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Quantum time dynamics employing the Yang-Baxter equation for circuit compression
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Quantum time dynamics (QTD) is considered a promising problem for quantum supremacy on near-term
quantum computers. However, QTD quantum circuits grow with increasing time simulations. This study focuses
on simulating the time dynamics of one-dimensional (1D) integrable spin chains with nearest-neighbor interac-
tions. We have proved the existence of a reflection symmetry in the quantum circuit employed for simulating the
time evolution of certain classes of 1D Heisenberg model Hamiltonians by virtue of the quantum Yang-Baxter
equation, and how this symmetry can be exploited to compress and produce a shallow quantum circuit. With
this compression scheme, the depth of the quantum circuit becomes independent of step size and only depends
on the number of spins. We show that the depth of the compressed circuit is rigorously a linear function of the
system size for the studied Heisenberg model Hamiltonians in the present work. As a consequence, the number
of CNOT gates in the compressed circuit only scales quadratically with the system size, which allows for the
simulations of time dynamics of very large 1D spin chains. We derive the compressed circuit representations
for different special cases of the Heisenberg Hamiltonian. We compare and demonstrate the effectiveness of this
approach by performing simulations on quantum computers.
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I. INTRODUCTION

Simulation of statistical mechanical models is a vital appli-
cation for classical and quantum computing [1]. It is also well
known that the partition function of a (d + 1)-dimensional
classical system can be mapped to the partition function of
a d-dimensional quantum system [2–4]. This deep classical
to quantum connection can give insights into quantum univer-
sality classes using appropriate classical counterparts. It might
allow one to use these effective models to study critical points
and phase transitions of magnetic systems, where the spins of
the magnetic systems are treated quantum mechanically.

Quantum Ising and Heisenberg models [5] represent
some of the simplest models that can describe the behavior
of magnetic systems. However, two-dimensional (2D) and
three-dimensional (3D) quantum lattice simulations remain
challenging for classical computing. A possible solution is
to use quantum computing, given that it is only natural to
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simulate quantum systems with quantum computers, as sug-
gested by Benioff [6] and Feynman [7]. The idea of using
quantum computing on quantum devices is compelling since
it paves the way for systematic improvements of quantum
technologies. The exploration of this approach is at the core of
several research efforts in quantum information sciences [8].
In particular, the development of new generations of quantum
models and associated simulations on existing and upcoming
noisy intermediate-scale quantum (NISQ) [9] devices is of
special interest.

Quantum integrable systems [5,10] typically refer to sys-
tems where the dynamics are two-body reducible. Put another
way, even though the Hilbert space increases exponentially
with increasing system size in these systems, the two-body
reducibility, in combination with the algebraic Bethe Ansatz
[5,11,12], can be used to obtain explicit solutions, under cer-
tain conditions, by solving a set of nonlinear equations that
scales only linearly with system size. The quantum Yang-
Baxter equation (YBE) or star-triangle relation [10,13–15] is
a consequence of this factorization. The algebraic formulation
of quantum integrable systems makes them ideal tools to study
a broad range of low-dimension physical models. Historically,
the isotropic interacting quantum spin chain, or Heisenberg
model [16], was the first quantum integrable system, whose
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exact eigenstates were obtained through the Bethe Ansatz
approach as a superposition of plane waves [11,17–21]. Other
quantum integrable models include the Lieb-Liniger model
[22,23], the Hubbard model [24], the Calogero-Sutherland
model [5,25–29], models from quantum field theory such as
the sine-Gordon model [30,31], and several subclasses of the
Heisenberg model (e.g., the XXZ model) [16,32].

An important open question in quantum integrable systems
involves time evolution, or the response dynamics where the
system responds to a change of parameters. This problem re-
quires sufficiently accurate control of the time evolution of the
system, which is governed by the time-dependent Schrödinger
or Dirac equation of the quantum state in the Hilbert space.
The time evolution problem is also closely related to the
computation of the asymptotic state of quantum integrable
models, or in a more general sense the thermalization and
ergodic/nonergodic behaviors of these models. Several con-
jectures have been proposed in this context [33–35]. For
example, in the Heisenberg spin chain, quantum quenches of
the XXZ model have been studied by embedding the gener-
alized Gibbs ensemble hypothesis into the quantum transfer
matrix framework [36,37]. Nevertheless, these studies are still
far from conclusive. Other types of quantum integrability are
known in explicitly time-dependent quantum problems, such
as the driven Tavis-Cummings model [38,39].

Quantum circuits representing quantum time dynamics
(QTD) are well known to grow with increasing time sim-
ulations. In the present era of noisy quantum computers,
circuits must be as shallow as possible for meaningful results.
With this as the overarching theme, we focus on QTD of 1D
integrable spin chains with nearest-neighbor interactions. In
particular, noticing the difference between the integrability
of 1D spin chains using Bethe Ansätze versus integrability
via mapping to free fermions [54], as a preliminary step our
present work is only focused on circuit compression for ac-
curately and efficiently simulating the time dynamics of the
latter on noisy quantum devices. We show how the quantum
YBE can be used to compress and produce a shallow quan-
tum circuit, where the depth becomes independent of step
size and depends only on the number of spins. The depth of
the compressed circuit is rigorously a linear function of the
system size for the studied model Hamiltonians in the present
work. As a consequence, the number of CNOT gates in the
compressed circuit only scales quadratically with the system
size. This allows for simulations of time dynamics of very
large 1D spin chains. Compressed circuit representations are
derived for different free fermion Hamiltonians.

As a proof of principle, we demonstrate the effectiveness
of this approach by performing simulations of the Heisen-
berg XY model (or the XY model, in brief) on quantum
devices. The time evolution of the XY model is an active area
of research and has been approached from many directions.
Verstraete and co-workers [40] utilized the quantum Fourier
transform with the Bogoliubov transformation to perform time
dynamics efficiently on a quantum computer. In addition, we
note that there are also several other approaches reported
recently for compressing quantum circuits for dynamics us-
ing both integrable and nonintegrable models [41–45]. For
example, in a similar study to this work, Bassman and co-
workers [46–48] reported simulations of the XY model by

conjecturing the relationship between the reflection symmetry
and the YBE-like “turn over” operation, and they provided
numerical evidence for the transformation. However, no
connection to the YBE was made. Here, we not only recognize
the connection, but we also rigorously derive the analytical ex-
pressions and compressed circuit representations for different
special cases of the Heisenberg Hamiltonian. This connects
our work to the broader and deeper context of the YBE
duality and integrable quantum computation. For the rest of
this paper, we will tacitly assume the quantum YBE and omit
“quantum” for brevity.

II. THEORY

For completeness, we start by reviewing relevant back-
ground material, with a brief introduction to the Heisenberg
Hamiltonian, quantum time dynamics, and the Yang-Baxter
equation.

A. Heisenberg Hamiltonian

The Heisenberg Hamiltonian [49–51] is widely used to
study magnetic systems, where the magnetic spins are treated
quantum mechanically. The Hamiltonian, including only spin-
spin interactions, can be written as

Ĥ = −
∑

α

{
Jα

N−1∑
i=1

σα
i ⊗ σα

i+1

}
, (1)

where α sums over {x, y, z}, the coupling parameter Jα

denotes the exchange interaction between nearest-neighbor
spins along the α-direction, and σα

i is the α-Pauli operator
on the ith spin. Interaction with the magnetic field can be
included in this Hamiltonian as

Ĥin(t ) = Ĥ − hβ (t )
N∑

i=1

σ
β
i , (2)

where hβ (t ) is the time amplitude of the external magnetic
field along the β ∈ {x, y, z} direction. Several variations of this
model are known in the literature, and they are categorized
depending on the relation between Jx, Jy, and Jz. This Heisen-
berg Hamiltonian represents quantities based on the electronic
structure of the system, where the Coulomb interaction and
hopping are mapped onto spin variables [52,53]. A simple
variant of the Heisenberg model is the 1D XY model that was
first introduced and solved by Lieb, Schultz, and Mattis [54] in
the absence of a magnetic field, and later by Katsura [55,56]
and Niemeijer [57] in a finite external field. The XY model
describes a 1D lattice with spin variables labeling every lattice
point. The spins are limited to interact only with their nearest
neighbors in an anisotropic way.

B. Time evolution

Quantum state evolution [58,59] is governed by the
Schrödinger or Dirac equation

ih̄
∂

∂t
|ψ (t )〉 = Ĥ |ψ (t )〉 . (3)
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The solution to this equation can be expressed as

|ψ (t )〉 = e−iĤt/h̄ |ψ (0)〉 , (4)

where e−iĤt/h̄ is the evolution operator. In the 1D Heisen-
berg model, with the exception of N = 2, all the elements
in the Hamiltonian do not commute with each other, and
hence the exponential of Ĥ cannot be written as a product of

exponentials. For N = 2,

e−iĤt/h̄ =
∏
α

eiJαt (σα
1 ⊗σα

2 )/h̄, (5)

where each term is straightforward to evaluate, as shown
below,

eiJxt (σ x
1 ⊗σ x

2 )/h̄ =

⎛
⎜⎝

cos(θx ) 0 0 i sin(θx )
0 cos(θx ) i sin(θx ) 0
0 i sin(θx ) cos(θx ) 0

i sin(θx ) 0 0 cos(θx )

⎞
⎟⎠,

eiJyt (σ y
1 ⊗σ

y
2 )/h̄ =

⎛
⎜⎝

cos(θy) 0 0 −i sin(θy)
0 cos(θy) i sin(θy) 0
0 i sin(θy) cos(θy) 0

−i sin(θy) 0 0 cos(θy)

⎞
⎟⎠,

eiJzt (σ z
1 ⊗σ z

2 )/h̄ =

⎛
⎜⎜⎝

eiθz 0 0 0
0 e−iθz 0 0
0 0 e−iθz 0
0 0 0 eiθz

⎞
⎟⎟⎠.

(6)

Here, θα = tJα/h̄. For N = 3, some terms do not commute.
For instance, if p12 represents the Heisenberg interaction
[Eq. (5)] between spins 1 and 2, and p23 represents interaction
between spins 2 and 3, then p12 does not commute with p23.
As a result, one cannot decompose the time evolution operator
as a product of two-body evolution operators. The Trotter de-
composition can be used to rewrite the time evolution operator
in terms of two-body components as follows:

e−iĤt/h̄ =
[(∏

α

eiθα

(
σα

1 ⊗σα
2 ⊗1

)
/n

)
×

(∏
α

eiθα

(
1⊗σα

2 ⊗σα
3

)
/n

)]n

+ O(t/n), (7)

where the error scales linearly with the time step, namely
t/n, which can be a significant source of error. This can
be mitigated by taking a smaller step size. However, this
results in an overall increase in the computation cost. As
analyzed in Refs. [60,61], for the Heisenberg model Hamil-
tonian the gate complexity associated with the quantum
simulation employing product formulas scales as O(t2/ε) and
O(52kt1+1/2k/ε1/2k ) for first order and 2kth order, respectively,
with t representing the simulation time and ε the allowed er-
ror. The desired upper bounds, including analytic, minimized,
and empirical bounds, on the allowed error ε have been exten-
sively explored and discussed previously (see Refs. [60–64])
for choosing a reasonable n-segment such that the asymptotic
complexity of the production formula algorithm can be im-
proved. In a more general sense, one can also explore other
routes to balance accuracy and computation cost. For exam-
ple, extending the evolution operator to systems with N > 3,
one can observe two major commuting families as shown in
Fig. 1. All elements in the orange family commute, and all

elements in the blue family commute. Therefore, the evolution
operator can be written as a product of exponentials within the
families without Trotter decomposition.

C. Yang-Baxter equation

The Yang-Baxter equation (YBE) was introduced indepen-
dently in theoretical physics by Yang [13] in the late 1960s
and by Baxter [65] in statistical mechanics in the early 1970s.
This relation has also received much attention in many areas
of theoretical physics, classification of knots, scattering of
subatomic particles, nuclear magnetic resonance, and ultra-
cold atoms, and more recently in quantum information science
[66–71].

The YBE connection to quantum computing originates
from investigating the relationship between topological entan-
glement, quantum entanglement, and quantum computational
universality. Of particular interest is how the global topo-
logical relationship in spaces (e.g., knotting and linking)
corresponds to the entangled quantum states and how the
CNOT gate, for instance, can in turn be replaced by another
unitary gate R to maintain universality. It turns out these
unitary R gates, which serve to maintain the universality of
quantum computation and also serve as solutions for the con-
dition of topological braiding, are unitary solutions to the
YBEs [14]. Briefly, the relation is a consistency or exchange
condition that allows one to factorize the interactions of three

FIG. 1. 1D spin chain showing two families (orange and blue) in
which all elements in each family commute within that family.
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bodies into a sequence of pairwise interactions under certain
conditions. Formally, this can be written as

(R ⊗ 1)(1 ⊗ R)(R ⊗ 1) = (1 ⊗ R)(R ⊗ 1)(1 ⊗ R), (8)

where the R operator is a linear mapping R : V ⊗ V →
V ⊗ V defined as a twofold tensor product generalizing
the permutation of vector space V . In circuit language, R
represents a parametrized unitary gate. In particular, although
there exist R gate structures of higher dimension [72], we
limit our discussion of R in the present context as a two-qubit
gate parametrized by a phase factor and a rotation [see, e.g.,
Eq. (12)]. This relation also yields a sufficiency condition for
quantum integrability in 1D quantum systems, and it provides
a systematic approach to construct integrable models. Since
a detailed discussion of this topic is beyond the scope of this

paper, we refer the reader to more comprehensive works and
reviews on the subject [10,14].

III. CIRCUIT REPRESENTATION OF THE TIME
EVOLUTION OPERATOR

Since the evolution operator is a unitary matrix, there
exists a quantum circuit that can perform this operation ef-
ficiently on a quantum computer. First, we will find the
quantum circuit for two spins and later extend it to N spins
with nearest-neighbor interactions in 1D. Each spin can be
mapped to a qubit, and the evolution of the spin system can
be mapped to a quantum circuit. Using Eqs. (5) and (6), we
have

∏
α=x,y,z

eiJαt (σα
1 ⊗σα

2 )/h̄ =

⎛
⎜⎜⎝

eiθz cos(γ ) 0 0 ieiθz sin(γ )
0 e−iθz cos(δ) ie−iθz sin(δ) 0
0 ie−iθz sin(δ) e−iθz cos(δ) 0

ieiθz sin(γ ) 0 0 eiθz cos(γ )

⎞
⎟⎟⎠, (9)

where γ = θx − θy and δ = θx + θy. The optimal circuit for
this matrix is

(10)
The evolution operator for any time step can be represented
by using this circuit. In addition, it is also a constant depth
circuit for each time step since the number of one- and two-
qubit gates does not increase with the time step. The quantum
circuit for a spin chain with more than two spins in 1D
can be derived by using Eq. (10) and the Trotter
decomposition.

Two commuting families of operators exist, as shown in
Fig. 2 as orange and blue two-qubit gates, respectively. The
accuracy of the simulation for a given time depends on the
Trotter step (t/n). As a consequence of Trotterization, the
quantum circuit for time evolution grows linearly with the
time step. Figure 2 shows the quantum circuit for a given time
t using n Trotter steps. Each Trotter step is composed of a
bilayer of two-qubit gates. The first layer acts on the first two
qubits, followed by the third and then the fourth qubits, and
so on. Orange rectangles in Fig. 2 represent the first layer.
The second layer of two-qubit gates starts from the second
qubit and acts on the next two qubits. Blue rectangles in Fig. 2
represent the second layer. Both orange and blue rectangles
combine to form an alternative layer, covering all possible
nearest-neighbor interactions.

IV. CIRCUIT COMPRESSION USING THE
YANG-BAXTER EQUATION

In Sec. III we showed the generalized circuit for time
evolution of N spins in 1D. In this section, we will utilize

the YBE to simplify the generalized quantum circuit for ar-
bitrary time steps. First, we will show the existence of a
unique reflection symmetry for a quantum circuit composed
of alternative layers. Next, we will show the merge iden-
tity for two-qubit gates. We will also show how reflection
symmetry combined with the merge identity allows for the
compression of a quantum circuit of any length to a finite
depth.

A. Reflection symmetry and merge identity

The evolution operator for the Heisenberg Hamiltonian on
two qubits is given by Eq. (9). When there are two evolution
operators with different parameters on the same two qubits,
they can be merged and represented via a single operator as

FIG. 2. Quantum circuit for time evolution of N spins, composed
of n alternative layers using the Trotter approximation.
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FIG. 3. (a) Quantum circuit representation of the YBE for three
qubits. (b) Reflection symmetry is achieved by using the YBE four
times on four qubits (the action of YBE on which triplets are shown
by black dots).

shown below:

Ri j
(
θ1

x , θ1
y , θ1

z

)
Ri j

(
θ2

x , θ2
y , θ2

z

)
= Ri j

(
θ1

x + θ2
x , θ1

y + θ2
y , θ1

z + θ2
z

)
. (11)

In the rest of this article, we will call Eq. (11) the merge
identity. Diagrammatic representation of the YBE is shown
in the top panel of Fig. 3, where Ri j represents the opera-
tor acting on i, j qubits. By using this symmetry repeatedly,
one can prove the existence of reflection symmetry in n
qubits composed of n/2 alternative layers (see the proof in
Appendix A). The bottom panel of Fig. 3 shows how reflection
symmetry is achieved for four qubits using the YBE three
times.

Reflection symmetry combined with the merge identity
allows for the compression of N alternative layers of gates
to N/2 alternative layers for N qubits. Figure 4 shows the
use of reflection symmetry combined with the merge identity
for four qubits. A third alternative layer can be merged into
the previous two layers. Therefore, any number of alternative
layers can be compressed into two alternative layers.

FIG. 4. Compression scheme for four qubits. Reflection symme-
try exists with two layers of alternative gates. The addition of a
third layer can be absorbed into the two layers by recursive usage
of reflection symmetry (red bracket) via the YBE and merge identity
(black dotted box).

B. Algebraic condition for reflection symmetry

In the preceding section, we showed that reflection
symmetry is a sufficient condition for performing circuit com-
pression. An interesting follow-up question is, “How would
one know whether reflection symmetry can be applied to a
quantum dynamics simulation of a given Hamiltonian?” To
answer this question, one needs to show whether algebraic
relations of phases and rotations exist before and after the re-
flection. Given a general time propagator such as (9), however,
an exhaustive search and rigorous proof appear challenging.
Because of the lack of rigorous algebraic relations, YBE-like
relations can only be conjectured, as shown in previous work
(see, for example, Ref. [46]), thus making the compression
of the circuit a heuristic process. In this section, we show
that some algebraic relations can be obtained rigorously for
at least a few special cases of (9). In particular, we propose
the following theorem.

Theorem I: Given the time evolution operator that takes the
form

R(γ , δ) =

⎛
⎜⎜⎝

eiδ cos(γ ) 0 0 ieiδ sin(γ )
0 e−iδ cos γ ie−iδ sin γ 0
0 ie−iδ sin γ e−iδ cos γ 0

ieiδ sin(γ ) 0 0 eiδ cos(γ )

⎞
⎟⎟⎠, (12)

the following YBE holds:

(R(γ1, δ1) ⊗ 1)(1 ⊗ R(γ2, δ2))(R(γ3, δ3) ⊗ 1)

= (1 ⊗ R(γ4, δ4))(R(γ5, δ5) ⊗ 1)(1 ⊗ R(γ6, δ6)) (13)

if and only if the following 16 relations between the γ ′s and
δ′s are satisfied:

sγ2 cγ1−γ3 cδ1−δ3 sδ2 = cγ5 sγ4+γ6 sδ4+δ6 cδ5 , (14)

cγ2 cγ1−γ3 cδ1+δ3 sδ2 = cγ5 cγ4+γ6 sδ4+δ6 cδ5 , (15)

−sγ2 cγ1+γ3 sδ1−δ3 cδ2 = cγ5 sγ4−γ6 cδ4+δ6 sδ5 , (16)

cγ2 cγ1+γ3 sδ1+δ3 cδ2 = cγ5 cγ4−γ6 cδ4+δ6 sδ5 , (17)

sγ2 cγ1+γ3 cδ1−δ3 cδ2 = cγ5 sγ4+γ6 cδ4+δ6 cδ5 , (18)

cγ2 cγ1+γ3 cδ1+δ3 cδ2 = cγ5 cγ4+γ6 cδ4+δ6 cδ5 , (19)
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TABLE I. YBE analysis for six free-fermion Hamiltonians. U1 = Rz(π/2) ⊗ Rz(π/2) and U2 = Rx (π/2) ⊗ Rx (π/2). The possible exten-
sion to Heisenberg model Hamiltonians with a transverse field is briefly discussed in Appendix B.

Hamiltonian time propagator Time propagator circuit Necessary conditions for YBE

HX e−itHX /h̄ = R(γ , δ = 0) sγ2 cγ1+γ3 = cγ5 sγ4+γ6 , cγ2 cγ1+γ3 = cγ5 cγ4+γ6• Rx(−2γ) • sγ2 sγ1+γ3 = sγ5 sγ4+γ6 , cγ2 sγ1+γ3 = sγ5 cγ4+γ6

HY e−itHY /h̄ = U1R(γ , δ = 0)U †
1

Rz(π/2) • Rx(−2γ) • Rz(−π/2)

Rz(π/2) Rz(−π/2)
Same as above

HZ e−itHZ /h̄ = R(γ = 0, δ) cδ1+δ3 sδ2 = sδ4+δ6 cδ5 , sδ1+δ3 cδ2 = cδ4+δ6 sδ5• •

Rz(−2δ)

cδ1+δ3 cδ2 = cδ4+δ6 cδ5 , sδ1+δ3 sδ2 = sδ4+δ6 sδ5

HX + HY e−it (HX +HY )/h̄ = U2R(τ, φ)U †
2 (τ, φ)-relation is analogous to Eqs. (14)–(29)

Rx(π/2) • Rx(−2τ) • Rx(−π/2)

Rx(π/2) Rz(−2φ) Rx(−π/2)

τ = γ + δ, φ = γ − δ

HX + HZ e−it (HX +HZ )/h̄ = R(γ , δ)

• Rx(−2γ) •

Rz(−2δ)
Eqs. (14)–(29)

HY + HZ e−it (HY +HZ )/h̄ = U1R(γ , δ)U †
1

Rz(π/2) • Rx(−2γ) • Rz(−π/2)

Rz(π/2) Rz(−2δ Rz(−π/2)
Eqs. (14)–(29)

−sγ2 cγ1−γ3 sδ1−δ3 sδ2 = cγ5 sγ4−γ6 sδ4+δ6 sδ5 , (20)

cγ2 cγ1−γ3 sδ1+δ3 sδ2 = cγ5 cγ4−γ6 sδ4+δ6 sδ5 , (21)

sγ2 sγ1+γ3 cδ1−δ3 cδ2 = sγ5 sγ4+γ6 cδ4−δ6 cδ5 , (22)

cγ2 sγ1+γ3 cδ1+δ3 cδ2 = sγ5 cγ4+γ6 cδ4−δ6 cδ5 , (23)

sγ2 sγ1−γ3 sδ1−δ3 sδ2 = sγ5 sγ4−γ6 sδ4−δ6 sδ5 , (24)

−cγ2 sγ1−γ3 sδ1+δ3 sδ2 = sγ5 cγ4−γ6 sδ4−δ6 sδ5 , (25)

−sγ2 sγ1−γ3 cδ1−δ3 sδ2 = sγ5 sγ4+γ6 sδ4−δ6 cδ5 , (26)

−cγ2 sγ1−γ3 cδ1+δ3 sδ2 = sγ5 cγ4+γ6 sδ4−δ6 cδ5 , (27)

−sγ2 sγ1+γ3 sδ1−δ3 cδ2 = sγ5 sγ4−γ6 cδ4−δ6 sδ5 , (28)

cγ2 sγ1+γ3 sδ1+δ3 cδ2 = sγ5 cγ4−γ6 cδ4−δ6 sδ5 , (29)

where sp and cp denote sin (p/2) and cos (p/2), respectively.
The proof of Theorem I is straightforward but lengthy

and tedious if one expands both sides of Eq. (13)
and performs a term-by-term comparison. For simplicity, a
more compact representation of Eqs. (14)–(29) can be ex-
pressed as

⎛
⎜⎝

cγ1−γ3 sδ2

cγ1+γ3 cδ2

−sγ1−γ3 sδ2

sγ1+γ3 cδ2

⎞
⎟⎠

⎛
⎜⎝

cδ1−δ3 sγ2

cδ1+δ3 cγ2

−sδ1−δ3 sγ2

sδ1+δ3 cγ2

⎞
⎟⎠

T

=

⎛
⎜⎝

cγ5 sδ4+δ6

cγ5 cδ4+δ6

sγ5 sδ4−δ6

sγ5 cδ4−δ6

⎞
⎟⎠

⎛
⎜⎝

sγ4+γ6 cδ5

cγ4+γ6 cδ5

sγ4−γ6 sδ5

cγ4−γ6 sδ5

⎞
⎟⎠

T

. (30)

Based on this theorem, we show explicitly in Table I the
YBE analysis for six free-fermion Hamiltonians where the
reflection, as the preprocessing step prior to the compression,
is accomplished algebraically. Here, the Hamiltonian operator
Ĥ takes at most two terms from the set {HX , HY , HZ}, where

HX = −
n−1∑
j=1

Jxσ
x
j σ

x
j+1, (31)

HY = −
n−1∑
j=1

Jyσ
y
j σ

y
j+1, (32)

HZ = −
n−1∑
j=1

Jzσ
z
j σ

z
j+1. (33)
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In practice, the algebraic relations between rotations and
phases can be further simplified since we care about only one
solution (not all the solutions) that satisfies these algebraic
relations. For example, for Ĥ = HX , an apparent solution is
to let γ6 = 0 (such that γ4 = γ2) and γ5 = γ1 + γ3. Also, for
Ĥ = HX + HZ , if we do not consider the edge cases (that
lead to singularities in the sine and cosine functions), (γi, δi)
(i = 4, 5, 6) can be obtained from the following simplified
trigonometric relations:

tan([γ4 + γ6]/2) = tan(γ2/2)
cos([δ1 − δ3]/2)

cos([δ1 + δ3]/2)
, (34)

tan([γ4 − γ6]/2) = − tan(γ2/2)
sin([δ1 − δ3]/2)

sin([δ1 + δ3]/2)
, (35)

tan([δ4 + δ6]/2) = tan(δ2/2)
cos([γ1 − γ3]/2)

cos([γ1 + γ3]/2)
, (36)

tan([δ4 − δ6]/2) = tan(δ2/2)
sin([γ1 − γ3]/2)

sin([γ1 + γ3]/2)
, (37)

tan(γ5/2) = tan([γ1 + γ3]/2)
cos([δ4 + δ6]/2)

cos([δ4 − δ6]/2)
, (38)

tan(δ5/2) = − tan([δ1 + δ3]/2)
cos([γ4 + γ6]/2)

cos([γ4 − γ6]/2)
. (39)

V. TIME DYNAMICS ON A QUANTUM DEVICE

As a proof of concept and to highlight the impact of com-
pressed circuits on a real noisy quantum device (IBM-Manila,
average CNOT error ∼ 10−3, average readout error ∼10−2,
and 8192 shots), we performed a time dynamics simulation
of the XY Hamiltonian with three spins. We computed the
time-dependent staggered magnetization, ms(t ), which can be
connected to the antiferromagnetism and ferrimagnetism in
materials as follows:

ms(t ) = 1

N

∑
i

(−1)i 〈σz(t )〉 . (40)

The initial state is the ground state (Neél state) of the XY
Hamiltonian, defined as �0 = |↑↓↑↓ · · · ↑↓〉. The staggered
magnetization of the Neél state is 1. We performed the time
evolution for 2.5 units of time with a Trotter step size of 0.025
units.

Figure 5 shows the evolution of the staggered magnetiza-
tion for three spins with parameters Jx = −0.8 and Jy = −0.2.
We choose different parameters for Jx and Jy to make the
system anisotropic. The first component in Fig. 5 is the exact
evolution of staggered magnetization for the XY model, which
serves as a reference. The second component is a simulation
using the Qiskit simulator with no noise, which provides the
estimation for running this evolution on a noise-free quantum
computer. The third component is the simulation result from
the compressed circuit, which captures the dynamics for al-
most every time step. The compressed circuits are produced
by repeated use of the YBE and merge identity. In contrast,
results from a run on the same device with IBM-compiled cir-
cuits deviate quickly after the third time step. This comparison
shows the impact of compressed circuits on a noisy quantum
computer.

The compressed circuit simulation on a noisy quantum
device shows an exceptional match with the exact evolution

FIG. 5. Comparison of time dynamics for three spins with the
XY (Jx = −0.8 and Jy = −0.2) model Hamiltonian on the IBM
(Manila) device (8192 shots) with and without compression. Results
from the Qiskit simulator serve as a baseline. Note that for simulating
the XY model, each two-qubit gate includes two CNOTs, therefore
the compressed circuit for the simulation only includes six CNOTs
constituting three layers in comparison with 400 CNOTs without
compression.

of staggered magnetization between steps 20 and 80. Also, the
staggered magnetizations at the initial (<20 steps) and the last
(>80 steps) phases are similar in magnitude. Nevertheless,
the amount of quantum error and its type are different in the
two observations. At the zeroth step, the error mainly comes
from state preparation. At the last step, however, other errors
from state evolution enter and make large deviations from the
exact staggered magnetization on top of the state preparation
error. Depolarization noise converts a pure state to a maxi-
mally mixed state. Staggered magnetization for the maximally
mixed state is zero. This is evident for uncompressed circuits,
where staggered magnetization after the tenth step reaches
zero and stays there for later steps. Therefore, depolariza-
tion noise favors states that have a staggered magnetization
of zero. It is also the main contributor to the unparalleled
overlap of simulation results from compressed circuits and
exact evolution. The compressed circuits will overlap more
with exact evolution, irrespective of Jx and Jy, because of
small depth. The results obtained from compressed circuits
have controllable errors due to Trotter decomposition. The
absolute error can be reduced with a smaller step size. How-
ever, a small step size increases the number of alternative
layers, which can be compressed by using our scheme to make
it a linear depth again. Therefore, our scheme is implicitly
an error mitigation technique, which allows for significantly
reducing quantum circuit depth, and (together with other error
mitigation techniques) for systematic convergence to the exact
answer without increasing the circuit size. The only bottle-
neck is preprocessing of the circuit on a classical computer
(see Appendix A for a detailed analysis). Performing the
YBE combined with the merge identity is computationally
straightforward because of analytical expressions that we have
derived. We note, however, that multiple time usages of both
can make the compression scheme computationally expensive
for a large number of qubits.
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VI. CONCLUSIONS AND OUTLOOK

We have shown how the YBE can be utilized to com-
press and produce a shallow quantum circuit for efficient time
dynamics simulations of 1D lattice spin chains with nearest-
neighbor interactions on real quantum computers. The depth
of quantum circuits for each time step is independent of time
and step size and depends only on the number of spins. In
particular, the depth of the compressed circuit is rigorously
a linear function of the system size for the studied Heisen-
berg model Hamiltonians, and the number of CNOT gates in
the compressed circuit only scales quadratically with system
size. This allows for simulations of time dynamics of very
large 1D spin chains. Moreover, we derived the compressed
circuit representations for different free fermion Hamiltonian.
To demonstrate the efficacy of the developed technique, we
performed a time dynamics simulation of three spins on an
IBM quantum computer, and we compared both compressed
and uncompressed quantum circuits. The results confirmed
the capability of the YBE formulation to perform dynamics
for a large number of steps, and they connected our work to the
broader and deeper context of the YBE duality and integrable
quantum computation.

A promising application of this technique is to explore the
compression of any circuit as part of the circuit compilation
step. The general nature of the technique suggests that it could
work for any circuit containing repeating gate motifs. It could
be used, for example, to compress certain types of graph
instances to solve combinatorial optimization problems using
QAOA [73]. In particular, certain ZZ gate (a combination of
CNOT, Rz, and CNOT gates) motifs could be compressed.
Another aspect of the YBE compression scheme is the control
of Trotter error. A smaller step size results in smaller Trotter
error, which results in a large number of Trotter steps. This
compression scheme allows compression to a constant num-
ber of Trotter steps, which only depends on system size. This
is very much evident in Fig. 5, where it is shown that for any
time and any step size, only three Trotter steps are required
for the time evolution of a three–spin system.

We have noticed some other techniques developed for the
quantum simulation of the time evolution of the model Hamil-
tonian reporting a similar performance. For example, in the
postquench dynamics simulations of the Lieb-Schultz-Mattis
model using an adaptive variational approach [74], a quadratic
scaling of the number of CNOTs with the number of qubits is
observed. Similar performance has also been reported where
the disentanglement of the 1D XY model Hamiltonian is
achieved by resorting to Fourier and Bogoliubov transforma-
tions [40], and the depth of the circuit grows as O(N log2 N ).

Finally, it is worth pointing out that in this paper we are
still dealing with the integrable models, for which classical
approaches such as the time-dependent density matrix renor-
malization group (t-DMRG) [75–77] have been shown to be
time-efficient (i.e., the computation time and memory scale
as polynomial functions of physical time in the thermody-
namic limit). Specifically, studies by Prosen and Žnidarič have
shown that the scaling of the classical computation resources
for simulations of quantum 1D lattices with local interactions
is closely connected to the integrability of the Hamiltonian
[77]. Therefore, it does not make sense to discuss the quan-

tum advantage (i.e., a substantial computational advantage of
quantum computing over classical computing) at the present
stage. However, our work provides a path for efficient sim-
ulations of certain classes of integrable Hamiltonians, which
is a stepping stone for demonstrating quantum advantage on
NISQ devices where quantum dynamics of more complex
(nonintegrable) quantum systems has been proposed as a
prime candidate. The reason why it has not been achieved
yet is that NISQ devices are currently only able to simulate
circuits reliably on shallow depth circuits. The YBE technique
presented in this work is a potential direction to solve this
problem, thus bringing us one step closer to being able to
solve practical problems on quantum computers.
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APPENDIX A: THE PROOF OF VERTICAL/HORIZONTAL
REFLECTION SYMMETRY IN THE QUANTUM CIRCUIT
EMPLOYED FOR SIMULATING THE TIME EVOLUTION

OF THE 1D HEISENBERG MODEL WITH THE
HAMILTONIAN DEFINED IN TABLE I

In the main text, we have demonstrated that a vertical
reflection symmetry, i.e., the three-site YBE relation, exists
for three layers in the circuit structure used for simulating the
time evolution of the three-spin Heisenberg model with the
Hamiltonian defined in Table I. In addition, we have demon-
strated that a horizontal reflection symmetry relation, derived
from the three-spin YBE relation, exists for the four-layer
circuit structure used for simulating the time evolution of the
four-spin Heisenberg model. Here, we show that a vertical or
horizontal reflection symmetry exists for the N-layer (N � 3
can be an arbitrarily large integer) in a similar circuit struc-
ture used for simulating the time evolution of the Heisenberg
model Hamiltonian defined in Table I governing the N-spin
system. Explicitly, as shown in Fig. 6, when N is even a
horizontal reflection exists, and when N is odd a vertical
reflection exists.

The proof for the existence of a reflection relation can be
shown by induction, where for three- and four-spin systems
the vertical and horizontal reflections are already known and
shown in the main text. If we assume for the (N − 1)-spin
system that a reflection (either vertical or horizontal) exists for
every (N − 1) layer in its time evolution circuit, we then only
need to prove that a reflection relation also exists for every
N-layer in the time evolution circuit for the N-spin system. To
see that, we can transform the corresponding circuit structure
in three steps, which are shown diagrammatically in Fig. 7 and
interpreted as follows:

Step 1. As shown in Fig. 7(a), in this step the two-qubit
gates in the top row can be consecutively moved (as seen
from the orange arrow) to the right and tucked between the
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FIG. 6. Reflection symmetry of the quantum circuit employed
for simulating the time evolution of the Heisenberg model Hamil-
tonian defined in Table I. (a) When the number of qubits N is even,
there exists a vertical symmetry for the first N layers of the circuit.
(b) When N is odd, there exists a horizontal symmetry for the first N
layers of the circuit.

FIG. 7. A diagrammatic proof of the reflection symmetry in the
quantum circuit employed for simulating the time evolution of the
1D Heisenberg model with the Hamiltonian defined in Table I. Here,
the blue blocks denote the original two-qubit gates, the green blocks
denote the two-qubit gates after YBE transformation, and the red
dashed blocks denote the destinations that are connected by dashed
arrow curves to the highlighted blue blocks after performing consec-
utive three-spin YBE transformations. The orange arrow indicates
the direction for moving the two-qubit gates in each step.

FIG. 8. In the time evolution circuit of a 10-qubit Heisenberg
model, the top left two-qubit (blue block highlighted by a red frame)
gate can be gradually moved downward to the bottom right position
(denoted by the dashed red block) through eight consecutive three-
site YBE operations (labeled by circled numbers). As a result of the
eight consecutive three-site YBE operations, all the two-qubit gates
in the diagonal direction (included in the red dashed frame on the
right-hand side) need to update their rotations and phase factors.

two-qubit gates in the last layer. From the right-hand side of
Fig. 7(a), this step can physically be viewed as “downfolding”
the propagation of the N-qubit system over N�t time into
the propagation of the (N − 1)-qubit system over (N − 1)�t
multiplied by the propagation of the N-qubit system over one
time step �t .

Step 2. As shown in Fig. 7(b), since we have assumed
the existence of the reflection symmetry in the time evolution
circuit for the (N − 1)-spin system, this reflection can then be
directly applied to obtain the right-hand side of Fig. 7(b).

Step 3. As shown in Fig. 7(c), finally by performing
consecutive three-spin YBE backwards we can move the two-
qubit gates in the original last layer (denoted by the blue
blocks) back to the top row, and the resulting circuit struc-
ture exhibits a reflected circuit structure compared with the
original circuit [i.e., the left-hand side of Fig. 7(a)].

Remarkably, in the above proof we have utilized the three-
site YBE transformations consecutively in Steps 1 and 3. The
consecutive three-site YBE transformation can be viewed as
a “long distance” YBE. To see how it works, take a 10-qubit
time evolution circuit as an example. As can be seen from
Fig. 8, eight consecutive three-site YBE operations can be
performed in order to move a top left two-qubit gate to a
bottom right position. In general, we can see that for a two-
qubit gate being moved from qubits i and i + 1 to qubits j and
j + 1 ( j �= i) through the diagonal direction, a total of ‖ j − i‖
consecutive three-site YBE operations would be needed.

Regarding the scaling of the reflection operation for the
N-layer time evolution circuit of an N-qubit system, there are
N − 1 two-qubit gates that need to be moved back and forth
between the side layer and the top layer in Steps 1 and 3,
which contributes to N (N−1)

2 three-site YBE operations. Since
Step 2 indicates a recursion, the total number of three-site
YBE operations in all three steps scales as

O(N2) + O((N − 1)2) + · · · = O(N3). (A1)

It is worth mentioning that the actual time for executing the
reflection operation can be reduced by exploiting the parallel
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FIG. 9. Circuit compression for the XX + Z model. Two-qubit
gates for XX interaction are denoted by blue blocks, and single-qubit
RZ gates are denoted by green blocks. Note that blue and green blocks
commute.

operations (i.e., simultaneously performing multiple three-site
YBE reflection operations), or by directly figuring out the
algebraic relations corresponding to the consecutive three-site
YBE operations over a large number of qubit sites to bypass
the intermediate operations.

APPENDIX B: EXTENSION TO SIMULATING THE TIME
EVOLUTION OF THE 1D HEISENBERG MODEL WITH A

TRANSVERSE FIELD

It is possible to employ our YBE circuit compression tech-
nique for some model Hamiltonians with a transverse field.

Take the XX + Z model as an example. Since the XX + Z
model Hamiltonian can be written as

H = HXX + HZ (B1)

with

HXX = Jx

∑
i

(σ x
i σ x

i+1 + σ
y
i σ

y
i+1),

HZ = hz

∑
i

σ z
i ,

[HXX , HZ ] = 0,

there will be no Trotter error in the following decomposition:

e−iHt = e−iHXX t e−iHZt = e−iHZt e−iHXX t , (B2)

from which we can see

[e−iHXX t , e−iHZ t ] = 0. (B3)

Therefore, as shown in Fig. 9, the time evolution circuit for the
XX + Z model can be equivalently transformed through con-
secutive swaps between blue and green gate layers to a circuit
for the pure XX model plus a single RZ layer. We notice that
a similar “turn over” transformation for model Hamiltonians
with a transverse field has been reported in Ref. [47], while the
YBE transformation for other models with a transverse field
is currently being explored.
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