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Distance-based approach to quantum coherence and nonclassicality
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We provide a coherence-based approach to nonclassical behavior by means of distance measures. We develop
a quantitative relation between coherence and nonclassicality quantifiers, which establish the nonclassicality as
the maximum quantum-coherence achievable. We compute the coherence of several representative examples and
discuss whether the theory may be extended to reference observables with continuous spectra.
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I. INTRODUCTION

Coherence is the concept behind the wave nature of light
and the quantum nature of physics. In quantum mechanics this
is well illustrated by the Schrödinger cats as the coherent su-
perposition of macroscopically incompatible situations. When
the coherence of the superposition vanish all quantum features
disappear replaced by just classical-like ignorance of the cat
state. Actually, decoherence is the most popular mechanism
to account for the emergence of the classical world [1].

This is a research area of fast grow in quantum and classical
optics. In classical optics the interest has been motivated in
recent times by the extension of interference-related phenom-
ena to vector light [2–6]. In quantum optics this research has
been prompted by the revelation of coherence as a footing for
emerging quantum technologies, such as quantum informa-
tion processing [7], and quantifying coherence has become a
central task as expressed by resource theories [8,9].

From this understanding of coherence as the distinctive
quantum feature, it seems reasonable to assume it as the basis
of any approach to nonclassical behavior from first principles.
In this paper we develop a quantitative relation between quan-
tum coherence and nonclassicality. We find nonclassicality
as the maximum coherence that a field state can display by
varying the basis, in the same understanding that the de-
gree of polarization is the maximum coherence between two
filled modes that can be reached under unitary transformations
[10–12].

The quantifier of coherence based on the l1 norm has
been established as a good measure of coherence in spaces of
finite dimension [8,9]. In this paper we express this coherence
measure in terms of a Hellinger-like distance. We also define
the quantifiers of all the magnitudes involved by means of this
distance. In Sec. II we establish these quantifiers and derive
the relation between them for finite dimensional spaces. In
Sec. III we compute the coherence of some relevant states.
In Sec. IV, the analysis is reproduced in infinite-dimensional
spaces. In Sec. V we investigate whether the theory may be
extended to reference observables with continuous spectra. Fi-

*Corresponding author: laurares@ucm.es
†alluis@ucm.es

nally, in Sec. VI it is shown how these results can be replicated
by using the Hilbert-Schmidt (HS) distance.

II. COHERENCE QUANTIFIED BY A
HELLINGER-LIKE DISTANCE

We begin the analysis with the case of an abstract space
of finite dimension N . It is worth noting that we focus on
a basis-dependent approach to coherence, so we fix a given
orthogonal basis {| j〉} j=1,...,N representing some physical vari-
able or observable J as presented, for example, in Ref. [13].
The quantifiers utilized in this section are based on a suitable
version of the Hellinger distance between two density matri-
ces a and b [14], which is

dH (a, b) =
√

tr[(
√

a −
√

b)2], (1)

where throughout this paper the meaning of the square root is

〈i|√a| j〉 =
√

〈i|a| j〉, (2)

which is slightly different from the usual definition of square
root of a matrix. We can mention a similar appearance of
square roots in classical-optics coherence problems [15,16].

Accordingly, we establish the quantifier of coherence based
on the Hellinger distance [17] as the distance to the closest
incoherent state ρd ,

CH = [dH (ρ, ρd )]2 = tr[(
√

ρ − √
ρd )2], (3)

where by incoherent we mean states diagonal in the reference
basis so that ρd turns out to be the diagonal part of ρ in the
same basis [13],

ρd =
N∑

j=1

ρ j, j | j〉〈 j|, (4)

where ρi, j = 〈i|ρ| j〉 are the matrix elements of ρ in the basis
{| j〉}. This quantifier can be expressed as

CH =
∑
j �=k

|ρ j,k|, (5)

which coincides with the well-established quantifier of co-
herence Cl1 [8,9] . This definition relies on the idea that the
coherence of any state in a given basis is essentially deter-
mined by the nondiagonal terms of its density matrix, which
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are obviously base dependent. Then, if ρ is diagonal in the
basis {| j〉} it is incoherent in such a basis CHmin = 0. The
maximum value of CHmax = N − 1 can be easily computed
for pure states with ρii = 1/N , those are phaselike states as
we discuss around Eq. (24). This bound is actually general
beyond pure states as shown in Refs. [18,19].

A useful expression for CH valid for pure states is

CH =
(∑

j

√
p j

)2

− 1, (6)

where pj = ρ j, j is the statistics of the basis variable J .
In line with the distance-based measures of quantum-

ness from quantum resource theories [20–22] we utilize the
distance in Eqs. (1) and (2) to define a quantifier of nonclassi-
cality,

NCH = [dH (ρ, I/N )]2 = tr[(
√

ρ − I/
√

N )2]. (7)

As the state of reference or classical state we consider
the maximally mixed state I/N since it has been shown in
Ref. [23] that under very generic conditions the normalized
identity is actually the only classical state [24]. We may in-
voke also the approach to nonclassicality in Ref. [25]. These
two ideas merge recalling that the identity is the only ma-
trix which is diagonal in all bases. However, as well as the
previously introduced measure of coherence, NCH is also a
base-dependent quantity. The minimum NCHmin = 0 clearly
holds if and only if ρ = I/N as the only classical state. On the
other hand, the maximum value is CHmax = N − 1 and holds
again for pure phaselike states for which ρii = 1/N .

Finally, we quantify the fluctuations of the observable de-
fined by the basis {| j〉} whose probability outcomes are the
diagonal terms in ρ, p j = ρ j, j . We refer to this quantity as
certainty [26,27], and we require it to be minimum when
the probabilities are equally distributed, this is p j = 1/N ,
and maximum when the probability distribution has only one
therm pj = δ j, j0 .

Since these fluctuations are absolutely independent on the
coherence terms of ρ, we define the certainty quantifier as the
distance between ρd and I/N ,

SH (ρ) = [dH (ρd , I/N )]2 = tr[(
√

ρd − I/
√

N )2], (8)

with

tr[(
√

ρd − I/
√

N )2] = 2

(
1 − 1√

N

N∑
j=1

√
ρ j j

)
. (9)

This means that I/N is the incoherent state with larger
indetermination on J fluctuations in the coherence basis {| j〉}
and, therefore, the longer the distance between ρd and I/N
the lesser the fluctuations. As it was required, the maximum
SH (ρ) = 2(1 − 1/

√
N ) holds for the elements of the coher-

ence basis {| j〉} whereas the minimum SHmin = 0 occurs when
ρii = 1/N . Moreover, after Eq. (9) we may relate SH to the
Rènyi entropy of order 1/2 [28],

H1/2 = 2 ln

(
n∑

k=1

p1/2
k

)
. (10)

FIG. 1. Pythagoras-like theorem in finite dimension.

A. Pythagorean equation

Theorem. Given the previous definitions (3), (7), and (8), it
can be established the following relation between magnitudes,

Nonclassicality = coherence + certainty, (11)

this is

NCH = CH + SH . (12)

Proof. We insert the closest incoherent state ρd in the
definition of nonclassicality’s quantifier in Eq. (7) as tr[(

√
ρ −√

ρd + √
ρd − I/

√
N )2] so that it equals to

NCH = tr[(
√

ρ − √
ρd )2] + tr[(

√
ρd − I/

√
N )2]

+2 tr[(
√

ρ − √
ρd )(

√
ρd − I/

√
N )]. (13)

As long as tr(
√

ρ
√

ρd ) = tr(
√

ρd
2), it can be readily shown

that

tr[(
√

ρ − √
ρd )(

√
ρd − I/

√
N )] = 0. (14)

Therefore, we obtain the following Pythagoras-like equa-
tion in a finite-dimensional space:

tr[(
√

ρ − I/
√

N )2]

= tr[(
√

ρ − √
ρd )2] + tr[(

√
ρd − I/

√
N )2].� (15)

The central point of this derivation is the interpretation that
we can make of each term in the underlying right-triangle
structure associated with this version of the Pythagorean
theorem. The hypotenuse represents nonclassicality, whereas
coherence and certainty are the cathetus, that are orthogonal
as shown in (14). This may be illustrated with the aid of
Fig. 1, where ρd is the orthogonal projection of ρ into the
incoherence hyperplane. Note that we may obtain arbitrary
Pythagoras theorems replacing I/N by any incoherent state so
that the orthogonality (14) will still hold. But the choice I/N
is clearly the one where hypotenuse and cathetus have a most
clear physical meaning. Note that (15) and (11) adopts also
the form of a duality relation between coherence and certainty
in the coherence basis as already studied in Refs. [10,29]. It
also worth noting that this quantum result parallels equivalent
results in classical optics [11].

As a direct conclusion from the previous theorem we can
see that nonclassicality NCH becomes the maximum value
achievable for the coherence CH , in agreement with Ref. [30].
In addition, the difference between them is attributed to the
properties of the basis at hand. This is an interesting combi-
nation since from a more classical-like perspective NCH has
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be seen as an intrinsic or absolute form of coherence, this is
independent of any reference observable [12,31–33], see also
Ref. [34].

We can draw another conclusion from this theorem recall-
ing that the normalized identity is the only state diagonal in
all bases so it is the only state without coherence in all bases.
Considering this along with the fact that nonclassicality based
on Hellinger distance is zero, if and only if the state is the
normalized identity we can affirm that:

Nonzero coherence in, at least, one basis is necessary and
sufficient condition for nonzero nonclassicality in all bases.

Therefore, for a given basis, CH �= 0 is sufficient condition
for NCH �= 0. However, CH = 0 in that basis does not imply
NCH = 0 since the state may have coherence in a different
basis. We illustrate this affirmation in the first example of
the following section. This result agrees with previous works
where nonclassical features are measured in the absence of
coherence [35].

Finally, Eq. (15) allows us to arrive to the following rela-
tion between the coherence and the equivalent purity of the
square root density matrix,

tr(
√

ρ
2) = CH + 1. (16)

Considering this simplification we try to find a different
relation between coherence and certainty which does not in-
volve the nonclassicality term. If we denote

x =
N∑

i=1

√
ρii, (17)

then

CH =
∑
i �= j

|ρi j | � x2 − 1, SH = 2

(
1 − x√

N

)
, (18)

and the equality in CH holds for pure states under the form
(6). These quantities are combined to obtain a new relation
between them, arriving at

1 = SH

2
+ x√

N
� SH

2
+

√
CH + 1

N
, (19)

where the equality holds for pure states.

III. EXAMPLES

Next we compute the CH coherence of some meaningful
states within the area of quantum optics.

A. Qubit

This is the case N = 2. In quantum optics the most famous
qubit is a single photon split into two field modes, representing
typically two orthogonal polarization states, or the two inner
paths in a two-beam interferometer. A qubit can be fully
characterized by three-dimensional real Bloch vector s with
|s| � 1, equivalent to the Stokes parameters if we are within a
polarization context such that

ρ = 1
2 (1 + s · σ ), (20)

where σ are the Pauli matrices. Choosing the basis J as the
eigenvectors of the σz matrix we have

CH =
√

s2
x + s2

y , SH = 2 −
√

1 + sz −
√

1 − sz, (21)

and naturally NCH = CH + SH .
In order to look for maximum coherence and nonclassical-

ity varying the basis, we equivalently vary the Bloch vector
without altering its modulus.

It can be easily seen that for fixed |s|, this is for fixed purity,
the maximum of both CH and NCH holds when the projection
of the Bloch vector along the direction of the basis, say J =
σz, vanishes, this is, sz = 0, giving the following maxima:

NCH = CH = |s|. (22)

This example shows again the deep equivalence between
maximum coherence, nonclassicality and purity that has been
already put forward in works, such as Refs. [36,37], and in
Ref. [30] identifying purity as the maximal coherence which
is achievable by unitary operations, being purity the most
elementary resource for quantum information processing.

Through this example we can show the influence of the
basis on the values of coherence and nonclassicality. To this
end we choose the same state, this is, sz = 0, but we compute
those quantities in the basis in which ρ is diagonal where the
corresponding Bloch vector reads s′

z = |s|, s′
x = s′

y = 0 so that
in contrast to (22) in this basis, we find

CH = 0, NCH = 2 −
√

1 + |s| −
√

1 − |s|, (23)

LAS where it can be seen that for |s| �= 0 we have that NCH

is not canceled even if CH becomes zero.
This simple but meaningful example may serve well to

illustrate that nonclassical features can manifest in many dif-
ferent particular ways. For finite-dimensional systems this
includes the idea of SU(2) squeezing, but even in such a case
there are many different equivalent proposals realizing this
idea, such as the ones in Refs. [38–44], for example. Differ-
ent definitions are reviewed and compared, for example, in
Refs. [45,46]. It is the case then that some criteria may imply
that every qubit is classical, as far as all qubit pure states are
SU(2) coherent states with a well-behaved SU(2) P function.
On the other hand, according to the criterion of qubit entropic
squeezing in Ref. [47], all density matrices different from the
identity would show squeezing. Furthermore, this also agrees
with the general formalism of nonclassicality developed in
Refs. [23,48–50]. So, this well illustrates the results already
commented in Sec. II A as a good property of this formulation
of coherence and nonclassicality.

B. Phase states

As already noted, the states that make CH maximum should
be pure states with the same value of ρii = 1/N for all i, lead-
ing to SH = 0 and NCH = CH = N − 1. The corresponding
states are

|ψ〉 = 1√
N

N∑
j=1

eiφ j | j〉, (24)
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where φ j’s are arbitrary phases. With a proper phase adjust-
ment we may say that these are finite-dimensional phase states
[51,52].

C. Rotated number states

Beam splitting is a traditional form of creating coher-
ence after incoherent states in classical and quantum optics,
being the basis of interferometry. So let us examine the
coherence gained when incoherent number states |n〉|m〉 il-
luminate a lossless beam splitter. In particular, we focus on
the optimum case of a 50% beam splitters in the sense of
providing maximum coherence. Since we consider energy-
conserving processes and a finite number of photons NT =
n + m for all practical purposes the system is described by
finite-dimensional spaces of dimension N = NT + 1, being
isomorphic to an spin s = N/2. These states includes SU(2)
coherent states as the case m = 0 [53], and the Holland-
Burnett states of maximum SU(2) squeezing and maximum
interferometric resolution as the twin photon states |n〉|n〉 [54].

The 50% beam splitter induces a suitable mode transfor-
mation from the input modes a, b to the output modes a1, a2,
some phases irrelevant for our purposes,

a1 = 1√
2

(a + b), a2 = 1√
2

(a − b), (25)

such that the input state in modes a, b,

|n〉|m〉 = 1√
n!m!

a†nb†m|0, 0〉 (26)

transforms into the following state in the output modes a1, a2,

|n〉|m〉 = 1√
2m+nn!m!

(a†
1 + a†

2)n(a†
1 − a†

2)m|0, 0〉, (27)

leading to

|n〉|m〉 =
n+m∑
j=0

c j | j〉, (28)

where | j〉’s are photon-number states on the modes a1, a2,
| j〉 = | j〉1|n + m − j〉2, and omitting an irrelevant phase,

c j =
√

n!m!√
2m+n

j∑
k=0

(−1)k√ j!(n + m − j)!

k!( j − k)!(n − k)!(m + k − j)!
. (29)

We start comparing the coherence of the SU(2) coherent states
m = 0 and the twin states n = m, by using Eq. (6) with pj =
|c j |2.

It can be seen in Fig. 2 how the total amount of coherence
increases in both cases with the total number of photons. The
SU(2) coherent states are also more coherent when the total
number of photons is low and less coherent than the twin
states when the energy of the states increases.

For fixed n + m there is a general trend in which coherence
tends to be maximum around equal splitting of the photons
between the input modes n � m � NT/2, curiously except
the exact equality n = m that shows a clear coherence dip as
displayed in Fig. 3.

10 20 30 40
NT

5

10

15

CH

FIG. 2. Coherence based on Hellinger distance of SU(2) coher-
ent states (green circles) and twin states (gray squares) as a function
of the total number of photons.

IV. INFINITE DIMENSION: NUMERABLE BASIS

Now we extend the previous analysis to a Hilbert
space of infinite dimension. We choose a numerable ba-
sis, {|n〉}n=0,1,...∞, representing, for example, the number of
photons. The case of observables with continuous bases is
examined separately below. The translation to this area of the
finite-dimensional analysis made above finds a major diffi-
culty. This is that there can be no physical state proportional
to the identity. This is to say that in infinite dimension there
are no classical states.

As discussed after Eq. (15), we may expect that the
Pythagorean theorem will still hold replacing the identity by
any incoherent state, but the point is the physical interpretation
of the terms. Because of this, in this context we replace the
identity by an incoherent physical state ρT as close as desired
to have a uniform distribution in the coherence basis {|n〉}; this
is approaching to be a maximally mixed state. This can be the
case of a thermal-like state in the limit when the analog of the

10 20 30 40 50
m

20

25

30

35

40
CH

FIG. 3. Coherence of rotated number states |n〉|m〉 as a function
of m for the total number of photons NT = n + m = 50 showing a
general trend in which coherence increases when n � m � NT/2,
except the exact equality.
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temperature tends to infinity,

ρT = (1 − ξ )
∞∑

n=0

ξ n|n〉〈n| with ξ → 1. (30)

A. Pythagorean equation

So let us derive the infinite-dimensional version of the
Pythagorean theorem (11) illustrated in Fig. 1. As the key
point of the derivation we have the orthogonality condition,

tr[(
√

ρ − √
ρd )(

√
ρd − √

ρT )] = 0 (31)

for the same meaning of ρd as the diagonal part of ρ in the
number basis. The above relation holds for any ρT diagonal in
the number basis since

tr(
√

ρ
√

ρd ) = tr(
√

ρd

√
ρd ),

tr(
√

ρ
√

ρT ) = tr(
√

ρT
√

ρd ). (32)

Therefore, we readily get this new version of Pythagoras the-
orem in an infinite-dimension Hilbert space,

tr[(
√

ρ − √
ρT )2] = tr[(

√
ρ − √

ρd )2] + tr[(
√

ρd − √
ρT )2],

which has the same interpretation as in the finite-dimension
scenario,

Nonclassicality = coherence + certainty, (33)

as far as we consider the above-mentioned limit for ρT in
Eq. (30). Let us compute the certainty and simplify this ex-
pression as follows:

SH = tr(
√

ρd
2) + tr(

√
ρT

2) − 2 tr(
√

ρd
√

ρT ), (34)

with

tr(
√

ρd
2) = tr(

√
ρT

2) = 1, (35)

whereas for the third term we have

tr(
√

ρd
√

ρT ) =
√

1 − ξ

∞∑
n=0

ξ n/2√pn, (36)

where pn = 〈n|ρ|n〉. In order to proceed with the ξ → 1 limit
we will consider that the following quantity is finite, which is
the key ingredient of coherence as shown in Eq. (6),

∞∑
n=0

√
pn < ∞. (37)

This is actually satisfied by all the cases to be considered in
this paper. In such a case, when ξ → 1 we get

tr(
√

ρd
√

ρT ) → 0, (38)

so that SH = 2 and

NCH = CH + 2. (39)

Roughly speaking, SH = 2 means that as ξ → 1, the distance
between physical state ρd and ρT tends to be maximum.
Therefore, it is worth noting that in this infinite-dimensional
case we get that, in the conditions specified above, coherence
equals nonclassicality.

B. Examples

1. Number states

As the elements of the coherence basis they are incoherent
having maximum certainty,

CH = 0, SH = NCH = 2. (40)

2. Phase states

In the case of the normalizable Susskind-Glogower phase
states [55],

|ξ 〉 =
√

1 − |ξ |2
∞∑

n=0

ξ n|n〉, (41)

the coherence becomes

CH = 1 + |ξ |
1 − |ξ | − 1 = 2|ξ |

1 − |ξ | , (42)

so that CH → ∞ as |ξ | → 1. In terms of the mean number of
photons,

n̄ = |ξ |2
1 − |ξ |2 , |ξ |2 = n̄

1 + n̄
, (43)

we have

CH = 2(n̄ +
√

n̄ + n̄2), (44)

that for large enough n̄ 
 1 the coherence scales linearly with
the mean number of photons as

CH � 4n̄. (45)

3. Two-mode squeezed vacuum

The results for the phase states can be easily translated to
the case of the two-mode squeezed vacuum because of their
form similarity,

|ξ 〉 =
√

1 − |ξ |2
∞∑

n=0

ξ n|n, n〉 (46)

made just of twin-photon states we will obtain the same ex-
pression for the coherence as in (42), which in this case means
the more squeezing the more coherence.

4. Squeezed coherent states

We compute the coherence in the photon-number basis of
pure displaced squeezed vacuum states with displacement or
coherent amplitude R and squeezing parameter r.

In Fig. 4 it is shown how the larger the displacement R, the
larger the coherence, almost in a linear way. In Fig. 5 it can be
seen how coherence raises with the compression parameter,
r, then squeezed coherent states have more coherence than
coherent states.

This behavior can be understood recalling that for large dis-
placements R and not too large squeezing the photon-number
distribution of squeezed coherent states can be well approxi-
mated by a continuous Gaussian distribution. In such a case,
after the suitable generalization of Eq. (6) to this situation, the
coherence can be readily computed to give

CH � 2
√

2π	2n − 1, (47)
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2 4 6 8 10
R

50

100

150

200

250

300

CH

FIG. 4. Coherence of squeezed coherent states with compression
parameter r = 0.0001 blue-solid line, r = 1 orange-dashed line, and
r = 2 black-dotted line as a function of the displacement R.

where 	n is the number uncertainty, which in these conditions
might be approximated on the form 	2n � n̄e2r . So we see
that coherence increases with the photon-number variance,
and that squeezing can always increase fluctuations via super-
Poissonian number statistics.

Finally, we fix the mean photon number in order to study
the optimum distribution of energy between squeezing and
displacement. In Fig. 6 we observe an optimum distribution
of this energy when around 30% is utilized to squeeze the
state. In this case, the optimum configuration supposes an
important improvement in the total amount of coherence.
Roughly speaking, such optimum configuration agrees with
the limit in which squeezed coherent states become suitable
approximations of normalized phase states as states that tend
to be optimum regarding metrology [56].

5. Displaced-number states

We examine the contribution of the displacement to the
coherence in the case of displaced-number states D(α)|n0〉,
where D(α)|n0〉 where D(α) = exp(αa† − α∗a) is the dis-
placement operator. We find that the general trend of

0.5 1.0 1.5 2.0
r

50

100

150

200

250

300

CH

FIG. 5. Coherence of squeezed coherent states with coherent
displacement R = 0 blue-solid line, R = 1 orange-dashed line, and
R = 10 black-dotted line as a function of the squeeze parameter R.

1 2 3 4 5 6
R

0

40

60

80

100

120

140

CH

FIG. 6. Coherence of squeezed coherent states as a function of
the displacement R for determined mean number of photons, n̄ = 16
red-solid line, n̄ = 25 blue-dashed line, and n̄ = 36 black-dotted line.

coherence is to grow with |α| as in the squeezed coherent state
case. More specifically, in Fig. 7 it is shown how this growth
is softer for states the coherent state n0 = 0.

V. CONTINUOUS BASES

In this section we attempt to extend the previous analysis
to continuous bases both in finite and in infinite-dimensional
spaces.

By a suitable generalization of the preceding analyses we
may consider as coherence with respect to any basis |φ〉, even
if it is continuous or nonorthogonal, the contribution of the
nondiagonal terms of ρ, this is an expression of the form

CH = tr(
√

ρ
2) − 1 (48)

taken from Eq. (16). The question to be addressed next is
whether such a definition of coherence has the same geomet-
rical meaning we have found above in the case of discrete
orthogonal basis. To discuss this we focus on whether there
is a proper definition of ρd as the incoherent state closest
to ρ. First we consider normalized nonorthogonal bases in

0.5 1.0 1.5 2.0 2.5 3.0
Α

5

10

15

20

25
CH

FIG. 7. Coherence for displaced number states D(α)|n0〉 as a
function of the displacement |α| for n0 = 0 in the solid black line,
this is a coherent state n0 = 1 in the dashed blue line, n0 = 2 in the
dotted green line, and n0 = 4 in the dashed-dot orange line.
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finite-dimensional spaces and then orthogonal nonnormalized
ones in infinite-dimensional spaces.

A. Finite-dimensional space

For definiteness we use as the basis the set of finite-
dimensional phase states,

|φ〉 = 1√
N

N∑
j=1

ei jφ | j〉, (49)

where the | j〉 refers to some orthonormal numberlike basis. In
this scenario we may consider

ρd = N

2π

∫
dφ〈φ|ρ|φ〉|φ〉〈φ|, (50)

to be the incoherent state of reference, no longer diagonal
as we will see in the following. In addition, it is necessary
to determine the meaning of the square root suitable for this
continuous framework. Thus, we define

√
ρd as

√
ρd =

√
N

2π

∫
dφ

√
〈φ|ρ|φ〉|φ〉〈φ|, (51)

so that C = 0 if ρ = ρd .
After these definitions it turns out that tr[(

√
ρ − √

ρd )2]
does not reproduce Eq. (48) nor the Pythagorean theorem
holds due to

tr[(
√

ρ − √
ρd )(

√
ρd − I/

√
N )] �= 0, (52)

as it can be easily checked, for example, for the qubit state.
We may ascribe this behavior to the lack of orthogonality of
the phase states

〈φ′|φ〉 = 1

N

N∑
j

ei j(φ−φ′ ) �= 0, (53)

which makes ρd nondiagonal, meaning

〈φ′|ρd |φ〉 �= 0, φ �= φ′. (54)

B. Infinite-dimensional space

Let us consider next the case of a continuous basis made
of unnormalizable orthogonal states, such as the quadrature
or position eigenstates |x〉, where x can take any real value.
Although they are orthogonal in the sense of 〈x′|x〉 = δ(x −
x′) there is the difficulty of |x〉 being not normalizable. As a
consequence, any state diagonal in the |x〉 basis is not physical
since its trace diverges, in particular, this is the case of the
following definition of ρd :

ρd =
∫ ∞

−∞
dx〈x|ρ|x〉|x〉〈x|. (55)

As we have performed above with ρT we can try to avoid
this via some kind of regularization in some proper limit.
To this end we replace |x〉 by some normalizable states,
for example, displaced-squeezed states |x〉	 with quadrature-
coordinate wave function,

〈x′|x〉	 = 1

(2π	2)1/4
exp

[
− (x − x′)2

4	2

]
, (56)

so that we can define a truly unit-trace ρd as

ρd =
∫ ∞

−∞
dx〈x|ρ|x〉|x〉		〈x|, (57)

in the spirit of considering afterwards the limit 	 → 0. With
this definition it can be easily seen that

lim
	→0

〈x|ρd |x〉 = 〈x|ρ|x〉, (58)

simply by invoking the Gaussian representation of the Dirac-δ
function,

lim
	→0

|〈x′|x〉	|2 = δ(x − x′). (59)

Now we try to recover an expression for the coherence
in Eq. (48) as a suitable trace distance, this is in terms of
tr[(

√
ρ − √

ρd )2]. To this end we introduce
√

ρ and
√

ρd as

√
ρ =

∫ ∞

−∞
dx′

∫ ∞

−∞
dx

√
〈x|ρ|x′〉|x〉〈x′|, (60)

and

√
ρd =

∫ ∞

−∞
dx

√
〈x|ρ|x〉|x〉		〈x|. (61)

respectively.
It can be seen that tr(

√
ρd

2) vanish in the limit 	 → 0
since

lim
	→0

|	〈x′|x〉	|2 = 2
√

π	δ(x − x′) → 0. (62)

Similarly, taking into account Eq. (56), in the limit 	 → 0
we may consider that 〈x′|x〉	 and 	〈x|x′′〉 are so peaked func-
tions so that they act as Dirac-δ functions,

lim
	→0

〈x′|x〉		〈x|x′′〉 = 2
√

2π	δ(x − x′)δ(x − x′′), (63)

and, therefore, in this limit,

tr(
√

ρd
√

ρ) → 2
√

2π	

∫
dx〈x|ρ|x〉 → 0. (64)

All this together it emerges that

lim
	→0

tr[(
√

ρ − √
ρd )2] = tr(

√
ρ

2), (65)

so Eq. (48) is essentially recovered. In view of this we wonder
whether Pythagorean relation in Eq. (33) also holds. Note that
in this continuous case

√
ρT is defined as

√
ρT =

∫
dx

√
〈x|ρT |x〉|x〉		〈x|. (66)

We answer this question in the affirmative since the limits
(62) and (63) ensure the orthogonality condition in Eq. (31).

VI. COHERENCE QUANTIFIED BY THE
HILBERT-SCHMIDT DISTANCE

The previous results can be reproduced by using the
Hilbert-Schmidt distance to quantify all the magnitudes in-
volved [21,57],

dHS(a, b) =
√

tr[(a − b)2]. (67)
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We consider this scenario since the coherence based on the
Hilbert-Schmidt distance is widely utilized [8,9],

CHS(ρ) = [dHS(ρ, ρd )]2 = tr[(ρ − ρd )2] =
∑
j �=k

|ρ j,k|2, (68)

with ρd defined in Eq. (4). This distance allows us to recover
an equivalent Pythagoras-like equation in a finite-dimensional
space,

tr[(ρ − I/N )2] = tr[(ρ − ρd )2] + tr[(ρd − I/N )2],

NCHS = CHS + SHS. (69)

The states making these quantities extremal are the same as
for Hellinger quantifiers. The only difference is the maximum
value of NCHS and CHS which becomes 1 − 1/N so in this
case the coherence, nonclassicality, and certainty are bounded
by 1 in finite-dimensional spaces.

Furthermore, in infinite-dimensional spaces with numer-
able bases we also arrive at an equivalent Pythagoras-like
equation by means of the same classical reference ρT intro-
duced in Eq. (30),

tr[(ρ − ρT )2] = tr[(ρ − ρd )2] + tr[(ρd − ρT )2]. (70)

We complete the analysis of the Hilbert-Schmidt scenario
with the translation into a continuous basis.

In the case of finite-dimensional spaces and nonorthog-
onal bases, the difficulties caused by the definition of the
closest incoherent state [see Eqs. (53) and (54)] remain, so
it is also impossible to find a suitable geometrical formula-
tion of coherence and nonclassicality in such a continuous
framework.

Finally we consider an infinite-dimensional space and
continuous bases made of unnormalizable orthogonal states
where the very same definition of the incoherent state pro-
posed in Eq.(57) can be utilized. As a result of the limits in
Eqs. (62) and (63) we arrive at

lim
	→0

tr[(ρ − ρd )2] = tr(ρ2), (71)

which is a base-independent quantity. Thus, in this case of
Hilbert-Schmidt distance the translation into the continuous
basis is not possible neither for infinite- nor for finite-
dimensional spaces.

VII. CONCLUSIONS

We have carried out a study of coherence based on distance
measurements. We have developed a relation among coher-
ence, certainty, and nonclassicality which establishes the latter
as the upper bound of the coherence, ascribing the difference
to the basis at hand. Moreover, we find nonzero coherence
with respect to, at least, one basis as a necessary and suffi-
cient condition for finding some nonclassicality in any basis.
This relation can be extended to infinite-dimensional systems
through a discrete basis as well as a continuous orthogonal
basis. We conclude that there is no straightforward expansion
of the formalism to the case of continuous nonorthogonal
bases. All these conclusions are shared by the analyses made
with both Heillinger-like and Hilbert-Schmidt distances, ex-
cept from the case of continuous nonorthogonal basis since
there is no proper expansion to continuous basis in any case
when using the Hilbert-Schmidt distance.

The examples examined show the increase in coherence
with squeezing on squeezed coherent states and with the
displacement on coherent and number states. Also we find
an interesting and abrupt reduction in the coherence of twin
states.
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