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Quantum walk in a reinforced free-energy landscape: Quantum annealing with reinforcement
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Providing an optimal path to a quantum annealing algorithm is key to finding good approximate solutions
to computationally hard optimization problems. Reinforcement is one of the strategies that can be used to
circumvent the exponentially small energy gaps of the system in the annealing process. Here a time-dependent
reinforcement term is added to the Hamiltonian in order to give lower energies to the most probable states of
the evolving system. In this study, we take local entropy in the configuration space for the reinforcement and
apply the algorithm to a number of easy and hard optimization problems. The reinforced algorithm performs
better than the standard quantum annealing algorithm in the quantum search problem, where the optimal
parameters behave very differently depending on the number of solutions. Moreover, the reinforcements can
change the discontinuous phase transitions of the mean-field p-spin model (p > 2) to a continuous transition.
The algorithm’s performance in the binary perceptron problem is also superior to that of the standard quantum
annealing algorithm, which already works better than a classical simulated annealing algorithm.
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I. INTRODUCTION

Finding the minimum-energy configurations of an energy
function is essential for understanding the (near) optimal be-
havior of many physical, biological, and social systems [1–3].
This is not, however, an easy task even for very restricted
classes of systems like two-local energy functions, binary
perceptrons, and two-player games [4–6]. In fact, it seems
very unlikely for a local algorithm (classical or quantum) to
be able to get around the extensive energy barriers (or entropy
barriers) of the solution space of large-scale frustrated systems
[7]. One, of course, expects to obtain better algorithms by
exploiting some relevant global (or locally extended) infor-
mation from the complex energy landscape of the problem.
In a classical algorithm this information can be provided, for
example, by the local entropy of solutions in the neighborhood
of the system configuration [8]. In a quantum annealing algo-
rithm the information in the unitary evolution of the system
can be used to suppress quantum transitions to the excited
states in the annealing process [9–11].

In a quantum annealing algorithm, the system starts from
the ground state of an easy initial Hamiltonian and under-
goes an adiabatic evolution at zero temperature to reach the
ground state of a hard final Hamiltonian [12–15]. Importantly,
there are different physical platforms which can be employed
for practical implementation of quantum annealing processes
[16–21]. The algorithm’s performance is, however, limited by
the nature of phase transitions that occur in the annealing pro-
cess, especially close to the final Hamiltonian in a frustrated
system [22–25]. Nevertheless, there are problems where the
quantum annealing algorithm is expected to work better than
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the classical annealing or Monte Carlo algorithms due to the
structure of the solution space [26–28]. This highlights the
role of appropriate modifications in the energy landscape in
enhancing the efficiency of an optimization algorithm.

The price that is paid for benefiting from global informa-
tion in an algorithm is to work with nonlocal energy functions.
Sometimes it is possible to map such a nonlocal function
to a local one by introducing an additional set of auxiliary
variables at the expense of increasing the computational costs
of the original problem [29,30]. On the other hand, one may
resort to effective theories, working with local approximations
of the Hamiltonian [31,32]. The nature of energy terms that
are added to the Hamiltonian is critical here for an efficient
sampling of the optimal states. For instance, we know that
nonstoquastic and even non-Hermitian Hamiltonians could
enhance the efficiency of the standard quantum annealing
algorithm, which usually works with a stoquastic and Her-
mitian Hamiltonian [33–35]. In addition, the way that such
Hamiltonians are incorporated in an optimization algorithm
plays an important role in its performance. This enters, for ex-
ample, in the time dependence of the Hamiltonian parameters
or the rate of changing the parameters, especially close to a
phase transition [36–41]. Another strategy is to search for the
optimal parameters, for example, in a reinforcement learning
algorithm, given the annealing schedule [42].

In this paper, we shall see how a simulated quantum
annealing algorithm works in the presence of an entropic
reinforcement. This study is an extension of the method intro-
duced in [43,44] which here is applied to different problems.
The main idea is that reinforcement is able to increase the
minimum energy gap in an annealing process and, conse-
quently, to enhance the performance of a quantum annealing
algorithm. The reason is that by reinforcement we are, indeed,
changing the energy landscape (see Fig. 1) to favor an optimal
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FIG. 1. Changing the energy landscape by reinforcement. A
small noise can break the problem degeneracy in case there are
many solutions. Then reinforcement can be used to change slowly
the energy landscape to have a nearly trivial one.

configuration [45,46]. This is like increasing the energy gap
between the optimal state and the other states of the system.
We use the quantum state of the system to define a local en-
tropy for each point in the configuration space which depends
on the observation probabilities of the nearby configurations.
In practice, this means that we need to estimate the quantum
state during the annealing process by performing a continuous
weak measurement of many copies of the system [47–52].

In the following, we report the results that are obtained by
numerical simulations of the reinforced quantum annealing
for a number of prototypical optimization and search prob-
lems. We start with the study of the minimum energy gap
in a random Ising model for a small number of spins. Then
we take the quantum search problem and compare the results
with the annealing version of the Grover algorithm. Next, we
see how the reinforcement changes the nature of the phase
transition in the mean-field p-spin model. Finally, we resort to
a path-integral quantum Monte Carlo simulation to study the
binary perceptron problem.

II. RESULTS

Consider a classical spin system of N binary variables σ =
{σi = ±1 : i = 1, . . . , N}, with energy function E (σ). This
defines the problem Hamiltonian Ĥp = ∑

σ E (σ)|σ〉〈σ| in the
computational basis |σ〉. The states |σi〉 are eigenstates of
the z component of the Pauli matrices (σ x

i , σ
y
i , σ z

i ). Hopping
between the neighboring spin configurations is provided by
Ĥ0 = −�

∑
i σ

x
i . An interpolation between the two Hamilto-

nians is given by

Ĥ = (1 − τ )Ĥ0 + τ Ĥp, (1)

where τ ∈ [0, 1]. This can be considered the Hamiltonian of
a quantum random walker in the energy landscape of the
problem E (σ).

Reinforcement is to modify the Hamiltonian according to
the quantum state of the system, for instance, in proportion to
ln |ψ0(σ)|2. In this way, we obtain the reinforced Hamiltonian
[43],

Ĥr = (1 − τ )Ĥ0 + τ Ĥp − r
∑

σ

ln |ψ0(σ)|2|σ〉〈σ|. (2)

Here ψ0(σ) is (an estimate of) the ground-state wave function,
and r is the reinforcement parameter. Both the wave function
ψ0 and the parameter r could, in general, depend on τ . Note
that for positive r the more likely states in the wave function
have lower energies. And the expectation value of the rein-
forcement term −r

∑
σ |ψ0(σ)|2 ln |ψ0(σ)|2 is proportional to

the entropy of the wave function in the given basis (not the
von Neumann entropy). Thus, for very large and positive r the
reinforcement term favors states of zero entropy, which are
concentrated on a single spin configuration. On the other hand,
for very negative r the state of maximum entropy is favored,
which is the ground state of Ĥ0.

Note that the wave function can always be ex-
panded in terms of many-body spin interactions ψ0(σ) ∝
exp(

∑
i Biσi/2 + ∑

(i j) Ki jσiσ j/2 + · · · ). Therefore, the rein-
forcement term can be approximated by local Hamiltonians
when higher-order correlations in the wave function are negli-
gible [44]. In particular, if ψ0(σ) is approximated by a product
state, the reinforcement Hamiltonian is represented by one-
spin interactions with local fields Bi from the wave function.
These fields then provide a bias towards the (instantaneous)
ground state of the system that is very much like the bias fields
that are introduced in Ref. [53].

Let us rewrite the reinforced Hamiltonian as

Ĥr = (1 − τ )Ĥ0 + τ Ĥp + r
∑

σ

S(σ )|σ〉〈σ|, (3)

with the reinforced entropy S(σ ) = − ln |ψ0(σ)|2. A general-
ization of the reinforcement entropy reads

Sq(σ : λ) = − 1

Q

[(∑
σ ′

e−λD(σ,σ ′ )|ψ0(σ ′)|2
)Q

− 1

]
, (4)

where D(σ, σ ′) = ∑
i(σi − σ ′

i )2 is the Hamming distance of
the two spin configurations. Note that for λ → ∞ and Q → 0
we recover the original entropy. Here the reinforcement term
consists of a sum over all configurations that are close to the
reference configuration σ. The typical distance from the refer-
ence configuration is controlled by the Lagrange parameter λ.
The parameter λ determines the size of window that is used
to compute the coarse-grained probabilities in the entropy.
Smaller values of λ make the energy landscape a smoother
function and help it to escape from the local minima. The op-
timal λ depends on the typical size of the basins of attraction
of the local minima, which is not a priori known and should be
tuned in each different problem. The parameter Q determines
the importance of the states of smaller probabilities compared
to the most probable state(s). Note that positive and negative
values of Q both assign smaller energies to higher probabili-
ties in proportion to |ψ0(σ)|2|Q| and |ψ0(σ)|−2|Q|, respectively.
Clearly, the reinforcement is more sensitive to changes in the
probabilities for negative values of Q. The expectation values
of the generalized entropy in state |ψ0〉 are

Sq(λ) =
∑

σ

|ψ0(σ)|2Sq(σ : λ). (5)

As an example, consider a mean-field approximation
of the ground state, assuming a product state ψ0(σ) ∝
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exp(
∑

i Biσi/2) with real parameters Bi. Then

Sq(σ : λ) = − 1

Q

[∏
i

(
eBi−λ(σi−1)2 + e−Bi−λ(σi+1)2

eBi + e−Bi

)Q

− 1

]
.

(6)

And for the average entropy we get

Sq(λ) = − 1

Q

(∏
i

[πq(mi : λ) + πq(−mi : λ)] − 1

)
, (7)

where

πq(mi : λ) =
(

1 + mi

2

)(
1 + mi + e−4λ(1 − mi )

2

)Q

. (8)

Returning to Eq. (4), let us rewrite the generalized entropy
as

Sq(σ : λ) = − 1

Q
(eQ ln〈e−λD(σ,σ′ )〉 − 1). (9)

Note that the expectations are taken with respect to the σ ′
variables, i.e., 〈O〉 = ∑

σ ′ |ψ0(σ ′)|2O(σ ′). Now, we may use
the cumulant expansion to get

ln〈e−λD(σ,σ ′ )〉 =
∞∑

n=1

(−λ)n

n!
〈D(σ, σ ′)n〉c, (10)

where the connected expectation values are 〈On〉c =
( ∂
∂λ

)n ln〈e−λO〉|λ=0. Thus,

Sq(σ : λ) = − 1

Q
(eQ

∑∞
n=1

(−λ)n

n! 〈D(σ,σ ′ )n〉c − 1). (11)

In the following we set Q = q/N to get extensive rein-
forcement entropy. In practice, one may consider only the first
leading terms of the cumulant expansion. The limit q → 0
then provides a local approximation of the entropy. Finally,
the reinforced Hamiltonian reads

Ĥr = (1 − τ )Ĥ0 + τ Ĥp + r
∑

σ

Sq(σ : λ)|σ〉〈σ|. (12)

Note that the parameters τ (t ), r(t ), q(t ), and λ(t ) could, in
general, depend on real time t .

A. Replacing the quantum expectations with thermal ones

In the above formulation of reinforcement, we need to have
an estimation of the expectation values of distances D(σ, σ ′)2

with respect to the instantaneous ground state of the system.
This, in principle, can be done by a weak measurement of
many copies of the system in the annealing process [50]. An
alternative is to exploit the statistical information in the ther-
mal Boltzmann weights of the system to avoid the quantum
measurements. So let us replace the quantum expectations in
the reinforcement entropy with thermal averages,

Sq(σ : λ) = − 1

Q

[(∑
σ ′

e−λD(σ ′,σ )|φ(σ ′)|2
)Q

− 1

]
, (13)

where now

|φ(σ ′)|2 = e−βE (σ ′ )∑
σ ′′ e−βE (σ ′′ ) = e−β[E (σ ′ )−F (0)]. (14)

Here F (0) is the free energy of the thermal system at inverse
temperature β.

Figure 2 shows the statistics of the minimum gap for a fully
connected random Ising model in the annealing process. The
energy function for this system is

E (σ) = −
∑
i< j

Ji j√
N

σiσ j −
∑

i

hiσi, (15)

where the fields hi and couplings Ji j are random variables
drawn from a normal distribution of a mean of 0 and a
variance of 1 [54]. Figure 2 compares two cases of using
the instantaneous ground state or the Boltzmann weights for
reinforcement. The results are obtained by finding the exact
ground state of the reinforced Hamiltonian for a small num-
ber of spins N = 6, 8, 10. Figure 2 shows the percentage or
fraction of problem instances that display a minimum energy
gap smaller than �E . We see that the minimum gap is signif-
icantly larger when we have reinforcement with a negative q
compared to cases of no reinforcement or reinforcement with
a positive q. Moreover, the scaling of the minimum gap with
the size of the system is better when we use the Boltzmann
weights for reinforcement. In practice, however, we do not
have access to the exact free energy of large systems. Thus,
one has to resort to an approximate free energy, e.g., esti-
mated by the Bethe approximation (see Appendix A). In the
following, we investigate the effect of reinforcement in other
problems of different characters and sizes. In all the studied
problems we focus mainly on the results which are obtained
by using the quantum expectations. Examples of using the
thermal expectations are to show that the method also works in
this case to get around the practical difficulties of continuous
quantum measurements.

B. The adiabatic quantum search problem

Consider a search space of size 2N partitioned into the sub-
spaces of solutions (|g〉) and excited states (|e〉). An arbitrary
state of the system is represented by

|ψ (t )〉 = α(t )|g〉 + β(t )|e〉. (16)

The initial state is the ground state of H0 = 1 − |ψ (0)〉〈ψ (0)|,
and the solutions are the ground states of Hp = 1 − |g〉〈g| with
zero energies [55–57]. Here the reinforced Hamiltonian reads

Ĥr = (1 − τ )Ĥ0 + τ Ĥp + rSq(|α(t )|2)|g〉〈g|
+ rSq(|β(t )|2)|e〉〈e|, (17)

where Sq(x) = −(xq − 1)/q.
The Schrodinger equation gives the time evolution of the

state (for h̄ = 1),

î
dα(t )

dt
= (1 − τ )[1 − P(0)]α(t ) − (1 − τ )

×
√

P(0)[1 − P(0)]β(t ) + rα(t )Sq(|α(t )|2), (18)

î
dβ(t )

dt
= [τ + (1 − τ )P(0)]β(t ) − (1 − τ )

×
√

P(0)[1 − P(0)]α(t ) + rβ(t )Sq(|β(t )|2), (19)

where P(t ) = |〈g|ψ (t )〉|2 is the success probability in a mea-
surement.
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FIG. 2. Statistics of the minimum gap �E of the random Ising model in the annealing process. The percentile value of �E is reported
for two cases, using (a)–(c) the instantaneous ground state or (d)–(f) the Boltzmann weights for reinforcement. The horizontal axis gives
the percentage of problem instances that display a minimum energy gap smaller than �E . The statistics is obtained for at least 2000
independent and random realizations of the problem. The left, middle, and right panels show the cases of q = −2, no reinforcement, and
q = +2, respectively. The results are obtained by following the exact ground state of the reinforced Hamiltonian for a small number of spins
N . The annealing process starts with r = λ = 0 at τ = 0, and the parameters increase linearly with the evolution time, where δτ = 0.001,
δr = 0.01, and δλ = 0.01. Here � = 1, and we set β = 4 in the Boltzmann weights. The numerical data are obtained with the LINALG.EIGH

method of SCIENTIFIC PYTHON.

Figure 3 shows how the success probability changes with
time for a specific P(0) = 0.1. We are using different anneal-
ing schedules [56]: the linear schedule, with τ (t ) = t/T , and
the nonlinear schedule, where

τ (t ) = 1

2

[
1 −

√
P(0)

1 − P(0)
tan

((
1 − 2

t

T

)
φ

)]
, (20)

φ = arctan

(√
1 − P(0)

P(0)

)
. (21)

The latter is guaranteed to display the Grover scaling of
the evolution time with the size of the solution space T ∝
1/

√
P(0) [56]. The behaviors are compared for the cases with

and without reinforcement. For the sake of simplicity, we
assume that the reinforcement parameter is fixed to a negative
value to favor the solution space. We see in Fig. 3 that adding
reinforcement can significantly improve the success probabil-
ity for both the schedules.

In Fig. 4 we report the success probability at the end of the
annealing process along with the optimal parameters r∗ and

q∗, which maximize this probability. More precisely, we re-
stricted the parameters to r ∈ (−2, 0) and q ∈ (0, 2). Interest-
ingly, the reinforced Hamiltonian displays two distinct phases
of easy and hard regimes depending on P(0) and the evolution
time T . The two phases are easier to distinguish by looking at
the behavior of q∗, which changes abruptly from q∗ � 1.5 in
the easy phase [P(0) > Pc(T )] to q∗ � 0 in the hard phase
[P(0) < Pc(T )]. From the Grover scaling we expect to have
Pc(T ) ∝ 1/T 2. In our numerical experiments, we could ac-
tually observe greater success probability in the hard phase
when the parameter q takes very negative values with very
small, but negative, reinforcements. In the following sections,
we shall see other examples that support this observation.

C. The mean-field p-spin model

As another example we consider the mean-field p-spin
model with the following energy function:

E (σ) = −N

(
1

N

∑
i

σi

)p

. (22)
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FIG. 3. Time evolution of the success probability in the reinforced quantum search problem. The results for the linear schedule (LS)
and nonlinear schedule (nLS) are given for cases with and without reinforcement. The parameters in the reinforced schedules are (a) for
T = 2, LS, (q = 0.01, r = −1), nLS, (q = 0.01, r = −0.75); (b) for T = 6, LS, (q = 0.01, r = −0.85), nLS, (q = 0.01, r = −0.65); and
(c) for T = 10, LS, (q = 1.5, r = −0.75), nLS, (q = 1.5, r = −0.5). The numerical data are obtained with the INTEGRATE.ODEINT method of
SCIENTIFIC PYTHON.

This problem has trivial ground states, but the standard quan-
tum annealing is not efficient for p � 3 due to a first-order
transition with an exponentially small energy gap in the an-
nealing process [58–61]. Here the annealing Hamiltonian is
Ĥ = τ Ĥp + (1 − τ )Ĥ0, with Ĥp = ∑

σ E (σ)|σ〉〈σ| and Ĥ0 =
−∑

i σ
x
i , where we set � = 1. This Hamiltonian is symmetric

under permutation of the spins, and by the quantum de Finetti
theorem [62,63] the ground state is well approximated by a
product state for N → ∞,

ψ0(σ) =
∏

i

(
eBσi/2

√
2 cosh B

)
. (23)

Thus, the expectation value of the Hamiltonian is given by

〈ψ0|Ĥ |ψ0〉
N

= −τmp − (1 − τ )
√

1 − m2, (24)

with m = tanh(B).
Like before, the reinforced Hamiltonian reads

Ĥr = Ĥ + r
∑

σ

Sq(σ : λ)|σ〉〈σ|. (25)

For Q = 0, we get

〈ψ0|Ĥr |ψ0〉
N

= [−τmp + rs0(m)] − (1 − τ )
√

1 − m2, (26)

where s0(m) = −∑
σ |ψ0(σ)|2 ln |ψ0(σ)|2, that is,

s0(m) = −1 + m

2
ln

(
1 + m

2

)
− 1 − m

2
ln

(
1 − m

2

)
. (27)

Figure 5 displays the ground-state magnetization as a function
of the reinforcement parameter r and τ ∈ [0, 1]. We see how
the reinforcement favors the minimum-energy configuration
of the original problem because for larger r the solution ap-
pears for smaller values of τ .

For an arbitrary Q, the expectation value of the reinforced
Hamiltonian is given by

〈ψ0|Ĥr |ψ0〉
N

= [−τmp + rsq(m : λ)] − (1 − τ )
√

1 − m2,

(28)

where

sq(m : λ) = − 1

NQ
{[πq(m : λ) + πq(−m : λ)]N − 1}. (29)

In the thermodynamic limit with Q = q/N , we get

sq(m : λ) = −1

q
(e−qs0(m:λ) − 1), (30)

where now

s0(m : λ) = −1 + m

2
ln

(1 + m) + e−4λ(1 − m)

2

−1 − m

2
ln

(1 − m) + e−4λ(1 + m)

2
. (31)

In Fig. 6, we observe the magnetization m of the instan-
taneous ground state in the thermodynamic limit. The results
are obtained by minimizing the expectation value of the rein-
forced Hamiltonian with respect to a product state for p = 3.
As Fig. 6 shows, the nature of transition from the param-
agnetic to ferromagnetic phase is different for positive and
negative q. In the latter case we have a continuous phase tran-
sition which signals a change in the scaling of the minimum
energy gap with the size of the system. Figures 7 and 8 show
the behavior of the energy gap when the instantaneous ground
state and the Boltzmann weight are used for reinforcement.
The results are obtained by exact numerical simulation of
the annealing process for small problem sizes. Again, we see
that negative values of q are more effective in increasing the
minimum energy gap of this system.
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FIG. 4. The success probability and optimal parameters in the reinforced quantum search problem. The results for the linear schedule (LS)
and nonlinear schedule (nLS) are given for cases with and without reinforcement. The success probability P(T ) at the end of the process and the
optimal parameters (r∗, q∗) are plotted vs P(0) for evolution times (a1)–(a3) T = 2, (b1)–(b3) T = 5, and (c1)–(c3) T = 10. The parameters
in the reinforced schedules are restricted to r ∈ (−2, 0) and q ∈ (0, 2). The numerical data are obtained with the INTEGRATE.ODEINT method
of SCIENTIFIC PYTHON.

FIG. 5. The ground-state magnetization of the mean-field p-spin model: (a) p = 2, (b) p = 3, and (c) p = 5. The magnetization in the
thermodynamic limit is given in terms of the reinforcement parameter r and the evolution time τ of the annealing process. The results are
obtained by minimizing the expectation value of the reinforced Hamiltonian for a product state when Q = 0.
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FIG. 6. Quantum annealing of the mean-field p-spin model for p = 3. The ground-state magnetization m in the thermodynamic limit is
plotted vs the evolution time τ . The annealing process starts with r = λ = 0 at τ = 0, and the parameters increase linearly with the evolution
time: r(τ + δτ ) = r(τ ) + δr and λ(τ + δτ ) = λ(τ ) + δλ. The panels compare different cases of the parameter values: (a) δτ = 0.001, δr =
0.001, δλ = 0.05, (b) q = −4, δτ = 0.001, δλ = 0.05, and (c) q = −4, δτ = 0.001, δr = 0.001. The results are obtained by minimizing the
expectation value of the reinforced Hamiltonian for a product state.

D. The perceptron problem: Quantum Monte Carlo simulations

In this section, we consider the binary perceptron problem
to check the algorithm’s performance in a computationally
challenging problem [26,64–68]. In a simple binary per-

FIG. 7. Quantum annealing of the mean-field p-spin model using
the instantaneous ground state for reinforcement. (a) and (b) The
energy gap �E (for N = 8 and q = −4, respectively), (c) magne-
tization m (for q = −4), and (d) participation ratio (PR, equal to∑

σ |ψ0(σ )|4, for q = −4) are plotted for p = 3 and finite sizes N .
The results are obtained by following the exact ground state of the
reinforced Hamiltonian for a small number of spins N . The annealing
process starts with r = λ = 0 at τ = 0, and the parameters increase
linearly with the evolution time, where δτ = 0.001, δr = 0.01, and
δλ = 0.01. The numerical data are obtained with the LINALG.EIGH

method of SCIENTIFIC PYTHON.

ceptron we have N artificial neurons of states ξ = {ξi =
±1 : i = 1, . . . , N} connected to a single output neuron of
state s = sgn(

∑
i σiξi ) with binary weights σ = {σi = ±1, i =

1, . . . , N}. In a supervised learning of the perceptron we find

FIG. 8. Quantum annealing of the mean-field p-spin model using
the Boltzmann weights for reinforcement. (a) and (b) The energy gap
�E (for N = 8 and q = −4, respectively), (c) magnetization m (for
q = −4), and (d) participation ratio (PR, equal to

∑
σ |ψ0(σ)|4, for

q = −4) are plotted for p = 3. The results are obtained by following
the exact ground state of the reinforced Hamiltonian for a small
number of spins N . The annealing process starts with r = λ = 0 at
τ = 0, and the parameters increase linearly with the evolution time
where δτ = 0.001, δr = 0.01, and δλ = 0.01. Here we set β = 4 in
the Boltzmann weights. The numerical data are obtained with the
LINALG.EIGH method of SCIENTIFIC PYTHON.
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FIG. 9. (a) The simple perceptron with one layer of input neurons
ξi and a single output neuron s. (b) A local representation of the
problem for patterns a = 1, . . . , M along with the auxiliary variables
ma

i and na
i .

the optimal weights σ∗ to store a set of M input-output pat-
terns {ξa, sa : a = 1, . . . , M} such that sa = sgn(

∑
i σ

∗
i ξ a

i ). In
the following, we consider M random and independent pat-
terns with equal probabilities for the ±1 values of ξ a

i and sa. It
is known that in this case one can store up to Mc � 0.83N ran-
dom patterns with an exponentially large number of isolated
solutions σ∗ in the space of weights [65,66,68]. Because of the
complex energy landscape of the problem, it is difficult for a
classical simulated annealing algorithm to find a solution for
large N as the number of patterns approaches Mc. However,
there are rare regions of close solutions in the configuration
space which can be found by a standard quantum annealing
algorithm [26,67]. Therefore, in the following we compare the
standard quantum annealing with a reinforced quantum walk
where

Ĥr = Ĥ0 + Ĥp + r(t )
∑

σ

Sq(σ : λ)|σ〉〈σ|; (32)

that is, only the reinforcement parameter increases with time.
Here Ĥ0 = −�

∑
i σ

x
i , and Ĥp = ∑

σ E (σ)|σ〉〈σ|. The energy
function in this problem just counts the number of unsatisfied
patterns,

E (σ) =
M∑

a=1

[
1 − sasgn

( ∑
i

σiξ
a
i

)]
. (33)

Note that this is not a local energy because of the sign
function. A local version of the above energy is given in
Appendix B by introducing a set of auxiliary variables (see
Fig. 9).

To study the algorithm’s performance for large problem
sizes, in this section we resort to an approximation of the
annealing process. The idea is to simulate the process by
following the small changes in the Hamiltonian of the quan-
tum system assuming that it is always in thermal equilibrium

FIG. 10. Success probability of the reinforced quantum anneal-
ing algorithm in the binary perceptron problem. The annealing
process is simulated by the quantum Monte Carlo algorithm for
(a) � = 1 and (b) � = 2. Each data point gives the fraction of
successful runs Psuccess in 103 random instances of the problem with
N = 200 and M = 0.8N . The horizontal lines show the values we
obtain by the standard quantum annealing algorithm. The parameters
here are the number of replicas in the QMC algorithm P = 100,
the number of time steps T = 100, the inverse temperature β, the
equilibration time �t = 10, the rate of increasing the reinforcement
parameter δr = 0.005, and parameters of the generalized entropy
(q, λ). The value of λ = 0.5 is fixed.

at a sufficiently small temperature. The partition function of
such a quantum system can be mapped by the Suzuki-Trotter
transformation to the partition function of a classical system.
Then the standard Monte Carlo algorithm is used to obtain the
average values of quantities like the energy or magnetization
of the quantum system [69,70].

More precisely, the partition function of the quantum prob-
lem with the reinforced Hamiltonian Ĥr at inverse temperature
β is mapped to a classical problem of P interacting replicas of
the original system,

Z = Tre−βĤr = lim
P→∞

∑
{σ1,...,σP}

e−βE (�σ ). (34)

The energy function of the replicated system �σ =
{σ1, . . . , σP} reads

βE (�σ ) = β

P

P∑
α=1

Er (σα ) −
∑

α

∑
i

Jασα,iσα+1,i. (35)

Here 2Jα = ln[coth( β�

P )], and σP+1 = σ1. The reinforced en-
ergy function is

Er (σα ) = E (σα ) + rSq(σα : λ). (36)

Here we consider the mean-field approximation of the gener-
alized entropy with the scaling Q = q/N ,

Sq(σ : λ) = −N

q

{
exp

[
q

N

∑
i

ln

(
eBi−λ(σi−1)2 + e−Bi−λ(σi+1)2

eBi + e−Bi

)]
− 1

}
. (37)

Bi = ln[(1 + mi )/(1 − mi )] are related to the local averages
mi = ∑

α σα,i/P. The annealing process starts at time step
t = 0 with random initial configurations for all replicas. Then
for t = 1, . . . , T we do �t Monte Carlo sweeps to update
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FIG. 11. Time evolution of the average minimum energy in the QMC simulation of the classical and quantum annealing algorithms.
We report the minimum-energy density obtained with (a) classical simulated annealing (SA), (b) standard quantum annealing (QA), and
(c) reinforced quantum annealing (rQA) algorithms. The data are the result of averaging over 103 instances of the perceptron problem with N =
200 and M = 0.8N . The other parameters in the SA algorithm are β0 = 0.01, �t = 10, and δβ = 10−3, 10−4 for T = 104, 105, respectively.
In the QA algorithms T = 100, �t = 10, P = 100, and � = 1. In the rQA algorithm q = −4, λ = 0.5, and δr = 0.005.

the σα configurations. The total number of spin flips is given
by T �tPN . At any time step t we update the Bi parameters
and compute the minimum energy among the replicas. If the
minimum energy is zero, we have a successful process.

Figure 10 shows the success probability of the above al-
gorithm in the binary perceptron problem with N = 200 and
M = 0.8N . In Fig. 11, we see how the average minimum en-
ergy changes with time step t . For comparison, we also report
the minimum energy obtained by the classical simulated an-
nealing (SA) and the standard quantum annealing algorithm.
Here the set of problem instances and the number of spin flips
are the same for all the algorithms [54]. The SA algorithm
starts with inverse temperature β0 = 0.01, which increases
linearly with δβ = 10−3 in T = 104 steps of �t = 10 Monte
Carlo sweeps. This algorithm does not find a solution in 103

random realizations of the perceptron problem. The number of
spin flips in the SA algorithm is T �tN . Even for δβ = 10−4

and T = 105 the probability of finding a solution is about
0.01. On the other hand, the success probability of the rein-
forced quantum annealing algorithm is about 0.2, which is
nearly 2 times greater than that of the values we obtain by
the standard quantum annealing algorithm. This is observed
also in Fig. 12, which compares the performance of the two
algorithms for different values of β. Table I shows how the
results change with the other parameters of the algorithm.

III. CONCLUSION

We studied a reinforced quantum annealing algorithm in
which an entropy function is added to the energy of the
classical problem as a reinforcement. The reinforcement is to
increase the minimum energy gap in the annealing process
and thus enhance the success probability of the algorithm in
finding the ground state of the original problem. We observed
a transition in the optimal parameters of the algorithm as
the number of solutions in the quantum search problem was
varied. We also observed good performance of the success
probability of the algorithm compared to the standard quan-
tum annealing algorithm. Moreover, the reinforcement term

is able to change the discontinuous phase transition of the
mean-field p-spin model in the quantum annealing algorithm
to a continuous transition. That is a qualitative change in
the scaling of the minimum energy gap (from exponential to
polynomial in system size) which controls the efficiency of the
quantum annealing algorithm in the absence of degeneracy.
Finally, we employed a quantum Monte Carlo algorithm to
simulate the annealing process in the binary perceptron prob-
lem. We found that reinforcement can improve on the success
probability of the standard quantum annealing algorithm close
to the threshold capacity of the perceptron.

The main point here is that the entropy is a nonlocal
function and depends on the physical state of the system in
the annealing process. This in particular makes the practical
implementation of the exact algorithm very challenging. To
ease the first problem, one may use an approximate expres-
sion for the reinforced Hamiltonian considering only one- and
two-spin effective interactions. More specifically, this can be
done in the limit Q → 0 when high-order correlations in the
wave function are ignored. On the other hand, many identical
copies of the system are needed to infer the quantum state
of the system in a sequence of weak quantum measurements.
To get around this problem, in Sec. II A we showed that the
minimum energy gap can also be increased when we replace
the quantum expectations with the equivalent thermal ones.
The latter can even be estimated in a local way within the
Bethe approximation, as described in Appendix A. Moreover,
as we saw in the perceptron problem, even a mean-field ap-
proximation of the entropy function in the reinforced quantum
annealing algorithm displays good performance compared to
the standard algorithm. It would be interesting to see how
more accurate expressions for the local entropy work in other
computationally hard optimization problems.
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FIG. 12. Success probability of the quantum annealing algorithms in the binary perceptron problem. The annealing process is simulated
by the quantum Monte Carlo algorithm for the (a) and (b) standard and (c) and (d) reinforced QA algorithms. The left and right panels are
for � = 1 and � = 2, respectively. Each data point gives the fraction of successful runs Psuccess in 500–1000 random instances of the problem
with N = 200 and M = 0.8N . The parameters here are the number of replicas in the QMC algorithm P = 100, the number of time steps
T = 100, the inverse temperature β, the equilibration time �t = 10, 20, the rate of increasing the reinforcement parameter δr = 0.005, and
the parameters of the generalized entropy (q = −4, λ = 0.5).

APPENDIX A: THE FREE-ENERGY APPROXIMATION

We can rewrite the entropy function as

Sq(σ : λ) = − 1

Q
(e−Qβ[F (σ:λ)−F (0)] − 1), (A1)

where

e−βF (σ:λ) =
∑
σ ′

e−βE (σ ′ )−λD(σ ′,σ ). (A2)

Now for Q = q/N ,

sq(σ : λ) = Sq(σ : λ)

N
= −1

q
(e−qβ[ f (σ:λ)− f (0)] − 1). (A3)

For a local energy function E (σ ) = ∑
a ea(σ∂a) one can

use the Bethe approximation to find an estimation of the free
energy [71],

F (σ : λ) =
∑

a

�Fa +
∑

i

�Fi −
∑
(ai)

�Fai, (A4)

where the local free energies are given by

e−β�Fa =
∑
σ ′

∂a

e−βea (σ ′
∂a )

∏
i∈∂a

μi→a(σ ′
i ), (A5)

e−β�Fi =
∑
σ ′

i

e−λ(σ ′
i −σi )2

∏
a∈∂i

μa→i(σ
′
i ), (A6)

e−β�Fai =
∑
σ ′

i

μa→i(σ
′
i )μi→a(σ ′

i ). (A7)

Note that f (0) = F (σ : 0)/N and f (σ : λ) = F (σ : λ)/N .
The cavity messages are obtained by solving the belief-
propagation equations,

μa→i(σ
′
i ) ∝

∑
σ ′

∂a\i

e−βea (σ ′
∂a )

∏
j∈∂a\i

μ j→a(σ ′
j ), (A8)

μi→a(σ ′
i ) ∝ e−λ(σ ′

i −σi )2
∏

b∈∂i\a

μb→i(σ
′
i ). (A9)
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TABLE I. Variation of the success probability with the parameters of the reinforced quantum annealing algorithm in the perceptron
problem. Here N = 200, M = 0.8N , and the results are obtained with the quantum Monte Carlo simulations for 103 random problem instances.
The other parameters are T = 100, �t = 10, P = 100, β = 200, and q = −4.

(λ, δr) (0.5, 0.005) (0.5, 0.003) (0.5, 0.007) (0.3, 0.005) (0.7, 0.005)

� = 1 0.19 0.14 0.19 0.08 0.19
� = 2 0.20 0.12 0.18 0.06 0.19

In this way, one obtains an approximate free energy which
is expected to be asymptotically exact for locally treelike
interaction graphs.

APPENDIX B: A LOCAL REPRESENTATION
OF THE PERCEPTRON PROBLEM

Consider a chain of σi variables from i = 1 to N which
is replicated M times, as depicted in Fig. 9. The σ a

i vari-
ables are assumed to have the same values in all replicas.
This can be achieved by application of strong ferromagnetic
interactions between the adjacent replicas. Let us define a
set of left-to-right messages ma

i = ma
i−1 + σiξ

a
i for all i =

1, . . . , N − 1 and a = 1, . . . , M, with ma
0 = 0. Similarly, we

define a set of right-to-left messages na
i = na

i+1 + σiξ
a
i for all

i = 2, . . . , N − 1 and a = 1, . . . , M, with na
N = 0. Note that

ma
i and na

i take values in (−N, . . . ,+N ). Then the energy
function reads

E (�σ, �m, �n : �ξ, s) = 1

N

∑
a

∑
i

e
(
σ a

i , ma
i−1, na

i+1 : ξ a
i , sa

)
,

(B1)

where the local energy is

e
(
σ a

i , ma
i−1, na

i+1 : ξ a
i , sa

) = 1 − sasgn
(
ma

i−1 + na
i+1 + σiξ

a
i

)
.

(B2)

That is, the total energy is written as a local function of the
weights σ a

i and the auxiliary variables (ma
i , na

i ).
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