this
fact, and for the simplicity of notation, we may label the
measurement’s outcomes by θ̃ , so that the formula for the MM
bound takes the form

inf
ρθ ,Mθ̃

sup
θ∈�(θ0,δ)

∫
d θ̃ Tr(Mθ̃ ρθ )(θ̃ − θ )2. (29)

This value, however, depends on the size of �. In order to
get rid of this dependence, and hence be able to compare the
results with the CR-based approach (which is effectively a
single-point estimation approach), we do the following con-
struction. Let {ρN,θ , MN,θ̃ } be a sequence of output states
(for an N-gate protocol) and the corresponding measure-
ments. Then, assuming that for a large N the corresponding
cost scales like 1/Nα (where α = 1 corresponds to the stan-
dard scaling, while α = 2 to the Heisenberg scaling), define
[[27], Sec. 5]

C (α)[{ρN,θ , MN,θ̃ }] = lim
δ→0

lim
N→∞

Nα sup
θ∈�(θ0,δ)

×
∫

d θ̃ Tr(MN,θ̃ ρN,θ )(θ̃ − θ )2. (30)

Note that the order of taking the limits matters (as for the
opposite order the trivial constant estimator pointing θ0 inde-
pendent on the measurement results would lead to a zero cost).
Intuitively, such an order approximates a situation, where one
considers a δ-independent measurement strategy and for each
δ checks its validity only for N which is much larger than the
inverse of δ. Finally, taking the limit δ → 0 makes the results
independent of the fact that the estimation around different
points in � may be in principle harder than around θ0 (i.e.,
even the value of the maximal QFI may depend on the value
of θ , as for example in [46]).

It was shown in [[27], Sec. 5] that if for a given channel the
Heisenberg scaling is not achievable (α = 1), then indeed

inf
{ρN,θ ,MN,θ̃ }

C (1) = lim
N→∞

inf
ρN,θ

N

F
. (31)

Therefore, the MM (in the limit δ → 0) and the CR-based
approaches return consistent results. However, if the channel
estimation problem admits the Heisenberg scaling (α = 2),
then

inf
{ρN,θ ,MN,θ̃ }

C (2) � lim
N→∞

inf
ρN,θ

N2

F
, (32)

where the inequality is not tight in general (see the next
section). In this paper we are focusing only on the case α = 2,
and hence in what follows for a more compact notation we
will drop the upper index.

For a general multiparameter estimation problem, let
us define �(θ0, δ) = [θ0,1 − δ/2, θ0,1 + δ/2] × · · · × [θ0,p −
δ/2, θ0,p + δ/2] and

Ci
[{

ρ i
Ni,θ

, MNi,θ̃i

}] = lim
δ→0

lim
Ni→∞

N2
i sup

θ∈�(θ0,δ)

×
∫

d θ̃iTr
(
MNi,θ̃i

ρ i
Ni,θ

)
(θ̃i − θi )

2. (33)

Then, for a large N , Eq. (17) (with α = 2) up to the leading
term in N takes the form

�2θ̃
MM
SEP 
 1

N2

(
p∑

i=1

3

√
inf

{ρNi ,θ,MNi ,θ̃i
}
Ci

)3

. (34)

After the optimization over reparametrizations it reads as

�2θ̃
MM
SEP+ 
 1

N2
min

A

(
p∑

i=1

3

√
[AT A]ii inf

{ρNi ,θ
′ ,MN,θ̃ ′

i
}
C ′

i

)3

, (35)

where C ′
i is given by Eq. (33), after making the substitution

θi → θ ′
i = [A−1θ]i. Analogously, for the joint estimation case

CJNT[{ρN,θ, MN,θ̃}] = lim
δ→0

lim
N→∞

N2 sup
θ∈�(θ0,δ)

×
∫

d θ̃ Tr(MN,θ̃ρN,θ )Tr(�) (36)

and

�2θ̃
MM
JNT 
 1

N2
inf

{ρN,θ,MN,θ̃}
CJNT. (37)

Finally, using Eqs. (14) and (19) we can write

�2θ̃
MM
JNT � �2θ̃

MM
SEP+ � �2θ̃

MM
SEP � p2�2θ̃

MM
JNT . (38)

III. HEISENBERG LIMIT BOUND

Further on we will be interested in the models where
Heisenberg scaling occurs for all the estimated parameters.
This is the case for noiseless unitary evolution, where the
parameters enter into the evolution as multipliers of the evo-
lution generators:

Uθ = eiθ·�, (39)

with � = [�1, . . . , �p]T where all �i are mutually linearly
independent.

Note that in presence of noise, Heisenberg scaling may not
be achieved in general [20,72]. Still, for certain noise models,
a proper quantum error correction protocol may be used to
isolate the part of signal which is undisturbed by the noise and
effectively obtain a purely unitary evolution [23,25,26,73] of
the form (39). Hence, our discussion here will be relevant for
such models as well.

A. Single-parameter saturable lower bound

As a reference point for further considerations, let us recall
a paradigmatic estimation model, a single-phase estimation
problem in a two-arm interferometer. In this case, the param-
eter encoding channel acts on the two-mode single-photon
states space spanned by {|0〉 , |1〉}, and is represented by

Uθ = eiθ |1〉〈1|. (40)

For simplicity, let us focus on parallel strategies, Eq. (6), first.
The output state |ψn

θ 〉 = U ⊗n
θ |ψin〉, which maximizes the QFI,

is the famous |n00n〉 state∣∣ψn
θ

〉 = 1√
2

(|0〉⊗n + einθ |1〉⊗n), (41)
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for which F = n2 and CR the bound may be saturated
with protective measurement onto states |±〉 = 1√

2
(|0〉⊗n ±

i |1〉⊗n). In fact, it may be also saturated by a standard photon-
counting measurement and an estimator based on the parity of
detected number of photons [74].

Note, however, that the state (41) is unable to distinguish
between the phases that differ by a multiple of 2π/n [[27],
Sec. 5]. Therefore, it only allows for estimation of the pa-
rameter in a small region of [θ0 − π/n, θ0 + π/n]. While
many-repetition scenario is under consideration, this issue
does not generate a serious problem, as even starting with
the unknown phase, for k � n one may always spend the first√

k trials to find such small region [for example, by using the
product states 1√

2
n (|0〉 + |1〉)⊗n in each repetition] and next in

remaining k − √
k trials use |n00n〉 states to finally achieve

precision 1/kn2 (up to the leading term in k). However, it is
clear that an analogous single |N00N〉 state cannot be used
to obtain the fundamental Heisenberg limit, if inserted into
Eq. (30) it would lead to C = +∞.

Calculation of the minimal obtainable value of C by a direct
minimization of Eq. (30) is a hard problem. Fortunately, the
task may be significantly simplified by taking into account a
symmetry of the problem.

First note that for such a channel the two phases which dif-
fer by a factor 2π should be regarded as equivalent. Therefore,
we consider a periodic cost function of the form

cost(θ, θ̃ ) = 4 sin2

(
θ − θ̃

2

)
, (42)

which reflects this property whereas for small difference may
be well approximated by ≈ (θ − θ̃ )2.

Next, as argued in [27], the local asymptotic MM cost
[Eq. (30)] for this problem is exactly the same as the minimal
obtainable cost for a completely unknown phase θ ∈ � =
[0, 2π ) multiplied by N2 (in the limit N → ∞). Intuitively,
the reason for this is that for any finite δ, when we start from a
completely unknown phase, we always spend at the beginning√

N gates to discriminate the region of size δ, where the true
value of θ lies (with the probability of the error decreasing as
exponentially fast with N), and use the remaining N − √

N to
estimate the value inside this region.

Note that while at a first glance the above construction
seems to require adaptiveness (as in the second step we use the
information from the first one), in may in fact be performed
also within the parallel scheme (see details in Appendix C).
See also [32,61,75] for further discussion about optimization
of region discrimination in the first part of the above con-
struction, as well as a general discussion about this bound for
finite N .

The state which is optimal for measuring a completely
unknown phase is the |SIN〉 state [33–35]

∣∣ψN
θ

〉 =
N∑

m=0

eimθ

√
2√

N + 2
sin

(
(m + 1)π

N + 2

)
|N − m〉0 |m〉1 ,

(43)
where |N − m〉0 |m〉1 is a fully symmetric state with m pho-
tons in the sensing arm |1〉 and N − m is the reference arm
|0〉. The corresponding mean cost obtainable with applying

covariant measurement is

∀θ

∫
d θ̃ Tr(MN,θ̃ ρN,θ )cost(θ, θ̃ ) = 2

[
1 − cos

(
π

N + 2

)]
(44)

and therefore the constant which multiplies the leading term
1/N2 equals

inf
{ρN,θ,MN,θ̃ }

C = lim
N→∞

N22

[
1 − cos

(
π

N + 2

)]
= π2. (45)

The following natural question arises: Is there a simple
interpretation of this π2 factor discrepancy between the min-
imal achievable variance and the inverse of maximal Fisher
information? In fact, one may indeed use the |n00n〉 states
even when estimating a completely unknown phase, provided
one divides all the available resources N into M subsets, each
of size mi and then use M states of the form 1√

2
(|0〉⊗mi +

|1〉⊗mi ) for estimation. It was shown numerically that for the
optimal distribution of mi, the overhead factor π2 is indeed
recovered [76,77]. Some suboptimal strategies have also been
demonstrated experimentally, revealing only a slightly bigger
variance [78,79].

The above result may be directly generalized for an arbi-
trary quantum channel of the form Uθ = eiθ� [32]. Denoting
by λ[�] the difference between the maximal and the minimal
eigenvalues of the operator �, for optimal usage of N quantum
gates we have

inf
{ρN,θ,MN,θ̃ }

C = π2

λ2[�]
⇒ �2θ̃MM 
 π2

N2λ2[�]
. (46)

For comparison, in the scenario, where k → ∞ repetitions
is considered (with usage n gates in each of them), minimal
obtainable cost is given by

max
ρn,θ

F = n2λ2 ⇒ �2θ̃CR 
 1

kn2λ2[�]
. (47)

In both scenarios, this optimal precision is obtainable already
in the parallel scheme and it cannot be beaten by any adaptive
protocol that involves additional action of Vi operations in-
between [32].

B. Multiparameter unitary estimation lower bound

Consider a general problem of local unitary channel esti-
mation

Uθ = eiθ·�, (48)

with linearly independent generators �i acting on a d-
dimensional space. First note that for such a formulated
problem the Heisenberg scaling is indeed achievable. This was
shown for the most general SU(d ) estimation problem for any
d using a parallel scheme, in both many-repetition scenario
[80] (where the exact fundamental bound has been derived and
proven to be saturable if entanglement with ancilla allowed)
and single-repetition scenario [60] (where optimal scaling has
been proven to be ∝1/N2 with an exemplary state satisfying
this scaling). As for any finite-dimensional space, the problem
states in Eq. (48) may be seen as estimation of some subset of
SU(d ) generators, the statement is proven.
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Let us first argue that from the point of view of estimation
of any single parameter θi, the existence of an additional part
of the generator

∑
j �=i θ j� j cannot help in estimation, i.e.,

it cannot decrease the minimal achievable cost. Note that a
single gate Uθ (where all generators act jointly) may be arbi-
trarily well approximated (for a sufficiently large l) by

Uθ = eiθ·� l�1≈ (
eiθi

�i
l ei

∑
j �=i θ j

� j
l
)l

(49)

(more precisely, the above approximation is exact in the limit
l → ∞ due to the Trotter formula [81]). Therefore, an N-
fold action of Uθ may be seen as lN action of Uθi = eiθi

�i
l ,

with unitary controls V = ei
∑

j �=i θ j
� j

l in-between. After such
a procedure the product λ[�i/l](lN ) = λ[�i]N remains un-
changed. Therefore, both the asymptotic value of the bound
and the rate of its convergence remain the same. Conse-
quently, for each θi we have

inf
{ρi

Ni ,θ
,MNi ,θ̃

}
Ci � π2

λ2[�i]
. (50)

Note, however, that the saturability of the bound is not guar-
anteed. Let us now bound from below the minimal achievable
cost by assuming the most optimistic scenario, the one where
not only the existence of the other part of the Hamiltonian∑

j �=i θ j� j does not disturb the sensing of θi, but also that
there exists a single input state and a single measurement
which are simultaneously optimal for sensing of all the pa-
rameters. Then, for any finite N we have

min
ρN,θ ,MN,θ̃

Tr(�) = min
ρN,θ,MN,θ̃

p∑
i=1

�2θ̃i �
p∑

i=1

min
ρi

N,θ
,MN,θ̃i

�2θ̃i (51)

and, therefore, taking the asymptotic limit N → ∞, we can
write

inf
{ρN,θ ,MN,θ̃}

CJNT �
p∑

i=1

inf
{ρi

N,θ
,MN,θi }

Ci �
p∑

i=1

π2

λ2[�i]
. (52)

Notice that we have some freedom in choosing the
parametrization in Eq. (48). Indeed, all the steps remain valid
after an application of any orthogonal rotation in the param-
eter space θ′ = O−1θ, �′ = OT �, which does not change
the local cost function. Note, however, that the restriction to
orthogonal transformations OT O = 1 is crucial here, as for
a more general one A the off-diagonal elements may appear
in the formula for the cost Tr(AT A�), which would make
it impossible to bound it using Eq. (51). Therefore, we can
tighten the bound resulting from Eq. (52) and write

�2θ̃
MM
JNT � max

O

1

N2

p∑
i=1

π2

λ2([OT �]i )
. (53)

An analogous bound may be derived for the trace of the
inverse of the QFI (see also [26]):

Tr(F−1) =
p∑

i=1

[F−1]ii �
p∑

i=1

[Fi]
−1
ii �

p∑
i=1

[
F−1

i

]
ii =

p∑
i=1

1

n2λ2
i

(54)

so

Tr(F−1) � max
O

1

n2

p∑
i=1

1

λ2([OT �]i )
(55)

and

�2θ̃
CR
JNT � max

O

1

kn2

p∑
i=1

1

λ2([OT �]i )
, (56)

where the same O maximizes both Eqs. (53) and (56).

C. Relation between optimal global and local minimax costs

It is worth mentioning that in the cases where the local
estimation problem may be extended to the covariant group
estimation problem, the local minimax cost is the same as
the one for estimating a completely unknown element of the
group. Let us formalize it.

Let Ug (where g ∈ G) be a unitary representation of com-
pact group G (so Ug1Ug2 = Ug1g2 ) and consider the cost
function invariant with respect to the action of this group
∀g,g̃,h∈Gcost(hg, hg̃) = cost(g, g̃). Let θ = [θ1, . . . , θp] �→ gθ

be a local parametrization around neutral element of the group
e ∈ G such that Ugθ

= eiθ�. Then assuming that cost(e, gθ̃ ) =
θ̃

2 + o(θ̃iθ̃ j ), the asymptotic minimax cost for cost(g, g̃) for
g ∈ G is the same as the local one, Eq. (36) (see Appendix C
for more details). The reasoning is based on the same idea as
the one performed for single-parameter case [27] (reminded
here in Sec. III A).

Moreover, in [82] it was shown that for covariant estima-
tion the optimal results may be obtained within a parallel
scheme (without the necessity of involving adaptiveness),
which implies that also in the local minimax approach there
is no advantage in applying adaptive strategy (in contrast to
the results obtainable within CR formalism, which will be
discussed in Sec. IV C).

D. Separate strategy lower bound

Finally, we would like to derive a simple bound for the
minimal cost obtainable by the SEP+ strategy, which will
allow us for a quick assessment of potential benefits due to
a rotation in the parameter space. We have

�2θ̃
MM
SEP+ � min

A,Nj

p∑
j=1

π2

N2
j

[AT A] j j

λ2([AT �] j )

� min
A,Nj

p∑
j=1

π2

N2
j

(
min

i

[AT A]ii

λ2([AT �]i )

)

= p3π2

N2
min

A,i

[AT A]ii

λ2([AT �]i )
. (57)

Note that the last term in above inequality depends only on the
ith column of A. Therefore, minimization over both A and i is
equivalent to minimization over a single vector a:

min
A,i

[AT A]ii

λ2([AT �]i )
= min

a

|a|2
λ2[a�]

= min
a:|a|2=1

1

λ2[a�]
= 1

maxa:|a|2=1 λ2[a�]
,

(58)
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(a)

(b)

(c)

FIG. 2. Various models of magnetic field sensing by spin- 1
2

atoms are discussed. In (a) and (b) the spatial distribution of magnetic
field oriented in the z direction is to be estimated. In (a) the atoms
are uniformly distributed in p points and one has the freedom to
choose their spin orientations in the optimal way, while in (b) for
every single atom both the position and the spin orientation may be
chosen arbitrary. In (c) the magnetic field in single point is measured,
but multicomponent estimation is discussed.

hence,

�2θ̃
MM
SEP+ � p3π2

N2

1

maxa:|a|2=1 λ2[a�]
. (59)

Similarly, in the multiple-repetition scenario we could write
(see also [26])

�2θ̃
CR
SEP+ � p2

kn2

1

maxa:|a|2=1 λ2[a�]
. (60)

Thanks to the bounds derived in this section, we will be
able to get an insight into the benefits of joint vs separate
strategies, even if we will not always be able to obtain a
rigorous solution for the optimal achievable cost (see the next
section).

IV. EXAMPLES

We will focus here on models which are inspired by various
magnetic field sensing problems, but which are representa-
tive for a wide range of multiparameter unitary estimation
problems (see Fig. 2). As shown in [61], if all the generators
mutually commute ∀i[�i,� j] = 0, there is no asymptotic ad-
vantage (for large N) in using a general adaptive strategy when
compared to the parallel one. Therefore, when analyzing the

first two examples, we will focus on the parallel scheme only.
For the last one, where the generators do not commute, both
strategies will be discussed.

A. Spatially distributed magnetic field sensing:
Fixed atom positions

Consider the problem of spatially distributed magnetic
field sensing (which is directed along the z axis). The field
is sensed by spin- 1

2 atoms allocated in p spatially separated
places.

Before moving on to the general solution of such a prob-
lem, we would like first to discuss it with an additional
constraint imposed. Namely, we assume that the spatial distri-
bution of sensing atoms is uniform and fixed, i.e., in each of p
points there are exactly N atoms and one has only the freedom
in choosing their spin orientations (this form of the problem
was discussed in the many-repetition scenario in [26]). Here,
by an elementary amount of resources we understand a single
layer of p atoms, and the corresponding Hilbert space is the
2p-dimensional one spanned by the vectors of the form

|s〉 = |s1, s2, . . . , sp〉 , with si ∈ {−1,+1}. (61)

Then the elementary quantum gate is

Uθ = eiθ·�, �i = 1⊗i−1 ⊗ 1
2σz ⊗ 1⊗p−i, (62)

so �i |s〉 = 1
2 si |s〉. Note that here the number of quantum

gates N is equal to number of p-atom layers and in fact
correspond to usage of N p atoms.

Let us consider first the SEP strategy (without optimiza-
tion over reparametrizations). Since ∀iλ[�i] = 1, one gets,
respectively, for the CR approach [using the analogs of |n00n〉,
Eq. (41), states]

�2θ̃
CR
SEP 
 p × 1

k/p
× 1

n2
= p2

kn2
, (63)

and for the MM approach [with the use of |SIN〉, Eq. (43),
states]

�2θ̃
MM
SEP 
 p × π2

(N/p)2
= π2 p3

N2
. (64)

However, looking at Eqs. (59) and (60) one may see that there
is a significant potential for improvement in SEP+, as the
value of λ[a�] will be maximal for a = 1/

√
p[1, 1, . . . , 1]

and equal to
√

p. Below we show a concrete reparametriza-
tion for which the mentioned bounds may be saturated. For
simplicity, let us restrict to the case p = 2r for some natural r.

In order to optimize the separate strategy one needs to find
a parametrization for which each parameter may be sensed by
all the atoms simultaneously. Therefore, instead of measuring
the magnetic field point by point in p positions, one may
decompose the field into a proper components by the Walsh-
Hadamard transformation θ′ = O−1θ with

Oi j = 1√
p

r−1∏
k=0

(−1)ik jk , where i =
r−1∑
k=0

ik2k (65)

or, equivalently,

O = 1√
p

[
1 1
1 −1

]⊗r

. (66)
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After the application of such a transformation, all the
generators [OT �]i remain diagonal in the basis {|s〉} and
moreover

〈s| [OT �]i |s〉 = 1

2
√

p

p∑
j=1

Oi js j . (67)

From that, indeed, ∀i λ([OT �]i ) = √
p and, moreover, as the

eigenvectors of �i with minimal and maximal eigenvalues
take the form

|λi+〉 = |+Oi1,+Oi2, . . . ,+Oip〉 ,

|λi−〉 = |−Oi1,−Oi2, . . . ,−Oip〉 (68)

the remaining generators acts on them trivially:

� j |λi±〉 = ±δi j
1
2 |λi±〉 . (69)

Hence, when focusing on the estimation of a given parameter
θi, there are no disturbance issues related with the presence of
the other parameters. Therefore,

�2θ̃
CR
SEP+ 
 p

kn2
, �2θ̃

MM
SEP+ 
 p2π2

N2
. (70)

We see that, thanks to the application of a proper
reparametrization, we have decreased the cost obtainable in
a separate strategy by a factor of p. Note that in order to
use Eq. (65) we have assumed p = 2r . However, if this is not
satisfied, one can still obtain qualitatively similar results, e.g.,
applying parameter transformations from [83].

Going back to the initial parametrization, let us now dis-
cuss a joint strategy. As each of the parameters is associated
with a different atom, all of them may be measured with-
out disturbing the measurement outcomes of the remaining
ones. More formally, as the Hilbert space corresponding to
the single layer of atoms has the characteristic structure H =
(C2)⊗p, then for N layers it may be written in the form
H⊗N = ((C2)⊗p)⊗N = ((C2)⊗N )⊗p. Hence, we may use the
|n00n〉⊗p state (in the CR approach) or |SIN〉⊗p state (in the
MM approach), which yields

�2θ̃
CR
JNT 
 p

kn2
, �2θ̃

MM
JNT 
 pπ2

N2
, (71)

and which saturates the bound (53) (which is the tightest for
the original parametrization, i.e., with O = 1).

Comparing Eq. (70) with Eq. (71), we see that for this
model the existence of the advantage of measuring pa-
rameters jointly depends on the chosen paradigm: in the
many-repetition scenario there is no advantage, while for the
fully optimal usage of all resources the advantage increases
linearly with the number of parameters.

B. Spatially distributed magnetic field sensing:
Arbitrary spatial distribution of atoms

Let us now consider the same problem with the full free-
dom in the distribution of the atoms in both space (p positions)
and spin orientations. The single-atom Hilbert space will,
therefore, be spanned by

|i, s〉 , with i ∈ {1, 2, . . . , p}, s ∈ {−1,+1}. (72)

The corresponding single quantum gate has the form

Uθ = eiθ·�,

�i = |i〉 〈i| ⊗ 1
2σz = 1

2 (|i,+〉 〈i,+| − |i,−〉 〈i,−|), (73)

so �i | j, s〉 = δi j
s
2 | j, s〉. Note that here, unlike in the previous

example, the number of quantum gates is equal exactly to the
number of atoms used.

Similarly as in Eq. (43), without loss we may restrict to the
fully symmetric space, so that any N-atomic output state may
be written as∣∣ψN

θ

〉 =
∑

|m|=N

e
i
2
∑

θi (mi+−mi− )cm |m〉 , (74)

where m = [m1+, m1−, m2+, . . . , mp−] and |m| =∑p
i=1(mi+ + mi−).
In this case ∀i λ[�] = 1; their nonzero eigenspaces are

mutually orthogonal and hence cannot be increased by taking
any linear combination a�. Therefore, there is no advantage
of the SEP+ over the SEP protocol, and we simply get

�2θ̃
CR
SEP 
 p2

kn2
(75)

for the state∣∣ψn
θ

〉 = 1√
2

(einθi/2 |n〉i+ |0〉i− + e−inθi/2 |0〉i+ |n〉i−), (76)

while in case of full optimization paradigm we get

�2θ̃
MM
SEP 
 p3π2

N2
(77)

for the state

∣∣ψN/p
θ

〉 =
N/p∑
m=0

√
2ei(2m−N/p)/2θi

√
N/p + 2

× sin

(
(m + 1)π

N/p + 2

)
|m〉i+ |N/p − m〉i− , (78)

where |m〉i+ |N/p − m〉i− denotes a state with N/p atoms in
the ith position, with m of them being oriented up, and N/p −
m down.

Much more interesting aspects may be observed when
analyzing the joint strategy. First, let us look what insight
may be obtained from the bounds (56) and (53). To do so, we
will use again the Walsh-Hadamard transformation. However,
note that in this case the effect is completely opposite to the
one observed in the previous example (application of this
transformation decreases all λ[OT �i] = 1/

√
p), that is, in the

case where one has the full freedom of distributing atoms in
space, measuring combinations of magnetic fields at various
points, instead of measuring the field point by point, is an
inefficient separate strategy. Still, thanks to this observation,
such a transformation may be used to tighten the bounds (56)
and (53). Since

∑p
i=1 1/λ2([OT �]i ) = p2, it gives

�2θ̃
CR
JNT � p2

kn2
, �2θ̃

MM
JNT � p2

N2
. (79)
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In the CR case, the above bound may be saturated using the
state

∣∣ψn
θ

〉 = 1√
p

p∑
i=1

1√
2

(e+inθi/2 |n〉i,+ + e−inθi/2 |n〉i,−), (80)

which is simply an equally weighted superposition of Eq. (76)
and for which

Fi j = 4 Re[〈ψi|ψ j〉 − 〈ψi|ψ〉 〈ψ |ψ j〉] ⇒ Fi j = δi j

p
(81)

and, consequently,

Tr(F−1) = p2

n2
⇒ �2θ̃

CR
JNT 
 p2

kn2
. (82)

To analyze the joint strategy within the MM approach,
we will use the Fourier analysis, originally applied to the
single-parameter estimation problem in [75], later generalized
for another group estimation problem [59], and very recently
applied for multiphase estimation in multiarm interferometer
with constraining for the total number of photons [61]. Note
that from the point of view of the discussed problem, only
the differences between the number of atoms oriented up and
down �mi = (mi+ − mi−)/2 matter. Therefore, for a given
state (74) we define normalized states |�m〉 and coefficients
c�m satisfying

∀�mc�m |�m〉 =
∑

m:∀(mi+−mi− )/2=�mi

cm |m〉 . (83)

Then, Eq. (74) may be rewritten in the form

∣∣ψN
θ

〉 =
∑

∑
i |�mi|�N/2

eiθ�mc�m |�m〉 . (84)

Next, for N large enough, we may replace discrete vari-
ables by continuous ones �mi

N → μi ∈ [−1/2,+1/2] to get

∣∣ψN
f ,θ

〉 =
∫
∑

i |μi|�1/2
dμ eiNθμ f (μ) |μ〉 . (85)

As argued in [61], the optimal measurement in the asymptotic
limit will be the covariant one:

|χθ̃〉 = 1√
(2π/N )p

∫
dμ eiNμθ̃ |μ〉 . (86)

For technical reasons, in further calculations we will treat
the function f (μ) appearing in Eq. (85) as the one de-
fined on the whole Rp, but equal zero everywhere outside
of {[μ1, . . . , μp]}∑

i |μi|�1/2 (which allows us to perform the
standard Fourier transform of this function). The mean value

of the quadratic cost is given by∫
Rp

d θ̃
∣∣ 〈χθ̃

∣∣ψN
f ,θ

〉 ∣∣2(θ̃ − θ)2 = 1

N2

∫
Rp

d θ̃ | f̂ (θ̃)|2θ̃2
, (87)

where f̂ is the Fourier transform of f and we dropped the
irrelevant dependence on θ.

Going back to the μ representation and performing the
minimization over f we get

�2θ̃
MM
JNT 
 1

N2
min

f

∫
∑

i |μi|�1/2
dμ f ∗(μ)

(
p∑

k=1

−∂2
μk

)
f (μ),

with
∫
∑

i |μi|�1/2
dμ | f (μ)|2 = 1,

f (μ) = 0 for μ on the boundary
∑

i

|μi| = 1/2. (88)

The problem is therefore equivalent to minimization of
the kinetic energy of a particle in infinite potential well in a
shape of a p-dimensional simplex. The analytical solutions are
known only for p = 1, 2 (see Appendix D). For higher number
of parameters we will derive a lower bound. As f (μ) = 0 ev-
erywhere outside of

∑
i |μi| � 1

2 , the mean value of
∑

i |μi| is
trivially smaller or equal 1

2 . Next, thanks to the symmetry, we
may assume, without loss of generality, that the function f (μ)
minimizing the above is fully symmetric under the exchange
of variables μi and therefore all the mean values of |μi| are
equal and �1/(2p) (see also Supplemental Material of [61]
for a broader discussion of this argument). The minimal sum
of variances may be therefore be bounded as

�2θ̃
MM
JNT � p × min

g

∫ +∞

−∞
dμ g∗(μ)

(
− ∂2

∂2μ

)
g(μ) (89)

with∫ +∞

−∞
dμ|g(μ)|2 = 1,

∫ +∞

−∞
dμ|g(μ)|2|μ| = 1

2p
. (90)

Moreover, from the symmetry of the problem, the solution
will be symmetric with respect to the 0 point (which, assuming

differentiability, implies ∂g
∂μ

|μ=0 = 0). Therefore, the problem
is equivalent to

min
g

∫ +∞

0
dμ g∗(μ)

(
− ∂2

∂2μ

)
g(μ), with

∂g

∂μ

∣∣∣∣
μ=0

= 0,

∫ +∞

0
dμ|g(μ)|2 = 1,

∫ +∞

0
dμ|g(μ)|2|μ| = 1

2p
, (91)

which may be solved using the Lagrange multiplayers
method. The solution in terms of the Airy function yields the
final bound (see Appendix D for detail derivation)

�2θ̃
MM
JNT � 0.63p3

N2
. (92)

We are unable to prove the tightness of the above bound. How-
ever, we are able to point out an exemplary state for which
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FIG. 3. The minimal achievable cost in the problem of estimat-
ing spatial distribution of magnetic field in p point is analyzed in
the limit of large N (with no repetition scenario). The triangle and
square represent analytically found results for p = 1, 2. The solid
line represents the variance obtainable by exemplary suboptimal state
state. The dotted line corresponds to the separate strategy, while the
dashed one is the fundamental (not necessary obtainable) bound (92).

the cost closely approaches the bound. Consider the largest
possible p-dimensional ball inside the simplex

∑
i |μi| � 1

2
and then as f (μ) choose the function which minimizes the
kinetic energy inside this ball with the boundary condition
f (μ) = 0 on the border and outside of the ball. The cost
corresponding to this construction, the bound Eq. (92), the
values of analytical solution of Eq. (88) for p = 1, 2 as well
as �2θ̃

MM
SEP are plotted together in Fig. 3 (details of the calcu-

lations may be found in Appendix D). For large p, the total
cost corresponding to the described strategy leads to p3/N2,
and we finally get

�2θ̃
MM
JNT 
 cp3

N2
, 0.63 � c1 � 1. (93)

When comparing to Eq. (79), we see that in the MM sce-
nario not only the bound is not tight, but it even fails to
properly predict the scaling of the cost with the number of
parameter p.

To summarize, for the problem of estimation of the spa-
tially distributed single-component magnetic field, with full
freedom in choosing both the position and orientation of the
atoms, for large p we obtain

�2θ̃
CR
SEP 
 p2

kn2
, �2θ̃

MM
SEP 
 π2 p3

N2
,

�2θ̃
CR
JNT 
 p2

kn2
, �2θ̃

MM
JNT 
 c1 p3

N2
, 0.63 � c1 � 1. (94)

If one wants to compare these results with the previous
example (where the positions of the atoms were fixed), one
should bear in mind that in the previous example one gate
corresponded to p atoms, not one. Therefore, in order to
make the comparison fair, one should rewrite Eqs. (70) and
(71) in terms of the atoms used Na = pN , na = pn, which

(a) (b)

FIG. 4. The problem of estimating spatial distribution of mag-
netic field sensed by N spin- 1

2 atoms, with full freedom in choosing
their position and orientation may be equivalently seen as the prob-
lem of p phases sensing in a 2p-arms interferometer using N photons
(a). This is a slightly modified version of the problem discussed
in [61], where p phases were measured in the presence of a single
reference arm in (p + 1)-arms inteferometer (b).

gives

�2θ̃
CR
SEP+ 
 p3

kn2
a

, �2θ̃
MM
SEP+ 
 π2 p4

N2
a

�2θ̃
CR
JNT 
 p3

kn2
a

, �2θ̃
MM
JNT 
 π2 p3

N2
a

. (95)

Then it is clear that for the same amount of atoms used, all
the costs from Eq. (95) are larger than the corresponding ones
from Eq. (94), as in Eq. (95) fewer degrees of freedom are
allowed.

Finally, one may notice that the problem of estimating
magnetic field in p points by N atoms (with full freedom in
choosing their spin and position) is equivalent to a slightly
modified problem of multiphase estimation discussed in [61].
Indeed, treating the points in space as arms of an interferom-
eter and atoms as photons, we may think about this problem
in terms of a 2p-arm inferferometer with phase shifts ± 1

2θi in
each arm. Therefore, it makes sense to compare Eq. (94) with
the analog costs obtained in [61] for the problem of estimat-
ing p unknown phase shifts in a (p + 1)-arm interferometer
(where the one arm is the reference arm); both versions are
schematically presented in Fig. 4. In the latter case, the single-
photon Hilbert space is spanned by {|0〉 , |1〉 , . . . , |p〉} (where
|0〉 corresponds to the reference arm, and |i〉 to the sensing
arms), and the quantum gate is Uθ = exp(i

∑p
i=1 θi |i〉 〈i|). For

large p,

�2θ̃
CR
SEP 
 p2

kn2
, �2θ̃

MM
SEP 
 π2 p3

N2
,

�2θ̃
CR
JNT 
 p2

4kn2
, �2θ̃

MM
JNT 
 c2 p3

N2
, 1.89 � c2 � 2. (96)

Comparing Eq. (94) with Eq. (96), we may notice signifi-
cant differences. While in the (p + 1)-arm interferometer, the
problem in both the CR and the MM approaches reveals a
constant advantage of JNT over SEP strategies of a similar
order (around 5), for Eq. (94) no advantage is observed in the
CR approach, while the one in the MM approach is even larger
(around 10).
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This effect, however, may be easily understood after an-
alyzing the structure of the states optimal for measuring
parameters separately [Eqs. (76) and (78)]. While in the case
studied in [61], in order to estimate any of the parameters one
needed to use the same reference arm, in the presently studied
model each phase may be measured using two dedicated arms
with phase shifts [−θi/2] and [+θi/2]. Consequently, the cor-
responding |n00n〉 states [Eq. (76)] are mutually orthogonal:
the resources “consumed” by one parameter cannot be used
to estimate others. On the other hand, looking at |SIN〉 state
[Eq. (78)] we see that the greatest weights are attached to the
vectors with relatively small differences mi+ − mi− = 0. As
there is no problem in distributing photons (or atoms) in such
a way that this difference is small for all i, such a component
may be used in estimating all the parameters simultaneously,
which is responsible for the significant advantage of the joint
strategy in this case.

C. Multicomponent magnetic field estimation

As the last problem, let us discuss the canonical example
of estimation of parameters associated with noncommuting
generators. More specifically, we focus on the problem of
estimating the three components of a magnetic field vector
θ = [θ1, θ2, θ3]T in a given point in space using spin- 1

2 atoms.
Single-atom Hilbert space is therefore simply a qubit space
and the corresponding quantum gate reads as

Uθ = eiθ·σ/2, (97)

where σ = [σ1, σ2, σ3]T is the vector of Pauli matrices. Un-
like in the previously discussed examples, here the minimal
achievable cost depends on the actual values of the parameters
θ [46]. For simplicity, let us focus on estimation around point
θ0 = [0, 0, 0]T .

Note that for any normalized vector a, the operator a · σ

has the same eigenvalues. Hence, invoking from Eqs. (59)
and (60) we see that a rotation in the parameter space can-
not improve the precision in a separate protocol; there is no
advantage in SEP+.

Let us start by discussing the many-repetition scenario. In
a separate strategy, each component may be measured with a
proper n00n state 1√

2
(|+〉⊗n

x,y,z + |−〉⊗n
x,y,z), which leads to

�2θ̃
CR
SEP 
 3 × 1

k/3
× 1

n2
= 9

kn2
. (98)

For the joint strategy it turns out that, unlike in the previously
discussed examples, application of the adaptive scheme with
ancillas allows to beat the performance of the optimal parallel
strategy. We will, therefore, discuss these two strategies inde-
pendently.

The minimal trace of inverse of the QFI achievable for
parallel scheme may be found analytically [36] (for n � 6):
Tr(F−1

parallel ) = 9
n(n+2) [and condition Eq. (23) is satisfied], so

�2θ̃
CR
JNTparallel 
 9

kn(n + 2)

n�1≈ 9

kn2
, (99)

which for large n is almost the same as for the separate strat-
egy. Therefore, the advantage offered by joint measurement in
the parallel strategy disappears with increasing n.

In contrast to the above, it was shown in [45] that for
the adaptive ancilla-assisted sequential scheme utilizing as an
input state

|ψin〉 = 1√
2

(|+〉z |0〉A + |−〉z |1〉A) (100)

(where |0〉A , |1〉A belongs to ancillary system) and acting on
it by the gate n times, one may obtain Tr(F−1

adaptive ) = 3
n2 [satis-

fying Eq. (23)], and hence

�2θ̃
CR
JNTadaptive 
 3

kn2
, (101)

which saturates Eq. (53). Therefore, we see that in the many-
repetition scenario, the possibility of acting sequentially is
crucially needed to take the advantage from the joint estima-
tion approach as it allows to decrease the final variance by
a factor 3, compared to the optimal separate or joint parallel
strategy.

Consider now the fully optimal usage of N gates. Note
that, unlike the previously discussed examples, here the exis-
tence of unknown parameters θ j �=i may significantly impede
estimation of θi, as it may be impossible to find an initial
state, for which the evolution would depend only on θi. As
the consequence, we can only write the lower bound:

�2θ̃
MM
SEP � 3 × π2

(N/3)2
= 27π2

N2
. (102)

Still, it is not obvious how to obtain such a precision while
measuring parameters separately.

To calculate the asymptotically optimal cost in joint esti-
mation we use the fact that the problem may be extended to
the covariant one, which allows us to use the reasoning from
Sec. III C, stating that optimal asymptotical local minimax
cost is the same as the global one, obtainable within the
parallel scheme. In [55,57], the estimation of a completely
unknown element of SU(2) within the parallel strategy was
discussed with the covariant cost

e(θ, θ̃) = 6 − 2 Tr
(
U (1)

θ
U (1)†

θ̃

) |θ|,|θ̃|�1≈ 2|θ − θ̃|2, (103)

where U (1)
θ

is a rotation matrix of a spin-1 particle. It was
shown that the asymptotic minimal cost is e(θ, θ̃) 
 8π2/N2,
which is achievable using initial state

|ψin〉 =
√

2

N/2 + 1

N/2−1∑
j=0

(
1
2

) sin

(
( j + 1)π

J + 1

)

×
(

2 j+1∑
α=1

| jα, mj = α〉√
2 j + 1

)
, (104)

where | jα, mj = α〉 are states with a well-defined total an-
gular momentum j and its projection onto z direction, while
α numerates different subspaces corresponding to equivalent
irreducible representations of SU(2). Therefore, including the
factor 2 that appears in Eq. (103) we get

�2θ̃
MM
JNT 
 4π2

N2
, (105)

which shows a significant advantage over the optimal separate
strategy. Based on the discussion in Sec. III C and [82], this
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result, which is already obtainable within a parallel scheme,
cannot be improved by applying any adaptive strategy. This
is in stark contrast to the many-repetition scenario, where a
parallel joint strategy offers no asymptotical advantage with
respect to a separate one, while adaptiveness allows decreas-
ing the cost by a factor of 3. It is also worth noting that the
result (105) may be also obtained for parallel strategies with
the usage of Fourier analysis, as shown in [[59], Sec. 12].

Analogous reasoning may be performed in a situation
when one component of the magnetic field is known to be
zero, and only the two remaining components are being esti-
mated. For the separate strategy we get

�2θ̃
CR
SEP 
 4

kn2
, �2θ̃

MM
SEP � 8π2

N2
(106)

for the joint CR

�2θ̃
CR
JNTparallel 
 4

kn(n + 2)
, �2θ̃

CR
JNTadaptive 
 2

kn2
, (107)

while for the joint MM

�2θ̃
MM
JNT 
 4ξ 2

N2
≈ 2.34π2

N2
, (108)

where the parallel strategy obtaining above was found in
[53,54] and ξ ≈ 2.4048 is first zero of the Bessel function
J0(x). Equation (108), similarly like Eq. (105), is valid for
both parallel and sequential adaptive strategies.

If, on the other hand, the direction of the magnetic field is
known and only the length of the magnetic vector is to be es-
timated, the problem is equivalent to single-phase estimation
problem discussed before.

A natural extension of all the above considerations would
be to combine all the examples, and consider the most general
problem of estimating all the three components of a spatially
distributed magnetic field. Based on the analysis performed
we expect no improvement in the CR approach and some con-
stant improvement in the MM approach. The strict analysis of
this problem, however, is beyond the scope of this paper.

V. CONCLUSIONS

The examples studied demonstrate that, unlike in the single
unitary parameter case, in a multiparameter estimation prob-
lem there is no simple correspondence between the results
obtained within the many-repetition paradigms and the one
where all the resources are accumulated in single experimen-
tal realization. In the case where the total amount of resources
is limited (no matter how large), the analysis based only on
the QFI is not sufficient to draw not only quantitative but
even qualitative conclusions. The presented examples showed
that such an approach tends to overrate the performance of
SEP/SEP+ strategies and this opens up the possibility that
certain joint estimation metrological strategies may offer a
significant advantage, even if this is not apparent in a formal-
ism based on the QFI.
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APPENDIX A: DIFFERENT APPROACH TO THE
IDENTIFICATION OF THE ADVANTAGE OF JOINT

ESTIMATION PROTOCOLS

Alternatively to the approaches described in the main
text, the issue of the potential gain coming from measuring
multiple parameters simultaneously versus measuring them
separately may be explored abstracting from the problem of
optimal division of resources, but instead by analyzing the
so-called probe incompatibility [43,44]. In this approach, the
minimal cost achievable in a joint strategy is compared with
the one coming from measuring each parameter individually,
but with the assumption that in the latter case for each param-
eter one spends the same amount of resources as in the whole
joint strategy (so effectively in the separate strategy p times
more resources are consumed).

While in this paper the potential superiority of joint mea-
surement is discussed for a particular cost function (defined by
the chosen parametrization for which it is equal to identity),
one may instead try to look at the problem as the feature of
the channel itself. To do so, in [43] the following quantity was
introduced:

J∗ = max
{wi}

(
min(n,k) protocol Tr(W �′)∑

i min(n,k) protocol wT
i �′wi

)
, (A1)

where W = ∑
i wiwT

i . Note that when compared to the origi-
nal notation [43], we have added a prime sign to �′ and F ′, as
we reserve the unprimed parametrization for the case where
the cost matrix is the identity.

In order to understand this approach, in the context of
Fig. 1, let us perform a reparametrization θ = Aθ′ with the
transformation matrix A = [w1, . . . , wp]T . Then, for any fixed
set {wi} we have

min(n,k) protocol Tr(W �′)∑
i min(n,k) protocol wT

i �′wi
= min(n,k) protocol Tr(�)∑

i min(n,k) protocol �ii

= �2θ̃
CR
JNT∑

i min(n,k) protocol �2θ̃i
(A2)

so for a fixed {wi} it corresponds to a situation where Bob
alternatively sends nk gates to Alice (nominator) or the same
amount of gates directly to each of the minions (denominator).
In this sense, the denominator is similar to the SEP strategy
(but with omitted problem or resource distribution). Note,
however, that the maximization over {wi} in Eq. (A1) does not
correspond to SEP+ (as here also the value in the nominator
changes while for the reparametrization of A in SEP+ it does
not); it should be rather seen as maximization over all possible
Bob’s initial parametrizations.

APPENDIX B: NECESSITY OF A NONORTHOGONAL
TRANSFORMATION IN ORDER TO OBTAIN THE

MINIMAL SEP+ COST: EXAMPLE

Here we discuss an exemplary two-parameter estimation
problem, for which in order to obtain the minimal cost in
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SEP+ protocol we need to apply a nonorthogonal transformation A in the parameter space. We will focus on the many-repetition
paradigm and the CR formalism. Consider a unitary channel

Uθ = eiθ·�, �1 = 1
2 diag(+α,−α,+β,−β ),

�2 = 1
2 diag(+β,−β,+α,−α), (B1)

where 0 < β < α and diag(. . . ) is a diagonal matrix acting on the Hilbert space spanned by |1〉 , |2〉 , |3〉 , |4〉, so

θ · � =

⎡
⎢⎢⎣

+ 1
2 (αθ1 + βθ2) 0 0 0

0 − 1
2 (αθ1 + βθ2) 0 0

0 0 + 1
2 (βθ1 + αθ2) 0

0 0 0 − 1
2 (βθ1 + αθ2)

⎤
⎥⎥⎦. (B2)

Since the generators mutually commute, the Fisher informa-
tion matrix for the input |ψ〉 is given by

[F ]i j = 4(〈ψ | �i� j |ψ〉 − 〈ψ | �i |ψ〉 〈ψ | � j |ψ〉) (B3)

and the corresponding CR bound is saturable [as Im(�1�2) =
0]. By a direct calculation one can see that the cost of joint

estimation �2θ̃
CR
JNT is minimized for the state |ψ〉 = 1

2 (|1〉 +
|2〉 + |3〉 + |4〉) and that for this state

�2θ̃
CR
JNT 
 1

k
Tr(F−1) = 1

k

(
2

(α − β )2
+ 2

(α + β )2

)
. (B4)

In order to calculate �2θ̃
CR
SEP+, instead of performing a di-

rect optimization given in Eq. (27), we just use the fact that

�2θ̃
CR
SEP+ � �2θ̃

CR
JNT and show a particular transformation A for

which this bound is saturated. Let us choose as new parame-
ters θ ′

1 = αθ1 + βθ2, θ ′
2 = βθ1 + αθ2, so

A−1 =
[
α β

β α

]
⇒ A = 1

α2 − β2

[
α −β

−β α

]
. (B5)

After such a transformation, the differences between extreme
eigenvalues of new generators are both equal ∀i λ[AT �i] =
1, and the new parameters may be effectively measured with
states 1√

2
(|1〉 + |2〉), 1√

2
(|3〉 + |4〉), which leads to

�2θ̃
CR
SEP+ 
 1

k

(
p∑

i=1

√
[A2]ii

)2

= 1

k

(
2

(α − β )2
+ 2

(α + β )2

)
,

(B6)
which is indeed equal to Eq. (B4). Finally, let us show that
this result is not achievable, if one restricted just orthogonal
transformations O. Let

O−1 = [o1, o2]T =
[

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
. (B7)

Then, [OT O]ii = 1 and [O−1F−1
i O−1T ]ii = oT

i F−1
i oi so

�2θ̃
CR
SEP+,ortho 
 1

k
min

ϕ

(
2∑

k=1

√
min
|ψk〉

oT
i [Fi]−1oi

)2

. (B8)

Both Eqs. (B6) and (B8) are compared in Fig. 5 for different
ratios between α and β. One may see that for the ratio around
1
2 a significant advantage due to application of the nonorthog-
onal transformation may be observed.

APPENDIX C: RELATION BETWEEN THE OPTIMAL
GLOBAL GROUP-INVARIANT COST AND THE LOCAL

QUADRATIC MINIMAX COST IN THE LIMIT OF LARGE N

In this Appendix, we formalize the reasoning from
Sec. III C.

Theorem. Consider a quantum channel Ug, g ∈ G, which
corresponds to a unitary representation of a compact group
G in some Hilbert space Ug1Ug2 = Ug1g2 , and the cost func-
tion is invariant with respect to the action of the group
∀g,g̃,h∈Gcost(hg, hg̃) = cost(g, g̃). Let θ = [θ1, . . . , θp] be a lo-
cal parametrization around some g0 ∈ G. Let Gδ ⊂ G be the
subset of G containing all gθ such that ∀i θi ∈ [−δ/2,+δ/2].
Then, for the most general adaptive scheme, the local asymp-
totic minimax cost is the same as the global asymptotic
minimax cost:

inf
{MN,g̃,ρN,g}

lim
δ→0

lim
N→∞

N2 sup
g∈Gδ

∫
dg̃Tr(MN,g̃ρN,g)cost(g, g̃)

= inf
{MN,g̃,ρN,g}

lim
N→∞

N2 sup
g∈G

∫
dg̃Tr(MN,g̃ρN,g)cost(g, g̃).

(C1)

Moreover, as obtaining optimal global asymptotic minimax
cost was proven not to require adaptiveness [82], the above
equation remains valid when restricting the right-hand side to
parallel strategies. It also implies that there is no asymptotic
advantage in applying adaptive strategy also in the local case.

FIG. 5. The ratio between the minimal cost in a separate strategy
achievable via optimization over orthogonal reparametrization and a
general one.
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Proof. Let us introduce the notation for the minimax cost
with a finite δ, N :

minimax(Gδ, N ) = inf
MN,g̃,ρN,g

sup
g∈Gδ

∫
dg̃Tr(Mg̃ρN,g)cost(g, g̃).

(C2)
We would like to prove that in the limit of large N , the value
of δ has no impact on the final cost. It is clear that

∀δ minimax(Gδ, N ) � minimax(G, N ). (C3)

To bound the cost for finite δ from below, we use the fol-
lowing construction [27,61]. Having at our disposal N gates
in total we may at first perform

√
N-independent measure-

ments to find an approximated value gest. Due to the central
limit theorem, the probability that g /∈ gestGδ (gestGδ is the
set Gδ shifted by the action of gest) decreases exponentially
perr(

√
N ) ∝ e−√

N . Next, we spend the remaining N − √
N

gates to perform estimation around the point gest. Since from
the point of view of the initial problem of estimating an un-
known g with N gates, such a procedure might be suboptimal,
we have

minimax(G, N )

� perr(
√

N )cmax

+ [1 − perr(
√

N )]minimax(gestGδ, N −
√

N ), (C4)

where cmax = maxg,g̃ cost(g, g̃). Moreover, due to the symme-
try of the whole problem, the right-hand side does not depend
on gest. After application of limN→∞ N2 to the both sites, and

the use of limN→∞ (N−√
N )2

N2 = 1, we obtain

∀δ lim
N→∞

N2minimax(G, N ) � lim
N→∞

N2(Gδ, N −
√

N )

= lim
N→∞

N2(Gδ, N ), (C5)

which together with Eq. (C3) gives

∀δ lim
N→∞

N2minimax(Gδ, N ) = lim
N→∞

N2minimax(G, N ).

(C6)
Finally, since in general for any functional family
limx→x0 infy Fx(y) � infy limx→x0 Fx(y), the left-
hand side of Eq. (C1) may be bounded from
below by limδ→0 limN→∞ N2minimax(Gδ, N ) =
limN→∞ N2minimax(G, N ), while the right-hand side is
exactly equal to limN→∞ N2minimax(G, N ). This ends the
proof. �

It is worth to note that if all the elements of the group repre-
sentation commute [Ug1 ,Ug2 ] = 0, then in order to implement
the strategy (C4) one does not need adaptiveness and the pro-
cedure may be performed within the parallel scheme. Indeed,
in such a case there is a single state optimal for local measure-
ments around an arbitrary point gest, as rotating the state is
equivalent to rotating the measurement in the opposite direc-
tion Tr(MUgUg−1

est
ρ0U

†
g−1

est
U †

g ) = Tr(U †
g−1

est
MUg−1

est
Ugρ0U †

g ), so the

knowledge of the value of gest is not needed at the level of state
preparation. This is, however, no longer true if [Ug1 ,Ug2 ] �= 0.
Still, regardless of this suboptimal strategy used in the proof,
a fully optimal strategy does not require adaptiveness and may
be performed within parallel scheme [82], so theorem remains
valid even when restricted to parallel strategies.

Quadratic cost approximation

As shown in [[84], Sec. 9] [[85], Sec. II-D] in local esti-
mation, analyzed within the many-repetition scenario, even if
one considers general cost function, in the limit k → ∞ it may
be well approximated by the quadratic term Tr(W �) = (θ̃ −
θ)T W (θ̃ − θ) (where W is the Hessian of the cost function).
However, in principle, it is not so clear in the single-repetition
approach, as while in the many-repetition scenario, due to
the central limit theorem, all probabilities converge to the
Gaussian ones (with exponentially decreasing tails), in the
single-shot case the strategy minimizing the cost may lead to
much slower decreasing tails [75].

More formally, let W be the Hessian of the cost function
around g0, i.e., Wi j = ∂θi∂θ j cost(g0, gθ ). Then for the partic-
ular strategy {MN,θ̃, ρN,θ} which is known to lead to the cost
∝ 1

N2 it is not clear if in the point θ = [0, . . . , 0]:

lim
N→∞

N2
∫

d θ̃ Tr(MN,θ̃ρN,0)cost(g0, gθ̃ )

?= lim
N→∞

N2
∫

d θ̃ Tr(MN,θ̃ρN,θ )
∑

i j

Wi j θ̃iθ̃ j (C7)

as in principle it may happen that Tr(MN,θ̃ρN,0) decrease
like ∝ 1

N2|θ|2 for large θ [making also higher derivatives of
cost(g0, gθ̃ ) not negligible]. Below we prove that for the strat-
egy minimizing the left-hand side of above, such a tail always
decreases fast enough (because if it were otherwise, one could
use some small part of gates ∼√

N to cut this tail).
Theorem. For the optimal (both adaptive or parallel) global

strategy {Mopt
N,g̃, ρ

opt
N,g}, invariant under the group action, for the

cost cost(g0, gθ̃ ) = ∑
i j Wi j θ̃iθ̃ j + o(θ̃iθ̃ j ) (where W > 0),

lim
N→∞

N2
∫

dg̃Tr
(
Mopt

N,g̃ρ
opt
N,g0

)
cost(g0, g̃)

= lim
N→∞

N2
∫

d θ̃ Tr
(
Mopt

N,gθ̃
ρ

opt
N,g0

)∑
i j

Wi j θ̃iθ̃ j . (C8)

Proof. For any g we split the mean cost integral into two
parts:

∀g∈G

∫
G

dg̃Tr
(
Mopt

N,g̃ρ
opt
N,g

)
cost(g, g̃)

=
∫

Gδ

dg̃Tr
(
Mopt

N,g̃ρ
opt
N,g

)
cost(g, g̃)︸ ︷︷ ︸

C1(N,δ)

+
∫

G\Gδ

dg̃Tr
(
Mopt

N,g̃ρ
opt
N,g

)
cost(g, g̃)︸ ︷︷ ︸

C2(N,δ)

. (C9)

Next, we prove by contradiction that ∀δ>0 limN→∞
N2C2(δ, N ) = 0.

Assume, that limN→∞ N2C2(δ, N ) > 0. For a given
δ let us choose finite neighborhoods of g0, namely,
G�1 , G�2 , such that G�1 ⊂ G�2 and ∀g∈G�1

G�2 ⊂ gGδ ,
satisfying maxg∈G�1

cost(g0, g) < ming∈G�1 ,g̃∈G\G�2
cost(g, g̃)

(see left part of Fig. 6).
Next, similarly as in the previous proof, one may at first

spend
√

N gates to find gest, such that the probability that the
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FIG. 6. Graphical illustration of the proof. One spends at first
√

N gates to find gest such that the probability of finding true value of g
outside of gestG�1 is negligible. Then, each time where the second part of the measurement point g̃ /∈ gestG�2 , it is more efficient to set g̃ = gest.

true value of g lays outside of gestG�1 decreases exponentially
perr(

√
N ) ∝ e−√

N . Then, one uses the remaining N − √
N

gates to perform the mentioned Mopt

N−√
N,g̃

ρ
opt

N−√
N,g

with the fol-

lowing correction: each time when g̃ points outside of gestG�2 ,
one is forced to estimate g̃ = gest. The total cost for such a
constructed strategy may be bounded from above:

� perr(
√

N )cmax + [1 − perr(
√

N )][C1(N −
√

N, δ)

+ C�(N −
√

N, δ)], (C10)

where cmax = maxg,g̃∈G cost(g, g̃) and

C�(N −
√

N, δ) =
(∫

G\Gδ

dg̃Tr
(
Mopt

N−√
N,g̃

ρ
opt

N−√
N,g

))
max
g∈G�1

cost(g0, g). (C11)

Since

C2(N −
√

N, δ) �
(∫

G\Gδ

dg̃Tr
(
Mopt

N−√
N,g̃

ρ
opt

N−√
N,g

))
min

g∈G�1 ,g̃∈G\G�2

cost(g, g̃), (C12)

we have limN→∞ N2(C2(N − √
N, δ) − C�(N − √

N, δ)) >

0. It means that cutting the tail indeed decreases the cost,
which leads to a contradiction with the assumption about
the optimality of {Mopt

N,g̃, ρ
opt
N,g}. Now, as from C(g0, gθ̃ ) =

Wi j θ̃iθ̃ j + o(θ̃iθ̃ j ) we have ∀ε ∃δ ∀−δ/2�θ̃i�+δ/2|C(g0, gθ̃ ) −
Wi jθiθ j | � ε, the statement is proven. �

From the above, if Wi j = δi j , then for the optimal strategies
the cost is equivalent to �2θ̃ discussed in the main paper.
Below we show that this is indeed the case for examples
discussed in Sec. IV C. In [55] the authors considered the
problem of transmitting a reference frame by sending N spin-
1
2 atoms, which is equivalent to the estimation of a completely
unknown element of SU(2). As the figure of merit they chose
the error function given as

e(g, g̃) = 6 − 2 Tr
(
U (1)

g U (1)†
g̃

)
, (C13)

where U (1)
g is the rotation matrix of the spin-1 particle. By a

direct calculation

Tr
(
U (1)

g0
U (1)†

gθ̃

) = 1 + 2 cos(|θ|), (C14)

so

e(g0, gθ̃ ) = 4[1 − cos(|θ̃|)] = 8 sin2(|θ̃|/2). (C15)

Therefore, indeed we have

cost(g0, gθ̃ ) = 1
2 e(0, gθ̃ ) = 4 sin2(|θ̃|/2) = θ̃

2 + o(θ̃iθ̃ j ).
(C16)

In [53,54] the authors considered the problem
of transmitting a unit vector �n by sending N spin-
1
2 atoms. After introducing parametrization �n =
[cos(ϑ ) cos(ϕ), cos(ϑ ) sin(ϕ), sin(ϑ )] with ϕ =

√
θ2

1 + θ2
2

and ϑ = arctan(θ1/

√
θ2

1 + θ2
2 ), the problem is equivalent to

the estimation of the channel Ugθ
= ei(θ1σx/2+θ2σy/2). As the

figure of merit they chose fidelity:

F (�n, �̃n) = (1 ± �n · �̃n)/2, (C17)

for which we have

F (�n0, �nθ̃ ) = [1 + cos(|θ̃|)]/2 = 1 − sin2(|θ̃|/2), (C18)

so indeed

cost(�n0, �nθ̃ ) = 4[1 − F (�n0, �nθ̃ )] = 4 sin2(|θ̃|/2)

= θ̃
2 + o(θ̃iθ̃ j ). (C19)

APPENDIX D: DERIVATION OF THE BOUND AND AN
EXEMPLARY STATE FOR ESTIMATION OF MAGNETIC

FIELD IN p POINTS OF SPACE

1. Analytical solutions for p = 1, 2

For p = 1 the simplex
∑p

i=1 |μi| � 1/2 is simply
the line μ1 ∈ [−1/2,+1/2], so the optimal solution is
f (μ1) = √

2 cos(πμ1) with the cost π2/N2. For p = 2 the
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simplex
∑p

i=1 |μi| � 1/2 takes the form of a square with
side

√
2/2 rotated by the angle 45◦ relative to the coordinate

axes, which allows for an effective coordinate separa-

tion; therefore, the solution is f (μ1, μ2) = 2 cos[
√

2π (μ1 +
μ2)/

√
2] cos[

√
2π (μ1 − μ2)/

√
2] with the corresponding

cost �2θ̃
MM
JNT = 2 × (

√
2)2π2/N2 = 4π2/N2.

2. Derivation of the bound

For the problem (91),

�2θ̃
MM
JNT � p

N2
min

g

∫ +∞

0
dμ g∗(μ)

(
− ∂2

∂2μ

)
g(μ), with

∂g

∂μ

∣∣∣∣
μ=0

= 0, (D1)∫ +∞

0
dμ|g(μ)|2 = 1, (D2)∫ +∞

0
dμ|g(μ)|2|μ| = 1

2p
, (D3)

the solution may be found using the standard Lagrange multiplier method

− ∂2

∂μ2
g(μ) + g(μ)(λ1 + μλ2) = 0 ⇒ g(μ) ∝ Ai

(
λ

1/3
2

(
λ1λ

−1/3
2 + μ

))
, (D4)

where Ai(·) is the Airy function of the first kind. The condition ∂g
∂μ

|μ=0 = 0 implies λ1λ
−1/3
2 = A′

0 ≈ −1.019, where A′
0 is the

first zero of derivative of Ai(·). From Eqs. (D1) and (D2) we have

�2θ̃
MM
JNT � p

N2

∫ +∞
0 dμ

∣∣∂μAi
[
λ

1/3
2 (A′

0 + μ)
]∣∣2∫ +∞

0 dμ
∣∣Ai

[
λ

1/3
2 (A′

0 + μ)
]∣∣2 =

∫ +∞
0 dμ|∂μAi[(A′

0 + μ)]|2∫ +∞
0 dμ|Ai[(A′

0 + μ)]|2 λ
2/3
2 . (D5)

To get the value of λ2 we use Eqs. (D3) and (D2):

1

2p
=

∫ +∞
0 dμ

∣∣Ai
[
λ

1/3
2 (A′

0 + μ)
]∣∣2μ∫ +∞

0 dμ
∣∣Ai

[
λ

1/3
2 (A′

0 + μ)
]∣∣2 =

∫ +∞
0 dμ|Ai(A′

0 + μ)|2μ∫ +∞
0 dμ|Ai(A′

0 + μ)|2 λ
−1/3
2 , (D6)

so finally

�2θ̃
MM
JNT � p3

N2

4
( ∫ +∞

0 dμ|∂μAi[(A′
0 + μ)]|2)( ∫ +∞

0 dμ|Ai[(A′
0 + μ)]|2μ)2( ∫ +∞

0 dμ|Ai[(A′
0 + μ)]|2)3 ≈ 0.63p3

N2
. (D7)

3. Exemplary state

Finally, let us present a suboptimal, but an explicit, an-
alytical solution of the initial problem (88), which shows a
significant advantage compared with the optimal SEP proto-
col. Namely, we choose the largest possible p-dimensional
ball inside the simplex

∑
i |μi| � 1

2 and then take as the f (μ)
the function which minimizes the kinetic energy inside this
ball with a boundary condition f (μ) = 0 on the border and
outside of the ball. The Laplacian for spherical coordinated is
given as

� f = ∂2 f

∂r2
+ p − 1

r

∂ f

∂r
+ angular part, (D8)

where the exact form of the angular part is irrelevant for the
discussion. The corresponding eigenstates are the ones of the
form

f (r) ∝ r (2−p)/2Jp/2−1(
√

Er) ⇒ −� f (r) = E f (r), (D9)

where Jα (·) is the Bessel function of the first kind. As the
radius of the biggest ball inside the simplex R satisfies

R2 =
p∑

i=1

(1/2p)2 = 1

4p
, (D10)

and taking into account the boundary condition f (R) = 0 we
have

√
E

1

2
√

p
= jp/2−1,1 ⇒ E = p(2 jp/2−1,1)2, (D11)

where jp/2−1,1 is the zero of the Bessel function Jp/2−1(x).
Since for large p we have jp/2−1,1 ≈ p/2, we get

E ≈ p3, (D12)

which yields the joint cost p3

N2 .
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[33] A. Luis and J. Peřina, Optimum phase-shift estimation and the
quantum description of the phase difference, Phys. Rev. A 54,
4564 (1996).

[34] V. Bužek, R. Derka, and S. Massar, Optimal Quantum Clocks,
Phys. Rev. Lett. 82, 2207 (1999).

[35] D. W. Berry and H. M. Wiseman, Optimal States and Almost
Optimal Adaptive Measurements for Quantum Interferometry,
Phys. Rev. Lett. 85, 5098 (2000).

[36] P. Kolenderski and R. Demkowicz-Dobrzanski, Optimal state
for keeping reference frames aligned and the platonic solids,
Phys. Rev. A 78, 052333 (2008).

[37] M. Tsang, H. M. Wiseman, and C. M. Caves, Fundamental
Quantum Limit to Waveform Estimation, Phys. Rev. Lett. 106,
090401 (2011).

[38] D. W. Berry, M. J. W. Hall, and H. M. Wiseman, Stochastic
Heisenberg Limit: Optimal Estimation of a Fluctuating Phase,
Phys. Rev. Lett. 111, 113601 (2013).

[39] M. Tsang, R. Nair, and X.-M. Lu, Quantum Theory of Super-
resolution for Two Incoherent Optical Point Sources, Phys. Rev.
X 6, 031033 (2016).

[40] M. G. Genoni, S. Mancini, and A. Serafini, Optimal feedback
control of linear quantum systems in the presence of thermal
noise, Phys. Rev. A 87, 042333 (2013).

[41] J. Liu and H. Yuan, Control-enhanced multiparameter quantum
estimation, Phys. Rev. A 96, 042114 (2017).

[42] R. Nichols, P. Liuzzo-Scorpo, P. A. Knott, and G. Adesso,
Multiparameter gaussian quantum metrology, Phys. Rev. A 98,
012114 (2018).

[43] F. Albarelli and R. Demkowicz-Dobrzanski, Probe Incompati-
bility in Multiparameter Noisy Quantum Metrology, Phys. Rev.
X 12, 011039 (2022).

012424-19

https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1016/j.physrep.2017.04.001
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1038/s41566-018-0301-6
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1103/PhysRevA.46.R6797
https://doi.org/10.1103/PhysRevLett.88.231102
https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1126/science.1097576
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1103/PhysRevA.72.042301
https://doi.org/10.1038/nphys1958
https://doi.org/10.1103/PhysRevLett.113.250801
https://doi.org/10.1103/PhysRevLett.112.080801
https://doi.org/10.1103/PhysRevX.7.041009
https://doi.org/10.1103/PhysRevLett.122.040502
https://doi.org/10.1038/s41467-017-02510-3
https://doi.org/10.22331/q-2020-07-02-288
https://doi.org/10.1007/s00220-011-1239-4
https://doi.org/10.1088/1367-2630/14/3/033040
https://doi.org/10.1103/PhysRevA.88.060101
https://doi.org/10.1103/PhysRevX.5.031018
https://doi.org/10.1088/1361-6455/aaf348
https://doi.org/10.1103/PhysRevLett.124.030501
https://doi.org/10.1103/PhysRevA.54.4564
https://doi.org/10.1103/PhysRevLett.82.2207
https://doi.org/10.1103/PhysRevLett.85.5098
https://doi.org/10.1103/PhysRevA.78.052333
https://doi.org/10.1103/PhysRevLett.106.090401
https://doi.org/10.1103/PhysRevLett.111.113601
https://doi.org/10.1103/PhysRevX.6.031033
https://doi.org/10.1103/PhysRevA.87.042333
https://doi.org/10.1103/PhysRevA.96.042114
https://doi.org/10.1103/PhysRevA.98.012114
https://doi.org/10.1103/PhysRevX.12.011039
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