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Steady-entangled-state generation via the cross-Kerr effect in a ferrimagnetic crystal
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For solid-state spin systems, the collective spin motion in a single crystal embodies multiple magnetostatic
modes. Recently, it was found that the cross-Kerr interaction between the higher-order magnetostatic mode and
the Kittel mode introduces a new operable degree of freedom. In this work we propose a scheme to entangle two
magnon modes via the cross-Kerr nonlinearity when the bias field is inhomogeneous and the system is driven.
Quantum entanglement persists at the steady state, as demonstrated by numerical results using experimentally
feasible parameters. Furthermore, we also demonstrate that entangled states can survive better in the system
where self-Kerr and cross-Kerr nonlinearities coexist. Our work provides insights and guidance for designing
experiments to observe entanglement between different degrees of freedom within a single ferrimagnetic crystal.
Additionally, it may stimulate potential applications in quantum information processing using spintronic devices.
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I. INTRODUCTION

Manipulation of the light-matter interaction has been
a long-standing and intriguing topic owing to its impor-
tant role in quantum information science. In recent years,
cavity magnonics has gradually demonstrated its unique
advantages when achieving magnon-based hybrid quantum
systems [1–11]. Among the ferrimagnetic materials and
microwave ferrites, yttrium iron garnet (YIG) has a high
spin density (∼4.22 × 1027 m−3) and a low dissipation rate
(∼1 MHz). Strong coupling between magnons (quanta of col-
lective spin excitations) in the YIG sphere and cavity photons
can be realized, resulting in cavity polaritons [2–6]. Moreover,
magnons can also interact with visible or near-infrared light
waves (via magneto-optical effect [12–16]), superconduct-
ing qubits (indirectly [17–19]), and mechanical deformation
modes (directly [20–23]) to form various hybrid systems.
Experimental and theoretical studies based on cavity magnon-
ics reveal a variety of phenomena, including magnon dark
modes [24], the magnon Kerr effect [25,26], non-Hermitian
physics [27–32], magnon-induced transparency [33], and non-
classical states [21–23,34–41].

Entanglement, as a resource for quantum technologies,
plays an essential role in quantum computing [42–45], quan-
tum metrology [46,47], and quantum teleportation [48].
In addition, it has expanded our understanding of many
physical phenomena, such as superradiance [49], supercon-
ductivity [50], and disordered systems [51]. The mechanism
by which continuous-variable (CV) entanglement is gener-
ated is based on the squeezing-type interactions within the
system [52]. In most systems, this type of interaction is
induced by nonlinearities such as radiation pressure inter-
actions in optomechanical systems [53,54], magnetostrictive
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interactions in cavity magnomechanical systems [21,23],
the self-nonlinear Kerr effect in cavity magnonic sys-
tems [34,40], and other systems that include parametric
amplifiers [22,37,39,55]. Also, it exists intrinsically in some
particular systems (for instance, the antiferromagnetic sys-
tem [35,56]). The nonlinearity is typically weak (for example,
the magnon self-Kerr coefficient has a magnitude of ∼0.1
nHz [57]), but they can be enhanced by driving the associated
spin-wave modes with a drive field.

Cross-Kerr interactions, as a type of nonlinear interaction
between fields and waves, have been observed in a vari-
ety of systems, including superconducting circuits [58–60],
atoms [61–63], and ions [64], among others. Recently, the
cross-Kerr interaction between the higher-order magnetostatic
(HMS) mode and the spin uniform precession mode (referred
to as the Kittel mode [65]) in cavity magnonics was ex-
perimentally observed [66]. When only one mode is driven,
the two spin-wave modes simultaneously undergo nonlinear
frequency shift, proving that self- and cross-Kerr effects are si-
multaneously excited. This nonlinearity enables the formation
of entanglement in this system. We anticipate that investi-
gating entanglement properties in such a system is critical
for understanding how internal degrees of freedom of the
ferrimagnetic crystal are correlated and the effects of different
nonlinearities on the entanglement. In light of the importance
of producing high-quality entangled photons in quantum com-
putation [67–69], entangled states of magnons may also play a
key role in other quantum technologies due to the advantages
of controllability, integrability, and reliability in solid-state
spin ensembles. In this article we explore the entanglement
between two spin-wave modes inside a single ferrimagnetic
crystal based on the cross-Kerr effect.

The article is organized as follows. In Sec. II we introduce
the fundamental model and derive the effective Hamiltonian.
In Sec. III the dissipative equations and the covariance matrix
of our proposal are given to quantify the bipartite and tripartite
entanglements. In Sec. IV we discuss the cross-Kerr induced
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entanglement with the optimized effective interaction between
the three modes. The condition for optimizing the tripar-
tite entanglement is found and confirmed by the parametric
transformation process with four-wave mixing. In Sec. V we
consider the case where two self-Kerr effects and the cross-
Kerr effect coexist. We find that the tripartite entanglement
can be enhanced, resulting from the emergence of a new
nonlinearity-induced parametric interaction and the enhanced
coupling between modes. The numerical results indicate that
all entanglements are robust against the temperature changes
in the environment. Entanglement detection and application
are given in Sec. VI. We summarize our work in Sec. VII.

II. MODEL HAMILTONIAN

We consider a cavity magnonic system consisting of the
cavity mode, Kittel mode, and HMS mode, as shown in
Fig. 1(a). The spin-wave mode interacts with the cavity photon
mode via a magnetic dipole-dipole interaction, while the HMS
mode couples to the Kittel mode via mode overlap [66,70,71].
The Hamiltonian of the whole system reads

H = Ha + Hb + Hc + H int
ab + H int

ac + H int
bc + Hd

b + Hd
c , (1)

where Ha, Hb, and Hc describe the free Hamiltonians of the
microwave cavity mode, the Kittel mode, and the HMS mode,
respectively, H int

xy (xy = ab, ac, bc) represents the interaction
between the corresponding modes, and Hd

b (Hd
c ) represents

the coupling between the drive field and the Kittel (HMS)
mode. It is worth noting that Hb, H int

ab , and Hd
b have forms

similar to Hc, H int
ac , and Hd

c , so derivations of the latter will not
be repeated here.

The free Hamiltonian of the cavity mode is

Ha = 1

2

∫ (
ε0E2

a + B2
a

μ0

)
dτ, (2)

where Ea (Ba) is the electric (magnetic) component of the
electromagnetic field inside the cavity and ε0 (μ0) is the
vacuum permittivity (permeability). By ignoring the constant
term, the single-mode electromagnetic field can be quantized
as Ha = h̄ωaâ†â, with â (â†) the annihilation (creation) oper-
ator of the photons at frequency ωa [72].

The free Hamiltonian of the magnon mode, including the
Zeeman energy and the magnetocrystalline anisotropy energy,
can be written as [25]

Hb = −
∫

Mb · B0dτ − μ0

2

∫
Mb · Han

b dτ, (3)

where B0 = B0ez is the applied static magnetic field in the
z direction for magnetizing the YIG sphere, with ei=x,y,z

the three orthogonal unit vectors [see Fig. 1(a)], and Mb =
h̄γgSb/VYIG ≡ (Mb

x , Mb
y , Mb

z ) is the magnetization of the Kittel
mode in the YIG sphere, with γg the gyromagnetic ratio [1],
VYIG the volume of the YIG sphere, and Sb ≡ (Sb

x , Sb
y , Sb

z ) the
collective spin operator of the Kittel mode. When the bias
magnetic field is applied along the YIG sphere [100] crystal
axis, the anisotropic field is given by [71,73]

Han
b = 2h̄γgSb

z Kb
an

μ0M2VYIG
ez, (4)

FIG. 1. (a) Sketch of the system (adapted from Ref. [66]). The
YIG sphere is mounted on the cavity wall and magnetized to satu-
ration by a bias magnetic field B0 in the z direction. The microwave
source connected to the loop antenna provides a drive magnetic field,
which is aligned along the y direction. The magnetic field of the
microwave cavity is in the x direction. Three magnetic fields are
mutually perpendicular at the position of the YIG sphere. The two
magnetic moments represent the two spin-wave modes, respectively
[the red (green) arrow corresponds to the Kittel (HMS) mode].
(b) Frequency spectrum of the cavity magnonic system. The exis-
tence of self-Kerr and cross-Kerr nonlinearities makes the microwave
drive induce the effective frequency shift of the two magnon modes.
When either the Kittel mode or the HMS mode is driven, the excess
energy scatters photons with high frequency. If the cavity photon is
matched with the frequency, the system exhibits all bipartite entan-
glements and genuine tripartite entanglement. (c) Four-wave mixing
in cavity magnonics. If the cavity detuning in (b) is tuned to the
matching condition (�a = −�̃b (c)), a four-wave mixing happens,
where two driving photons are adsorbed and the cavity mode and
the magnon mode are simultaneously excited

where Kb
an is the dominant first-order anisotropy coefficient

and M is the saturation magnetization. The magnon-photon
interaction Hamiltonian is

H int
ab = −μ0

∫
Mb · Badτ, (5)

where the magnetic field Ba = −(h̄ωa/μ0Va)1/2(â† + â)ex of
the cavity mode is polarized in the x direction, with Va the
volume of the cavity.

Due to the inhomogeneity of the bias magnetic field B0,
HMS modes can occur in the YIG sphere. Here we consider
one HMS mode near the Kittel mode in frequency. The in-
teraction between the Kittel mode and the HMS mode can be
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written as

H int
bc = α

∫
Mb · Mcdτ, (6)

with the coefficient α accounting for the overlap between
these two spin-wave modes [66]. Here the magnetizations of
the Kittel mode and the HMS mode are different (Mb �= Mc)
because more magnetic momentum is contributed to the Kittel
mode.

The interaction Hamiltonian between the drive field and the
Kittel mode is

Hd
b = −μ0

∫
Mb · Hd dτ, (7)

where Hd = iBd cos(ωdt )ey represents the drive field in the y
direction, with drive frequency (amplitude) ωd (Bd ). For the
low-lying magnon excitations with 〈ô†ô〉 � 2So, where o =
b, c, the Holstein-Primakoff transformations of the two modes
are given by [74]

Sz
o = So − ô†ô,

S+
o = ô(2So − ô†ô)1/2 � (2So)1/2ô,

S−
o = ô†(2So − ô†ô)1/2 � (2So)1/2ô†, (8)

with S±
o ≡ Sx

o ± iSy
o.

Under the rotating-wave approximation [72], the total ef-
fective Hamiltonian of the cavity magnonic system can be
rewritten as

H

h̄
= ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ + Kbb̂†b̂b̂†b̂ + Kcĉ†ĉĉ†ĉ

+ gab(â†b̂ + âb̂†) + gac(â†ĉ + âĉ†) + gbc(b̂†ĉ + b̂ĉ†)

+ Gb̂†b̂ĉ†ĉ + �b(b̂†e−iωd t − b̂eiωd t )

+ �c(ĉ†e−iωd t − ĉeiωd t ), (9)

where

ωb (c) = γgB0 − 2h̄γ 2
g Kb (c)

an Sb (c)

M2VYIG
− αh̄γ 2

g Sc (b)

VYIG
(10)

is the angular frequency of the Kittel (HMS) mode,

Kb (c) = − h̄γ 2
g Kb (c)

an

M2VYIG
, (11)

with Kb (c)
an < 0, is the self-Kerr nonlinear coefficients of the

Kittel (HMS) mode, and

gab (ac) =
√

Sb (c)γ 2
g μ0 h̄ωa

2Va
(12)

denotes the coupling strength between the cavity mode and
the Kittel (HMS) mode. Moreover, gbc = αh̄γ 2

g (SbSc)1/2/VYIG

represents the coupling between the two magnon modes,
G = αh̄γ 2

g /VYIG is the cross-Kerr coefficient, and �b (c) =
1
4μ0γgBd (2Sb (c) )1/2 are the Rabi frequencies of the two spin-
wave modes.

For the Kittel mode in a micrometer-scale YIG sphere, its
spin moment contributes more to the dipole than that of the
HMS mode [66]. Thus, we can reasonably ignore the coupling
between the cavity mode and the HMS mode. Similarly, the
beam-splitter-type interaction between the Kittel mode and

the HMS mode is also small and hence can be neglected in the
analysis. Then, in the rotating frame with respect to the drive
frequency ωd , the system Hamiltonian can be reduced to

Heff

h̄
= �aâ†â + �bb̂†b̂ + �cĉ†ĉ + Kbb̂†b̂b̂†b̂ + Kcĉ†ĉĉ†ĉ

+ gab(â†b̂ + âb̂†) + Gb̂†b̂ĉ†ĉ + �b(b̂† − b̂)

+ �c(ĉ† − ĉ), (13)

where �a (b,c) = ωa (b,c) − ωd .

III. DISSIPATIVE EQUATIONS AND
COVARIANCE MATRIX

Due to the coupling between the cavity magnonic system
and the environment, the system will inevitably be influenced
by the cavity decay and magnetic damping. Taking these
dissipative elements into account, the dissipative dynamics
of the system is described by a set of quantum Langevin
equations (QLEs)

dâ

dt
= −(i�a + γa)â − igabb̂ + (2γa)1/2âin,

db̂

dt
= −(i�b + γb)b̂ − igabâ − i�b − iGb̂ĉ†ĉ + (2γb)1/2b̂in

−2iKbb̂†b̂b̂,

dĉ

dt
= −(i�c + γc)ĉ − 2iKcĉ†ĉĉ − iGĉb̂†b̂ − i�c

+ (2γc)1/2ĉin, (14)

where γa, γb, and γc (âin, b̂in, and ĉin) represent the damping
rates (the zero-mean input noise operators) of the cavity mode,
the Kittel mode, and the HMS mode, respectively. Under the
Markovian reservoir assumption, the input noise operators are
characterized by the correlation functions [75]

〈ôin†(t )ôin(t ′)〉 = noδ(t − t ′),

〈ôin(t )ôin†(t ′)〉 = (no + 1)δ(t − t ′), (15)

with no = [exp(h̄ωo/kBTe) − 1]−1 the equilibrium mean ther-
mal photon (o = a) and magnon (o = b, c) numbers. In
addition, Te is the environmental temperature and kB is the
Boltzmann constant. Because the YIG crystal is strongly
driven by a microwave field, the couplings between different
modes are unhindered, resulting in these modes all having
large amplitudes (i.e., |〈o〉| 
 1), so the standard linearization
treatment can be applied to the nonlinear QLEs (14). In this
case, one can safely introduce the expansion ô = 〈o〉 + o in the
vicinity of steady-state averages by neglecting higher-order
fluctuations of the operators. Then we obtain a set of differen-
tial equations for mean values

d〈a〉
dt

= −(i�a + γa)〈a〉 − igab〈b〉,
d〈b〉
dt

= −(i�b + γb)〈b〉 − 2iKb|〈b〉|2〈b〉 − iG|〈c〉|2〈b〉
−igab〈a〉 − i�b,

d〈c〉
dt

= −(i�c + γc)〈c〉 − 2iKc|〈c〉|2〈c〉 − iG|〈b〉|2〈c〉−i�c.

(16)
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The steady-state solution of the system satisfies the
equations

0 = −(i�b + γb)〈b〉 − 2iKb|〈b〉|2〈b〉 − iG|〈c〉|2〈b〉 − i�b

− g2
ab〈b〉

i�a + γa
,

0 = −(i�c + γc)〈c〉 − 2iKc|〈c〉|2〈c〉 − iG|〈b〉|2〈c〉 − i�c.

(17)

Supposing |�a| 
 γa, |�b| 
 γb, and |�c| 
 γc, we can ap-
proximately get that 〈a〉, 〈b〉, and 〈c〉 are all pure real numbers.
It should be noted that the approximation is only used to
demonstrate that 〈a〉, 〈b〉, and 〈c〉 are approximately real num-
bers, which simplifies the following calculations. However,
the damping terms are included in all subsequent calculations
and numerical simulations, which are necessary for the system
to reach the steady state.

The linearized QLEs for the quantum fluctuations can be
written as

da

dt
= −(i�a + γa)a − igabb + (2γa)1/2ain,

db

dt
= −(i�̃b + γb)b − iK̃bb† − igaba − iG̃(c† + c)

+ (2γb)1/2bin,

dc

dt
= −(i�̃c + γc)c − iK̃cc† − iG̃(b† + b) + (2γc)1/2cin,

(18)

where �̃b = �b + 4Kb|〈b〉|2 + G|〈c〉|2 and �̃c = �c +
4Kc|〈c〉|2 + G|〈b〉|2 are the effective magnon-mode–drive-
field detunings including the frequency shifts caused by the
self-Kerr and cross-Kerr effects. In addition, K̃b = 2Kb〈b〉2

and K̃c = 2Kc〈c〉2 are effective self-Kerr coefficients and
G̃ = G〈b〉〈c〉 is the effective magnon-magnon coupling rate.
Since 〈b〉 and 〈c〉 are approximately pure real numbers,
K̃b � 2Kb|〈b〉|2 and K̃c � 2Kc|〈c〉|2. In this case, we have
�̃b � �b + 2K̃b + G|〈c〉|2 and �̃c � �c + 2K̃c + G|〈b〉|2.

In order to study the quantum correlation induced by the
cross-Kerr effect, we first need to determine the cross-Kerr
coefficient G. This can be done by using the parameters
reported in the recent experiment in [66]. Due to the large
frequency detuning between the Kittel mode and the HMS
mode, the HMS mode is not excited when only the Kittel
mode is driven (i.e., �b �= 0 and �c = 0). In this case, the fre-
quency shift (2Kb|〈b〉|2/2π � −60 MHz) of the Kittel mode
is caused by the self-Kerr nonlinearity, while the frequency
shift (G|〈b〉|2/2π � −150 MHz) of the HMS mode is due to
the cross-Kerr effect. Therefore, Kb/2π � −0.1 nHz (the bias
magnetic field is applied along the YIG sphere [110] crystal
axis), which corresponds to G/2π � −0.5 nHz, can be found
in a 1-mm-diam YIG sphere. Similarly, the Kittel mode is not
excited when only the HMS mode is driven (i.e., �c �= 0 and
�b = 0). The frequency shift (2Kc|〈c〉|2/2π � −24 MHz) of
the HMS mode is caused by the self-Kerr nonlinearity, while
the frequency shift (G|〈c〉|2/2π � −10 MHz) of the Kittel
mode is due to the cross-Kerr effect. So we can get Kc/2π �
−0.6 nHz.

TABLE I. Description of experimentally feasible parameters.
Here MST denotes the maximum survival temperature. For related
parameter detection, refer to Refs. [25,26,29,66].

Parameter Value (all figures)

ωa/2π (GHz) Figs. 2–4, 10.07
ωb/2π (GHz) Figs. 2–4, 9.86
ωc/2π (GHz) Figs. 2–4, 9.7845
ωd/2π (GHz) Figs. 2–4, 9.97
�a/2π (MHz) Fig. 4, 100
�b/2π (MHz) Figs. 2–4, −110
�c/2π (MHz) Figs. 2–4, −185.5
gab/2π (MHz) Fig. 2, 35; Figs. 3 and 4, 30
γa/2π (MHz) Fig. 2, 5.5; Figs. 3 and 4, 18.6
γb/2π (MHz) Fig. 2, 12; Figs. 3 and 4, 6.7
γc/2π (MHz) Fig. 2, 12; Figs. 3 and 4, 6.7
Kb/2π (nHz) 0.1 ([100] crystal axis)
Kc/2π (nHz) 0.6 ([100] crystal axis)
G/2π (nHz) 0.5 ([100] crystal axis)
K̃b/2π (MHz) Fig. 2, 0; Fig. 3, 0, 7.5, 15; Fig. 4, 15
K̃c/2π (MHz) Fig. 2, 0; Fig. 3, 0, 12, 24; Fig. 4, 24
�̃b/2π (MHz) Figs. 3 and 4, −70
�̃c/2π (MHz) Figs. 2–4, −100
G̃/2π (MHz) Figs. 2–4, 19.4
Te (K) Figs. 2 and 3, 0; Fig. 4, 0.15–0,2 (MST)

In this work we consider the following situation. The
bias magnetic field is applied along the YIG sphere [100]
crystal axis (i.e., Kb (c), G > 0) and two drive fields are ap-
plied at the same time (�b (c) �= 0), where 2Kb|〈b〉|2/2π �
15 MHz and G|〈b〉|2/2π � 37.5 MHz correspond to |〈b〉|2 �
7.5 × 1016, and 2Kc|〈c〉|2/2π � 24 MHz and G|〈c〉|2/2π �
10 MHz correspond to |〈c〉|2 � 2 × 1016. In this case, we have
G̃/2π � 19.4 MHz, which is utilized in the following analy-
sis. More parameter details are listed in Table I. To quantify
the entanglement of the system, we introduce the quadrature
fluctuation (noise) operators Xo = (o + o†)/

√
2, Yo = i(o† −

o)/
√

2, X in
o = (oin + oin†)/

√
2, and Y in

o = i(oin† − oin )/
√

2,
with o = a, b, c. The linearized QLEs (18) for the quadrature
fluctuations can be written as

dXa

dt
= �aYa − γaXa + gabYb + (2γa)1/2X in

a ,

dYa

dt
= −�aXa − γaYa − gabXb + (2γa)1/2Y in

a ,

dXb

dt
= (�̃b − K̃b)Yb − γbXb + gabYa + (2γb)1/2X in

b ,

dYb

dt
=−(�̃b+K̃b)Xb − γbYb − gabXa−2G̃Xc + (2γb)1/2Y in

b ,

dXc

dt
= (�̃c − K̃c)Yc − γcXc + (2γc)1/2X in

c ,

dYc

dt
= −(�̃c + K̃c)Xc − γcYc − 2G̃Xb + (2γc)1/2Y in

c . (19)
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FIG. 2. Bipartite entanglements (a) Eab, (b) Ebc, and (c) Eac and (d) tripartite entanglement Rmin
τ versus detunings �̃b and �a. Mean

excitation numbers for (e) the cavity mode Na, (f) the Kittel mode Nb, (g) the HMS mode Nc, and (h) the sum of Nb and Nc versus �̃b and �a.
See Table I for the detailed parameters.

Then Eqs. (19) can be expressed in a more concise form

du

dt
= Au(t ) + v(t ), (20)

where the drift matrix A reads

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γa �a 0 gab 0 0

−�a −γa −gab 0 0 0

0 gab −γb �̃b − K̃b 0 0

−gab 0 −�̃b − K̃b −γb −2G̃ 0

0 0 0 0 −γc �̃c − K̃c

0 0 −2G̃ 0 −�̃c − K̃c −γc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

and u = [Xa,Ya, Xb,Yb, Xc,Yc]T and v = [(2γa)1/2X in
a ,

(2γa)1/2Y in
a , (2γb)1/2X in

b , (2γb)1/2Y in
b , (2γc)1/2X in

c , (2γc)1/2

Y in
c ]T are the vectors for quantum fluctuations and noises,

respectively. Since the dynamics of the system is governed
by a set of linearized QLEs, the Gaussian nature of the input
states will be preserved during the time evolution. That is,
the steady state of the quantum fluctuations of the system
is a CV three-mode Gaussian state. The state can be fully
characterized by a stationary covariance matrix (CM) V
whose matrix element is defined by

Vi j = 1
2 〈ui(t )u j (t

′) + u j (t
′)ui(t )〉, (22)

with i, j = 1, 2, . . . , 6. The matrix V is obtained by solving
the Lyapunov equation [53,76]

dV

dt
= A(t )V (t ) + V (t )AT (t ) + D, (23)

where D = diag[γa(2na + 1), γa(2na + 1), γb(2nb + 1), γb

(2nb + 1), γc(2nc + 1), γc(2nc + 1)] is a diffusion matrix and
whose matrix element is related to the noise correlations and

defined by

Di j = 〈vi(t )v j (t ′) + v j (t ′)vi(t )〉
2δ(t − t ′)

. (24)

To study the bipartite CV entanglements, we introduce
the logarithmic negativity EN (which includes Eab, cavity-
Kittel entanglement; Eac, cavity-HMS entanglement; and Ebc,
Kittel-HMS entanglement). Further, for the tripartite entan-
glement, we use the minimum residual contangle Rmin

τ , whose
definition can be found in the Appendix, which includes
Refs. [52,77–79].

IV. ENTANGLED STATE GENERATION VIA
THE CROSS-KERR EFFECT

In order to show the behavior of the entanglements induced
by the cross-Kerr effect, Figs. 2(a)–2(d) describe bipartite en-
tanglements Eab [Fig. 2(a)], Eac [Fig. 2(b)], and Ebc [Fig. 2(c)]
and tripartite entanglement [Fig. 2(d)] Rmin

τ as a function of
two detunings �̃b and �a, where the two self-Kerr effects are
not considered. In fact, the self-Kerr effects of the two modes
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can be characterized by their magnetocrystalline anisotropy
energies, which are defined as [57]

Eb (c)

h̄
= −2γgSb (c)

z Mb (c)
z Kb (c)

an

M2
. (25)

The energies may be eliminated by adjusting the angle be-
tween the bias magnetic field and the crystal axis [73].
According to the Routh-Hurwitz criterion, the system is stable
and reaches its steady state when all the eigenvalues of the
matrix A have negative real parts. Therefore, we start our
analysis by determining the eigenvalues of the matrix A (i.e.,
|A − λI| = 0) and make sure that the stability conditions are
all satisfied in numerical simulations. The parameters used in
the article are shown in Table I, which are adopted from the
experimental studies in Refs. [25,26,29,66].

As illustrated in Fig 2(b), the entanglement Ebc emerges
when �̃b � �̃c. However, when the spin-wave subsystems
are near-resonantly coupled to the cavity field, that is, when
�a � −�̃c, Ebc is partially transferred to cavity-mode–Kittel-
mode and cavity-mode–HMS-mode subsystems. As a result,
entanglements Eab and Eac arise, as shown in Figs. 2(a)
and 2(c). At the same time, the tripartite entanglement of the
system can be generated [see Fig. 2(d)]. The physics behind
the scenes are as follows. The two magnon modes (the Kittel
mode and the HMS mode) are initially detuned and can be
driven strongly by the microwave source. Due to the existence
of the self-Kerr and cross-Kerr effects, two magnon modes
can be driven close to resonance. We begin by demonstrating
the situation in the absence of two self-Kerr effects, which is
necessary to elucidate the condition for optimizing magnon-
magnon entanglement solely through cross-Kerr nonlinearity.
Then we proceed to analyze the quantum fluctuations via the
linearized Hamiltonian

Hflu

h̄
= �aa†a + �̃bb†b + �̃cc†c + G̃(b† + b)(c† + c)

+gab(a†b + ab†), (26)

where G̃(b†c† + bc) implies the two-mode-squeezing-type in-
teraction between the Kittel mode and the HMS mode induced
by the cross-Kerr effect, which can be significantly enhanced
by driving the magnon modes. The Hamiltonian (26) de-
scribes the magnon-magnon entanglement when G̃ �= 0. If
the cavity field is further participated in the entanglement
production and scattering, the four-wave mixing gives rises to
the magnon-mode–cavity-mode entanglement [see Figs. 1(b)
and 1(c)]. The spontaneous parametric process leads to the
transfer of entanglement at suitable detuning frequencies (i.e.,
matching condition: �a � −�̃b (c)). In this case, the indi-
rectly coupled cavity photons and HMS-mode magnons get
entangled and the entanglement is even larger than those in
directly coupled subsystems [see Figs. 2(b) and 2(c) for �a =
−�̃b (c)]. A similar mechanism with three-wave mixing has
also been found in optomechanical systems [54] and cavity
magnetomechanical systems [21]. It is worth noting that the
split structures in Fig. 2 are a feature of the entanglement
distribution among three bipartite subsystems. A similar char-
acteristic was shown in Fig. 2 of Ref. [21], but due to the
more involved dynamics in our system, the complementary

distribution of the entanglement is not as clearly visible as in
Ref. [21].

To demonstrate the conversion process, we introduce the
final mean photon and magnon numbers, which can be calcu-
lated by the relation

No = 1
2

(〈
X 2

o

〉 + 〈
Y 2

o

〉 − 1
)
, (27)

where o = a, b, c correspond to the excitation numbers of
the cavity mode, the Kittel mode, and the HMS mode, re-
spectively. Figures 2(e)–2(h) present the excitation numbers
Na [Fig. 2(e)], Nb [Fig. 2(f)], Nc [Fig. 2(g)], and Nb + Nc

[Fig. 2(h)] as a function of the two detunings of �̃b and �a,
where two self-Kerr effects are not considered. The numeri-
cal results are carried out in a zero-temperature environment
(Te = 0 K) and a strong-coupling regime (gab, G̃ > γa, γb, γc),
where the dissipation rate for each mode is chosen from exper-
imentally feasible parameters. All the parameters ensure that
the system is always stable. We can find that the frequency
ranges of the excited two magnon modes are complementary
[see Figs. 2(f) and 2(g)]. Here Na � Nb + Nc implies that no
matter which magnon mode is excited, it is accompanied by
the scattering of microwave photons [see Figs. 2(e) and 2(h)].
The schematic diagram corresponding to the numerical results
in Fig. 2 is shown in Figs. 1(b) and 1(c), where the matching
condition of parametric conversion process determines the
optimal frequency detunings at which cavity photons can be
entangled.

V. SELF-KERR EFFECT INDUCED ENTANGLED
STATE TRANSFER

In fact, it is unavoidable that the effective self-Kerr effects
will also be enhanced when the YIG sphere is pumped by
the drive field. This is a problem that the majority of en-
tanglement generation schemes avoid, namely, the presence
of multiple nonlinearities in the system. Numerous nonlinear
combined effects contribute to the system’s difficulty of analy-
sis and instability. However, we demonstrate in this article that
the presence of self-Kerr effects enhances magnon-magnon
entanglement transfer into other subsystems, resulting in a
significant increase in tripartite entanglements. Figure 3 de-
scribes bipartite entanglements Eab [Fig. 3(a)], Ebc [Fig. 3(b)],
and Eac [Fig. 3(c)] and tripartite entanglement Rmin

τ [Fig. 3(d)]
as a function of the detuning �a for different self-Kerr coeffi-
cients, where a lower cavity-mode–Kittel-mode coupling rate
gab/2π = 30 MHz is chosen for better illustration. Figure 3(b)
shows that when �a � −�̃c, Ebc decreases gradually as two
self-Kerr coefficients increase. Instead, Eab and Eac gradually
increase in the process [see Figs. 3(a) and 3(c)], which im-
plies that more entanglement in the Kittel-mode–HMS-mode
subsystem is transferred to the cavity-mode–Kittel-mode and
cavity-mode–HMS-mode subsystems. The tripartite entangle-
ment in terms of the minimum residual contangle becomes
stronger when the entanglement is more evenly distributed in
each subsystem, as illustrated in Fig. 3(d).

When the two self-Kerr effects are considered, the lin-
earized Hamiltonian of the system can be rewritten as
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FIG. 3. Bipartite entanglements (a) Eab, (b) Ebc, and (c) Eac and
tripartite entanglement (d) Rmin

τ versus �a for different self-Kerr
coefficients K̃b and K̃c. We take K̃b = K̃c = 0 (solid line), K̃b/2π =
7.5 MHz and K̃c/2π = 12 MHz (dashed line), and K̃b/2π = 15 MHz
and K̃c/2π = 24 MHz (dot-dashed line). The arrows depict the evo-
lution of the entanglement as the two self-Kerr effects are enhanced.
The other parameters are listed in Table I.

HL

h̄
= �aa†a + �̃bb†b + �̃cc†c + gab(a†b + ab†)

+ K̃b(b†b† + bb)

2
+ K̃c(c†c† + cc)

2

+ G̃(b† + b)(c† + c). (28)

To show the mechanism, we diagonalize these two terms by
introducing squeezing operators

S(θb) = exp[θb(bb − b†b†)],

S(θc) = exp[θc(cc − c†c†)]. (29)

The two Bogoliubov modes can be written as

βb = S†(θb)bS(θb) = cosh θbb − sinh θbb†,

βc = S†(θc)cS(θc) = cosh θcc − sinh θcc†, (30)

where

θb (c) = 1
4 lnCb (c), (31)

with

Cb (c) = �̃b (c) − K̃b (c)

�̃b (c) + K̃b (c)
.

For simplicity, we set �̃b � �̃c � �̃ and K̃b � K̃c � K̃ , so
Cb � Cc � C and θb � θc � θ . In fact, |�̃b| < |�̃c| and K̃b <

K̃c, but the above setting does not lose the generality of the
analysis. Therefore, the Bogoliubov Hamiltonian can be writ-
ten as
HB

h̄
= �aa†a + �ββ

†
bβb + �ββ†

c βc + G(βb + β
†
b )(βc + β†

c )

+ gcos
ab (β†

b a + βba†) + gsin
ab (β†

b a† + βba), (32)

FIG. 4. Bipartite entanglements Eab, Ebc, and Eac versus environ-
mental temperature Te. See Table I for the the parameters.

where gcos
ab = gab cosh θ , gsin

ab = gab sinh θ , �β = (�̃2 −
K̃2)1/2, and G = G̃

√
C. Equation (32) shows that �a � −�β

is optimal for the cavity-mode–Kittel-mode entanglement,
due to the squeezing term gsin

ab (β†
b a† + βba), which also

results in a frequency shift for optimal detuning. In fact,
when self-Kerr nonlinearity is introduced, the entanglement
Ebc becomes stronger because C > 1 [see Fig. 3(b) for
�a �� −�̃c]. At the same time, the cavity-mode–Kittel-mode
state-swap interaction is also enhanced because gcos

ab > gab

for θ �= 0. Thus, the enhancement of Eab and Eac has two
causes: (i) more entanglement being transferred into the
subsystem containing the cavity mode [see Figs. 3(a)–3(c)]
and (ii) the emergence of a new two-mode-squeezing term
gsin

ab (β†
b a† + βba). The results show that the self-Kerr effect

facilitates the transfer of entanglement, which can make the
minimum residual contangle Rmin

τ larger than the previous
value [see Fig. 3(d) for �a � −�̃c]. Finally, the generated
subsystem entanglements are robust against environmental
temperature and the maximum survival temperature is about
0.15–0.2 K, as shown in Fig. 4.

VI. ENTANGLEMENT DETECTION AND APPLICATION

The generated magnon-magnon entanglement can be de-
tected by measuring the quadratures of the two magnon modes
Xb (c) and Yb (c) and then calculating the covariance matrix.
The entanglement parameter region shown Fig. 2 shows that
entanglement can be obtained even when there is certain
frequency detuning between the two magnon modes. Two
weak microwave probe fields resonantly coupled to the two
detuned magnon modes can read out the four quadratures
by using the cavity-magnon beam-splitter interaction. Here
we focus on the detection of magnon-magnon entanglement
Ebc. To achieve the entanglement detection, the dissipation
rate of two magnon modes should be much lower than that
of the cavity mode (e.g., we take γa/2π = 18.6 MHz and
γb (c)/2π = 6.7 MHz in Fig. 3). As a result, when the pump
tone is turned off, cavity microwave photons dissipate quickly.
We send the two probe fields after the cavity photons dissipate
completely. Then the probe output fields contain only the
information regarding the entanglement of the two magnon
modes.
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Quantum entanglement is a phenomenon wherein systems
cannot be described independently of one another despite be-
ing separated by an arbitrarily large distance. It is also the key
resource behind many emerging quantum technologies, such
as quantum computing [42–45] and metrology [46,47]. The
entanglement of two different degrees of freedom inside one
ferrimagnetic crystal provides a concept for CV information
processing at the mesoscopic scale. Our research sheds light
on the entanglement scheme between additional HMS modes
and Kittel mode induced by their nonlinear couplings.

VII. CONCLUSION

In summary, we have presented a scheme to generate
steady-state entanglement in a cavity magnonic system where
a microwave cavity mode is coupled to a Kittel mode in a
YIG sphere and the Kittel mode is simultaneously coupled
to a HMS mode via mode overlap, which originates from
the partial local spins shared by the Kittel mode and other
spin-wave modes [70,71]. In such a system, we studied the
properties of entangled magnon modes and found that the
cross-Kerr effect is able to induce steady-state entanglement
between two magnon modes with experimentally accessible
parameters. Additionally, when the spontaneous parametric
process occurs, the cavity photons also become entangled with
the magnons. We also demonstrated the effect of the self-Kerr
nonlinearities on the bipartite and tripartite entanglements,
where the mutual coupling between different modes becomes
stronger and a new two-mode squeezed state is generated.
When the two types of nonlinearities coexist, the entangle-
ment is more uniformly distributed across the subsystems and
the tripartite entanglement is also enhanced.

Our work will open up different avenues for studying en-
tanglement when multiple nonlinearities exist, as well as for
realizing an entangled state within a single YIG sphere, which
will enable spatially localized conservation of entanglement
in ferrimagnetic spin ensembles. Moreover, the method for
generating steady-state entanglement via the cross-Kerr ef-
fect could be extended to other hybrid systems. In quantum
magnonic systems [9], a cross-Kerr nonlinear interaction be-
tween the magnetostatic mode and the qubit is also facilitated
by their mutual couplings to microwave cavity modes [80,81],
which provides the additional nonlinearity required to investi-
gate quantum effects in magnonics.
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APPENDIX: QUANTIFICATION OF ENTANGLEMENTS

Here we briefly give the quantification of the bipartite
and tripartite entanglements. To study the bipartite CV entan-
glements, we introduce the logarithmic negativity, which is
defined as [77,78]

EN = max[0,− ln(2ν−)], (A1)

where ν− = min |eig ⊕2
s=1 (−σy)P1|2V4P1|2|, with σy the Pauli

y matrix. Here V4 is the 4 × 4 CM of the two subsystems
that only includes the rows and columns of the interested
modes in V , and the matrix P1|2 = σz ⊕ 1 (with the iden-
tity matrix 1) realizes partial transposition at the CM level.
In the main text, we use Eab, Eac, and Ebc to denote the
cavity-mode–Kittel-mode, the cavity-mode–HMS mode, and
the Kittel-mode–HMS-mode entanglements, respectively.

To investigate the tripartite CV entanglement, we introduce
a residual contangle defined as [52,79]

Ri| jk
τ = Ci| jk − Ci| j − Ci|k, (A2)

with i, j, k = a, b, c. In addition, Cm|n = E2
m|n, as the squared

logarithmic negativity with entanglement monotonicity, is the
contangle of m and n subsystems, where n may involve one or
two modes. The single-mode versus dual-mode logarithmic
negativity is defined as

Ei| jk = max[0,− ln(2ν−
i| jk )], (A3)

where ν−
i| jk = min |eigi ⊕3

s=1 (iσy)Ṽ | is the minimum sym-

plectic eigenvalue of the 6 × 6 CM Ṽ = Pi| jkV Pi| jk . The
matrices P1|23 = σz ⊕ 1 ⊕ 1, P2|13 = 1 ⊕ σz ⊕ 1, and P3|12 =
1 ⊕ 1 ⊕ σz are used for partial transposition at the level of the
full CM. Here Ri| jk

τ � 0 implies that the residue contangle Rτ

satisfies the quantum entanglement monogamy. The minimum
residual contangle is defined as [52,79]

Rmin
τ = min

[
Ra|bc

τ , Rb|ac
τ , Rc|ab

τ

]
, (A4)

which characterizes a bona fide three-party property of the CV
three-mode Gaussian states.
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