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Single-qubit universal classifier implemented on an ion-trap quantum device
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Quantum computers can provide solutions to certain classically intractable problems. However, current
devices have limited computational resources, and an effort is made to develop useful quantum algorithms
under this constraint. This work demonstrates experimentally that a single-qubit processor can host a universal
classifier based on the re-uploading scheme. The quantum processor used in this work is built with an ion
trap, providing highly accurate control on a one-qubit system as required by the re-uploading scheme. A set
of nontrivial classification tasks are completed successfully. The training procedure is performed in two steps
combining simulation and experiment. Final results are benchmarked against exact simulations of the same
method and also classical algorithms, showing a competitive performance of the ion-trap quantum classifier.
This work constitutes the experimental implementation of a classification algorithm based on the re-uploading
scheme.
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I. INTRODUCTION

Quantum computing is an active field of research both in
academia and industry. It is expected that quantum computers
will provide solutions to classically intractable problems. A
handful of problems have been found for which quantum com-
puters can provide a solution with certain, even exponential,
speedups with respect to a classical computer [1–5]. On the
experimental side, recent advances have achieved a quantum
advantage, that is, solving a problem in a quantum computer
can be done more efficiently than using classical methods.
This has been demonstrated both in superconducting [6] and
photonic [7,8] platforms.

Finding a quantum advantage for a practical problem is
an open question. Among various possibilities, quantum ma-
chine learning is considered to be a potential game changer.
Data classification is a ubiquitous problem appearing across
many different fields. Classical machine learning provides a
plethora of algorithms for this purpose, notably those related
to support vector machines [9] or neural networks [10,11]. In
recent years, classical machine learning has improved sub-
stantially and can now provide solutions to a large variety
of classification problems [12,13]. These classical algorithms
are generally implemented using specialized software and
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hardware that are expensive in both computational and energy
resources.

Quantum machine learning (QML) aims to combine the
spirit of classical machine learning and the capabilities of
quantum computing. This field of research is still in an early
stage and, in general, cannot compete against the state-of-
the-art classical algorithms. However, recent theoretical works
have proven quantum advantages in selected problems [14].
Nowadays, most QML algorithms rely on variational meth-
ods [15–18], where theoretical arguments assessing robust
and general quantum advantages of quantum devices are still
missing. Variational quantum algorithms are believed to fit
the requirements of noisy intermediate-scale quantum (NISQ)
devices [19], motivating the use of these methods for the early
experiments of QML. These experiments have progressed in
different platforms [20–22]. Photonic devices achieved one of
the earliest experiments for addressing a classification prob-
lem [20] based on quantum support vector machines [21].
Superconducting qubits have addressed QML using varia-
tional algorithms [22].

In this paper, we implement a QML supervised learning al-
gorithm on an ion-trap quantum device. This device is referred
to throughout this paper as a quantum processing unit (QPU).
Trapped ions are an available platform for designing quantum
devices whose main strength is the accurate control of small
quantum systems [23,24]. Recent works have widened the
range of feasible experiments [25–30]. The data re-uploading
algorithm is chosen to address classification [31,32]. The fea-
tures of the ion-trap device and the algorithmic requirements
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match each other since data re-uploading is a method specif-
ically designed to take advantage of the fixed Hilbert space
available in quantum systems with few qubits. Thus, in order
to attain good performances, it is necessary to execute highly
accurate quantum operations.

The data re-uploading algorithm is a general scheme for
supervised learning in QML using classical data. It was
originally conceived as a quantum classifier [32]. The dif-
ferentiating characteristic of this method is that the data are
re-uploaded several times along the computation process. The
performance of this algorithm improves as the query com-
plexity, that is, the number of data re-uploadings, increases.
The theoretical capability of this model to approximate
any function is guaranteed and emerges from its quantum
nature [31,33].

The data re-uploading scheme for classification was al-
ready tested on classical simulators where not only quantum
operations but also the coupling to a noisy environment is
taken into account [34]. However, a classical simulator does
not necessarily capture the merits and demerits of a real
QPU. Indeed, a classical simulator is agnostic to the QPU
platform and it does not comprise implementation details such
as native gates and specific noise models. The experimental
approach presented in this work is a successful experimental
implementation of the re-uploading scheme performing quan-
tum classification with a single-qubit quantum processor. On
the other hand, the present work accomplishes and surpasses
experiments on superconducting qubits for the single-qubit
approximant for function regression [31]. The work is ori-
ented to show an experimental realization of the single-qubit
classifier. The extension of the re-uploading technique to
larger and potentially entangled systems has been explored
theoretically [32], but an algorithmic analysis of it is beyond
the scope of this paper. Surely, a single-qubit quantum system
can be efficiently simulated by classical means, but it allows
better insight about the required experimental control to im-
plement the algorithm on a large entangled system to pursue
a quantum speed advantage. The present paper is a step taken
in the attainment of this purpose.

The paper is structured as follows: Section II explains
the experiment including both theoretical and implementation
aspects. Section III details the performance of the classifier in
several examples. A discussion on the results is carried out in
Sec. IV. Some more information on the experiment and results
can be found in the Appendixes.

II. FRAMEWORK

The problem solved in this work corresponds to supervised
learning. In supervised learning, a model is fed with some data
in the form Dtrain = {�x, c}, where �x is a feature point and c is
the class to which it belongs. The algorithm then learns the
latent properties of the dataset in such a way that it can predict
the class of previously unseen points belonging to another
equivalent dataset Dtest .

The algorithm is executed on an ion-trap quantum ma-
chine; see Sec. II A. The method of data re-uploading is briefly
explained in Sec. II B. The optimization procedure is depicted
in Sec. II C. Final experiment-dependents implementations to
optimize performance are detailed in Sec. II D.

FIG. 1. (a) Schematic drawing of the ion-trap setup viewed from
the top showing trap orientation including the directions and po-
larizations of the laser fields and the magnetic field direction. The
138Ba+ ion is confined in a linear Paul trap. Radial confinement is
achieved by a 16.5 MHz rf potential applied to a pair of electrodes
(rf blade) via a helical resonator, and endcaps are held at a few
hundred volts to provide axial confinement. Two coils in a Helmholtz
configuration generate a magnetic field (B) defining the quantization
axes. Laser lights at 493 nm (DC), 650 nm (Repump), and 614 nm
(Reset) are mixed using a dichroic mirror and aligned to the ion along
the direction (ẑ) of the endcap electrode, whereas the direction of
propagation (k) of a 1762 nm laser (polarization, ε) is along the x̂
direction. (b) Energy level diagram of the 138Ba+ ion showing the
Zeeman splitting of atomic states S 1

2
, P1

2
, and D 5

2
. The degeneracy

of the Zeeman sublevels is lifted by a magnetic field of 1.5 G. Laser
light at 493 nm is used for Doppler-cooling (DC), optical pumping
(OP), and detection. The lasers at 650 and 614 nm pump out the
D-states. A narrow linewidth laser light at 1762 nm with outstanding
frequency stability is used for manipulating the qubit encoded in the
quadrupole transition.

A. Experimental setup

The qubit is realized in a 138Ba+ trapped ion. The compu-
tational basis corresponds to the states

|0〉 ≡ S 1
2 ,− 1

2
|1〉 ≡ D 5

2 ,− 1
2
. (1)

Both states are coupled by the electric quadrupole E2 transi-
tion at a 1762 nm wavelength shown in Fig. 1(b). The ion is
confined in a linear Paul trap, as shown in Fig. 1(a), operating
at a radial frequency of 1.5 MHz and an axial frequency of
0.3 MHz. The most relevant parameters of the trapped ion in
this experiment are the qubit coherence time (5 ms) and the
Rabi π -time of the qubit (12 μs) [35,36]. The qubit is well-
characterized in terms of both its internal [36] and external
degrees of freedom [37].

Prior to performing each algorithmic cycle, the qubit is
initialized to the state S 1

2 ,− 1
2
. To do so, the qubit is Doppler-

cooled to the Lamb-Dicke regime [36] via a fast dipole
transition between S-P levels at 493 nm and a repump laser
between D-P levels at 650 nm as explained in Fig. 1(b). In
this regime, the internal and external states of the qubit are
decoupled and hence single-qubit gate errors are not influ-
enced by the motion of the qubit. Then, the alternative ground
state S 1

2 ,+ 1
2

is selectively depopulated by optical pumping
using a σ−-polarized 493 nm laser together with a 650 nm
laser pulse [38]. A σ−-polarized 493 nm laser propagates
along the quantization axis defined by the direction of an
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externally applied magnetic field B. The strength and direc-
tion of the B field is optimized to achieve high-fidelity state
initialization �99% within an optical pumping time �50 μs.
The magnetic field strength is set at 1.5 G, directed at an
angle of 45◦ with respect to the trap axis (z-axis) as illus-
trated in Fig. 1(a). The resultant strength of the magnetic
field corresponds to a ground-state Zeeman splitting of about
4.2 MHz. Once the qubit is initialized, any single-qubit ro-
tational gate is implemented by resonantly driving the qubit
with full control over the laser phase, power, and laser on-
time. The qubit is operated by means of an ultralow linewidth
laser operated at 1762 nm. The laser is phase-locked to an
ultralow expansion cavity achieving a linewidth �100 Hz.
This linewidth is estimated from the measured atomic reso-
nance. The laser-qubit interaction time sets the rotation angle.
It is controlled by a radiofrequency (rf) switch. An acousto-
optic modulator (AOM) controls the phase and frequency of
the laser implementing the rotation gates. Therefore, direct
and precise control over the axis and angle of rotations is
achieved.

A direct digital synthesizer (DDS) based on an AD9959
chip is used to control the application of gates on the qubit.
The DDS is disciplined by a rubidium frequency standard
(SRS FS725), eliminating the long-term frequency drift of the
DDS clock, thus maintaining the errors in phase relations of
the sequential gates of the classifier below 0.01%. Since the
parameters are uploaded to the circuit on-the-fly, the latency
of uploading the DDS parameters plays a crucial role. The
latency is minimized by preloading the full sequence of the
phase, frequency, and power data to an on-chip memory of the
DDS. The current version of the DDS controlling the phase of
the laser is limited by the on-chip memory to 16 phase modu-
lation steps, thus limiting the layers to six, which is sufficient
for the current discussion. The DDS output is then controlled
by an external trigger generated from a field programmable
gate array (FPGA) based pulse pattern generator that controls
the time sequence of the entire experiment with a time jitter
below 10 ns. See Fig. 2 for a scheme of the experiment at the
time-sequence level.

The phase of the AOM is directly controlled by a DDS
which supplies the rf signal to the AOM via an amplifier. To
avoid accumulation of phase noise, during the on-off time of
the laser, rf pulse shaping has been implemented before being
fed to the AOM for switching. All the rf sources are synchro-
nized to the DDS clock. The main upgrade with respect to
our previous setup lies in the hardware to better control the
qubit phase. In addition, we modified the control software to
implement quantum algorithms requiring long circuit depth
with low latency.

For the measurement step, the final state is projected onto
the computational state |0〉, and the ground-state occupation
probability is obtained by observing spontaneously emitted
photons while the qubit is excited by the Doppler-cooling
493 nm laser. With a photon collection time of 2 ms, the qubit
state is determined by choosing a photon-count threshold of
15 counts/2 ms such that the bright state |0〉 ≡ S1/2 is clearly
discriminated from the dark |1〉 ≡ D5/2 state. This projective
measurement is 99.8% [35] efficient in discriminating both
states. Taking repeated measurements on the same state pro-

FIG. 2. Time sequence used in the experiment to perform each
classifier measurement. At the beginning of each run, the qubit is
reset to the |0〉 ≡ |S1/2,−1/2〉 state via Doppler cooling and optical
pump. Then, the different re-uploading R(γ , δ) gates are applied
sequentially via laser pulses. The duration of each pulse depends on
the value of its β parameter. As a final step, the state is projected to
be compared against a label state defined by Vc|0〉 = |φc〉, and the
relative fidelity is measured.

vides the probability and hence the projection of the state
along the σz-axis.

B. Re-uploading scheme

The re-uploading algorithm presented here delivers an out-
put quantum state in the form

|ψ (�x,
)〉 =
L∏

i=1

U (�x, �θi )|0〉, (2)

where each U (�x, �θi ) is referred to as a layer and depends on
both sampling data �x and tunable parameters �θi, with 
 =
{�θ1, �θ2, . . . , �θL}. Each layer is composed by Ry and Rz rota-
tions. In particular, two Ansätzes are proposed in this work and
inspired from Ref. [32]. Ansatz A holds for multidimensional
data and introduces �x only in Ry rotations as

UA(�x, �θ ) = Rz(ϕ)Ry(�ω · �x + α), (3)

where �ω is a vector of tunable weights, and α, ϕ are tunable
angles acting as biases. On the other hand, Ansatz B holds
only for two-dimensional datasets and introduces data in all
rotation gates. It is defined as

UB(�x, �θ ) = Rz(ωx2 + β )Ry(νx1 + α), (4)

where ω and ν are tunable weights and α, β are tunable
biases. In both cases, �θ are flexible sets of parameters that
accommodate the requirements of each gate.

The next step consists in training the circuit to obtain a set
of parameters 
 such that it solves a given problem. Since we
aim to build a classifier for supervised learning, each sample �x
in the dataset is associated with a class within the set {�c}. We
must also define as many label states |φc〉 as existing classes.
Then, the probability of a state corresponding to a class c ∈ �c
corresponds to

Prob(�x,
|c) ∝ |〈φc|ψ (�x,
)〉|2, (5)
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properly normalized. This probability assignment needs to
choose a target ket |φc〉 for each class in every different prob-
lem considered herein. The general rule is to choose the target
kets as distant as possible from each other to maximize the
distinguishability among the classes [32]. Given the output
from the quantum computer, a final class c is assigned to a
given pattern according to the label ket that maximizes the
probability Prob(�x,
|c).

For the algorithm to work properly, it is necessary to find
the configuration of parameters 
 such that the fidelity be-
tween the output states and their corresponding label states is
on average maximum for all patterns in the training dataset,
{�x, c} ∈ Dtrain. For a training dataset with Ntrain patterns, the
loss function describing this behavior is just

χ2(
;Dtrain ) = 1

Ntrain

∑
(�x,c)∈Dtrain

(|〈φc|ψ (�x,
)〉|2 − 1)2, (6)

and an optimal configuration of 
 can be obtained by mini-
mizing χ2(
,Dtrain ) using classical standard optimizers like
genetic algorithms [39], or L-BFGS-B [40]. The results dis-
played correspond to the best instance.

The performance of supervised-learning models is not
measured by their capability to learn the training dataset, but
rather by their generalization power. Then, the quantity of
interest is the accuracy A. This quantity counts the number
of correct guesses over samples on an unlearned test dataset
Dtest. The guessed class is

cg(�x,
) = arg max
c̄

|〈φc|ψ (�x,
)〉|2 (7)

and the accuracy A(
;Dtest ) is

A(
;Dtest ) = 1

Ntest

∑
(�x,c)∈Dtest

bool(cg(�x,
) = c), (8)

where bool(a = b) is 1 if a = b, and 0 otherwise. The value of
A(
;Dtest ) is bounded between 0 and 1, 1 being the optimal
result.

C. Optimization

The classifier proposed in this work is trained in two steps.
First, given a Dtrain dataset, a simulated version of the model
is created and trained using the χ2. The optimization returns
a set of parameters 
sim. Using exact simulations enables us
to circumvent difficulties in the training process due to noise
and uncertainties.

In a second step, the obtained parameters are ported to
the experimental classifier. A relevant improvement can be
obtained by fine-tuning the given parameters when executed
on the quantum hardware. In most scenarios, parameters for
simulation and experiment do not exactly match each other.
The difference may stem from the experimental inaccuracy
when implementing optimal angles and occasional loss of in-
formation due to collisions with background molecules. This
second optimization step polishes the experiment to reduce
any systematical error occurring during the execution of the
quantum circuit. The parameter set 
sim is taken as a starting
point to explore the parameter space in its vicinity. A new set
of parameters reducing experimental inaccuracies is obtained
as 
q = 
sim + δ
. The figure of merit to be optimized in
this case is Aq. This second step is currently available for
quantum devices only if the loss function in the parameter
space near the vicinity of the minimum is shallow, and large
deviations from the optimal parameters translate into small
changes in the loss functions. See Fig. 3 for a scheme describ-
ing the two-step optimization performed.

The full multi-dimensional scan of the space of parame-
ters is very time consuming in the present setup. Despite the
limitation, in this work the optimization of the parameters is
performed sequentially taking two parameters at a time while

FIG. 3. Schematic description of the optimization algorithm used in this work. 1. Data re-uploading is trained using a classical simulation.
The simulated quantum circuit is composed of single-qubit gates U that depend on variational parameters 
 = {�θ1, �θ2, . . . , �θL} and the variables
�x associated with a given pattern. The output state is measured to obtain a vector Prob(�x, 
|�c) encoding the probabilities that will serve to
classify the given pattern into a category. A classical optimization is performed to obtain optimal values 
sim. This optimization is driven by
the cost function χ 2 evaluated on training data, Dtrain. 2. A further optimization is accomplished only using the quantum device, taking as a
starting point the values 
sim and delivering a better set 
q. The quantity that is now maximized is the accuracy A evaluated on the test dataset
Dtest . The aim of the experimental optimization is to mitigate and even compensate for possible systematic experimental errors.
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keeping others fixed. A two-dimensional scan is performed
for those parameters in the vicinity around 
sim. The pair
of parameters is then modified for improving the obtained
accuracy. With each iteration, one new parameter is taken into
account. This method returns substantial improvements only
on the first layers, and it can be stopped after a few iterations
without a significant loss of performance. As seen in Ref. [31],
the first layers give a first approximation to the solution, and
every change in their parameters is propagated through the
entire circuit. Thus, the earlier a layer is applied, the larger the
influence it has in the final result. Therefore, experimentally
optimizing the first layers will turn into a more rewarding
improvement.

Notice that the two-step optimization procedure returns
three different values of the accuracy A to be measured:

(i) A∗ obtained by running an exact simulation of the
quantum circuit with the optimal parameters 
sim.

(ii) Asim run on the QPU with the same parameters 
sim.
(iii) Aq obtained with the parameters 
q after the second

optimization step.
In addition, for every classification problem, the obtained

accuracies can be compared with genuinely classical models.
It is expected that experimental errors will deteriorate the ideal
performance of the computer. However, results remain very
competitive in the experimental setup.

Both the two-step optimization and the accuracies related
to classification problems on experiments are features sur-
passing previous results in Ref. [31]. In previous works,
parameters are directly ported from simulation setups to the
experiment. A reasonable degradation in the final results is
observed, but there is no further study on how to improve
the hardware implementation of the algorithm. With regard to
the accuracies, the previous work does not need to generalize
from training to test dataset, but only shows the flexibility to
mimic a given behavior. In the classifier exposed in this work,
generalization is a requirement that is successfully achieved.

D. Optimal hardware control

To improve the performance of the classifier to the limit
of the capabilities of the present QPU, some features were
implemented specifically for this experiment.

First, the error in the applied gates is reduced by cleverly
choosing the application of the axis. In the ion qubit, active
rotations Rx and Ry are realized by the interaction of the
resonant laser with the qubit at the specified frequency during
a time proportional to the rotation angle. On the other hand,
Rz can be implemented by a combination of the other two
active gates or by varying the qubit energy [41,42]. Both of
these methods are prone to error as the qubit-light interaction
is switched on for a certain time. We chose instead to perform
the Rz by changing the laser phase without interacting with
the ion [43], thus the resultant error is limited by only the Ry

gate in each layer.
Second, the depth of the circuit can be effectively halved by

combining Rz(γ ) and Ry(δ) gates into a single gate R(γ , δ),
which applies a rotation of angle δ around the axis (γ , 0),
defined in spherical coordinates.

This rotation around an arbitrary axis is defined as

R(γ , δ) =
(

cos δ
2 −ie−iγ sin δ

2

−ieiγ sin δ
2 cos δ

2

)
, (9)

which can be understood as

R(γ , δ) = Rz(γ )Rx(δ)Rz(−γ ). (10)

Thus, it is possible to relate Rx(δ) = R(γ , δ) and Ry(δ) =
R(π/2, δ). Taking the Ansatz from Sec. II B, it is possible to
decompose those gates into R(γ , δ) operations to effectively
reduce the number of operations. The first Ry(·) gate must
be applied on its own. For the nth step, the Rz rotation from
the (n − 1)th layer and the Ry from the nth layers can be
composed into only one gate. As a consequence, the nth R
gate must adjust its parameters to

θ̄ z
1 = π/2 + θ z

1, (11)

θ̄ z
n = θ̄ z

n−1 + θ z
n . (12)

See Fig. 4(a) for a schematic description of this process.
This reduction can only be applied to pairs of gates and not

to the entire circuit. The reason is that the data (x) and tunable
parameters (�θ ) from Eq. (2) come into the circuit through
linear operations. Thus, two gates can be easily combined by
classically performing this operation. On the other hand, the
chain of repeated gates gives rise to complex nonlinear behav-
iors whose explicit form is not easily computed by analytical
means.

The measurement process to construct the cost function in-
volves the quantities |〈φc|ψ (�x,
)〉| as described in Eq. (5). A
direct method to obtain this quantity is by performing tomog-
raphy and obtaining an indirect computation of the fidelity. In
this case, the fidelity is measured by direct comparison. This
method requires fewer operations than tomography, especially
when the system size increases, although the difference is not
very significant in the single-qubit example. For this purpose,
the label states are defined by means of a simple gate Vc as

|φc〉 = Vc|0〉 = Rz(η)Ry(λ)|0〉, (13)

where the parameters η, λ are problem-dependent. They must
be tuned to accommodate several states as orthogonally as
possible across the space in the Bloch sphere. This is a prob-
lem on its own, but in some cases, including those tackled in
the present work, the solution is trivial [32]. Thus, fidelity can
be measured by comparing the output and label states as

|〈φc|ψ (�x,
)〉|2 = |〈0|V †
c U (�x,
)|0〉|2 = P0(V †

c U (�x,
)),
(14)

where the last term corresponds to the probability of mea-
suring the state |0〉 after executing the circuit composed by
both operators. The corresponding scheme can be viewed in
Fig. 4(b).

III. RESULTS

The problems solved in this work consists in separating
points in a feature space depending on its location. The classes
are defined by different curves acting as boundaries. The prob-
lems proposed can only be solved if the classifier is flexible
enough so as to map close points to distant areas of the Hilbert
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FIG. 4. Methods applied in the classifier to optimize the implementation. (a) Depth reduction of layers. Layers are grouped in dashed
lines. The rotations Ry from a layer and Rz for the previous one are combined to be executed by means of only one R(·, ·) operation, thus
effectively reducing the depth of the circuit. This is indicated by brackets. For consistency, a redefinition of parameters in the Rz rotations must
be carried, as detailed in the figure. (b) Measurement of the fidelity between two states. The state |ψ (�x, 
)〉 = U (�x,
)|0〉 is compared against
|φc〉 = Vc|0〉. The probability of measuring the |0〉 state at the end of this circuit equals the relative fidelity.

space. Experimental results are presented with an increasing
level of difficulty. For every instance, we compare the accu-
racy of the simulated and the experimental classifiers A∗ and
Asim, respectively, and we benchmark them against classical
algorithms. In all cases, a training dataset of 200 randomly
distributed points is used for optimization. The accuracy is
tested against 1000 different points. This way, generalization
is also tested on unseen data. In two cases, namely a circle and
a hypersphere, see Table I, due to its high computational cost,
the experimental optimization step to obtain Aq is carried.
A full analysis is deferred to a separate publication. Images
illustrating results are included for some examples. Additional
images can be found in the Appendixes.

A. Two-dimensional binary classification

A binary classifier is designed to learn the difference be-
tween points in a plane inside (0) and outside (1) a circle. The
circle is centered at the middle of the plane and has half the
total area, so that the instances belonging to the two classes

TABLE I. Comparison between the accuracies, in %, of the
single-qubit re-uploading quantum classifier and two well-known
classical classification techniques, namely single-hidden-layer neural
networks (NNs) and support vector machines (SVMs). The experi-
mental data and their simulated analog are provided here with four
layers and 100 repetitions on the quantum part, and the equivalent
number of parameters for the neural network. The uncertainty of the
experimental data is ±2%. The error refers to the standard deviation
of 10 repeated trials performed on the same dataset, and it implies
that underlying systematic uncertainty leads to an uncertainty of the
accuracy; see Appendix A for a detailed analysis. Only two cases
have been further optimized using an exploration done only with the
quantum device.

Classical Re-uploading

Problem (no. classes) ANN ASVM A∗ Asim Aq Ansatz

Circle (2) 98 96 97 93 96 A
Crown (2) 71 82 92 87 B
Nonconvex (2) 98 79 95 92 B
Sphere (2) 95 91 74 66 A
Hypersphere (2) 76 92 75 64 73 A
Tricrown (3) 97 83 95 91 A
Three circles (4) 93 92 90 85 B
Squares (4) 99 95 97 93 A
Wavy lines (4) 99 89 94 90 A

are balanced. A random classifier would only guess 50% of
test data properly.

Figure 5 shows experimental results for this classification
problem for an increasing number of layers, and a comparison
between the test data as classified by the QPU and an ideal
classical qubit simulator. Here, each data point is depicted by
its coordinates (x1, x2) and colored according to its binary
classification, namely blue diamonds for inside and orange
circles for outside the circle, shown as a black solid line.
The figure shows the gradual improvement of classification
as more layers are added, confirming results from Ref. [32].
For four layers, the classification accuracy for the QPU is
Asim = 93 ± 2%, slightly lower than its classically simulated
counterpart A∗ = 97%. The error in Asim refers to the stan-
dard deviation of 10 repeated trials performed on the same
dataset, since the inherent quantum uncertainty leads to dif-
ferent values of accuracy in each instance.

It is interesting to note a difference in the behavior of both
simulated and quantum classifiers. In the simulation, Fig. 5(e),
the guessed boundary between classes is sharply defined, even
though the guesses do not match exactly the data and the
circle is slightly deformed. The results on the experimental
data show uncertainty in the determination of data. See, for
instance, the higher part of the circle. There are several points
guessed to belong to different classes interspersed in a small
area. The origin of this phenomenon is the inherent sampling
uncertainty of the quantum device.

In this example, the experimental second optimization step
is also performed. Figure 6(a) shows the landscape of the
accuracy for a specific subset of parameters in the vicinity
of the optimum point as provided by the classical simulation

sim. In this case, only three parameters effectively contribute
to the final result, and thus the cost of searching optimal
experimental configurations using a scanning technique is
manageable.

The error in classification of the experimental implemen-
tation with respect to the exact simulation is also depicted in
Fig. 6(b). After the experimental optimization, the deviation
between Aq and A∗ nearly vanishes within the experimental
uncertainty. After optimization, we obtain an improvement by
more than 5%, which results in the accuracy of QPU being
as good as that of the simulator. This is better understood by
looking at the optimized error in Fig. 6(b) with respect to the
simulation plotted as a function of the number of layers in
the supervised learning process. In a realistic situation, the
loss of information due to collision (small percentage of the
systematic error) can also be corrected by the observation of
the emitted light level at the cost of a longer operation time.
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(a) (b) (c)

(d) (e)

FIG. 5. Results for the dataset of the ion-trap re-uploading classifier as compared to classical simulation. Top, from left to right: one, two,
and three layers in QPU; bottom: four layers in QPU (χ2 = 93 ± 2%) and simulation (χ 2 = 97%). 1000 random data points are tested, and
the guessed classes are depicted as blue diamonds and orange circles, respectively, for points inside and outside the circular boundary, shown
by a solid line. In (a)–(d), the depth of the circuit is increased from one to four layers, showing gradual improvements of the classification. The
result of the four-layer QPU classifier (d) is compared with the equivalent four-layer simulation (e) for a benchmark. Notice that the border
between classes in the experimental results is not as sharply defined as in the simulated classification due to the uncertainty of the quantum
measurements and systematic errors.

However, those collisions that are not detected during the
cooling/initialization stage of the processor would still con-
tribute to the error budget. Experimental errors are estimated
separately. A detailed discussion on experimental errors is
carried out in Appendix A.

Additionally, two more two-dimensional (2D) binary clas-
sification problems, namely nonconvex and crown, can be seen
in Fig. 9 of Appendix B for four layers. In this case, the final
accuracies (Asim)/(A∗) are nonconvex: (92%)/(95%); crown:
(87%)/(92%).

B. Higher-dimensional classification

A single qubit is able to address classification problems in
an arbitrary number of dimensions [31–33]. To test a classifi-
cation performance for high-dimensional data, we extend the
2D-circle problem to 3D-sphere and 4D-hypersphere prob-
lems. The statement of the problem is equivalent, and only
the radius of the boundary is modified to accommodate the
requirement that every class corresponds to half the feature

space. Results for the hypersphere classification are depicted
in Fig. 11 of Appendix B. The error in the experimental setup
using 
sim can be further reduced from ∼13% to ∼2% after
the experimental optimization step is performed.

C. Multiclass classification

The single-qubit QPU can also maximally separate into
three, four, or more different classes [32]. To prove this
experimentally, we provide an example of a three-class
classification, tricrown, and three different examples of a four-
classes problem, namely three circles, squares, and waves, in
a 2D feature space. The results for all examples are depicted
in Fig. 7 and in Fig. 10 of Appendix B for four layers for
QPU and a classical simulator. Results are, respectively, tri-
crown: (95%)/(91%); three circles: (85%)/(90%); squares:
(93%)/(97%); waves: (90%)/(94%).

These datasets present different hardness for classifica-
tion [44]. The three circles feature is composed of three
different and separated classes, that is, the circles, and a fourth
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FIG. 6. Results for the experimental second step for optimization in the circle problem. The classifier is first trained on a classical simulator,
obtaining a set of parameters 
sim. In a second step, the vicinity of this point in the parameter space is explored using the QPU. A new set of
parameters 
q = 
sim + δ
 is selected to optimize the accuracy of the classifier by mitigating experimental errors. (a) Error surface for the
deviation of the optimal parameters from the 
sim denoted by �. These plots correspond to the two-layer classifier from Fig. 5. (b) Betterment
of the accuracy in the three- and four-layer QPU classifier, as compared to simulated results. The error in classification is about 5% when 
sim

is used. On the contrary, if 
q are used, the errors are reduced below 1%. The improvements in the first two layers are the most prominent.

class filling the space in between. Thus, the classifier is forced
to separate the space corresponding to different classes. In
the squares case, all classes are equivalent and connected to
each other. For waves, the difficulty of nonconvex datasets is
added. Despite various level of difficulties in classification,
the experimental classifier succeeds in solving all with nearly
the same percentage.

D. Summary of results

Table I presents a summary of the accuracies obtained by
the experimental quantum classifier as compared to the simu-
lated results serving as the starting point for the experimental
optimization. Each problem was solved using an independent
Ansatz (A or B) specified in the table. We also benchmark the
quantum results against classical models whose complexity
is comparable. To be precise, we have considered a single-

FIG. 7. Multiclass classification. The columns show, from left to right, three circles, squares, and wavy lines problems. The top row
corresponds to experimental QPU results, while the bottom row corresponds to classical simulations. Results include 1000 random data points.
The classes are depicted with different colors and symbols, and the boundaries are defined by solid black lines. Notice that the border between
classes in the experimental results is not sharply defined, unlike in the simulated classification. This difference is due to the uncertainty of the
quantum measurements.
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hidden-layer neural network and a support vector machine
classifier. In the case of neural networks, several activation
functions were tested for every problem, and the result de-
picted in Table I is the best performing one. The number of
neurons in the hidden layer is chosen to match the number of
parameters in the quantum classifier. In the case of a support
vector machine classifier, different kernels are used, and again
the best result is retrieved. Notice that, in this case, it is
not possible to tune the number of parameters available to
carry the classification since they depend on the size of the
training set. This model is, however, shown for completeness.
In all classical cases, the computations were done using the
SCIKIT-LEARN python package [45] and following predefined
models.

In light of these results, it is possible to see that the per-
formance of the quantum classifier is comparable to that of
classical classifiers when the training dataset has a low feature
dimension. On the contrary, when datasets with more features
are considered, the performance degrades but is still compa-
rable to simulated results. This limitation can be addressed
by increasing the flexibility of the model, as was shown in
Ref. [32]. Higher flexibility can be achieved by either adding
more layers to the quantum classifier or changing the encoding
scheme to one with more degrees of freedom.

IV. DISCUSSION

We have experimentally implemented a single-qubit quan-
tum supervised classifier on a QPU. The QPU is based
on an ion trap platform, which is known for high-fidelity
gates [35,43,46]. This high fidelity allows us to implement
a quantum classifier based on the recently proposed re-
uploading algorithm [31,32]. The experiment reported herein
is an implementation of problems of this kind in the field of
classification with minimal quantum resources that surpasses
the experimental results from previous work [31]. This work
constitutes experimental proof that the re-uploading scheme
may become part of QML strategies for classification.

To enhance the performance of the algorithm, the classifier
is trained in two steps, first using a classical simulator, and
then at the gate level of the quantum device. This second
step enables us to mitigate possible systematic errors from the
quantum device. With this method, the accuracy of the clas-
sifier on the quantum experiment is enhanced up to 5–10 %
depending on the problem. The resultant high performance of
the QPU allowed a comparable outcome to that of a classical
simulator and classical classifiers of equivalent complexity in
the number of parameters used.

The examples of the datasets provided here include
rudimentary but nontrivial classification tasks that were
successfully solved, including binary, multiclass, and high-
dimensional datasets. To complete the benchmarking, we
showed that our QPU can not only classify multiclass and
higher-dimensional feature maps, but it also shows compet-
ing results in classifying nonconvex and linear feature maps.
Both experimental and simulated results are benchmarked
against well-established classical methods. The perfor-
mances for quantum and classical cases are comparable; see
Table I. These results are aligned with the analysis from
Ref. [31], where it is demonstrated that single-qubit re-

uploading circuits with N layers are formally equivalent to
single-hidden-layer neural networks with N neurons in the
hidden layer.

While other approaches explore the possibilities to classify
complex datasets by implementing a variety of quantum mod-
els, the aim of the re-uploading scheme is to compare their
performance with classical procedures of similar complexi-
ties. This work demonstrates experimentally that a minimalist
quantum system, namely a single qubit, is able to perform
nontrivial classification tasks. This may make quantum algo-
rithms advantageous when used as a subroutine in QML tasks
with minimal quantum resources.
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APPENDIX A: ERROR ANALYSIS

The accuracy of the data re-uploading algorithm relies
primarily on the fidelity of an individual single-qubit rotation
gate. The gate, as explained in the main text, is operated by
controlling the laser phase and interaction time while main-
taining the intensity at the ion position and the frequency of
the laser constant. Therefore, the residual error in the gate
operation is reflected in the accuracy of the classifier as define
in Eq. (8). In Eq. (9), the rotation angles γ and δ are related to
physical quantities as

γ = (�/h̄)top + δφ, (A1)

δ = (�/h̄)top, (A2)

where � is the laser detuning, top is the operation time of
gates, �′ is the modified Rabi frequency, and δφ is the relative
phase of the laser with respect to the qubit. The modified Rabi
frequency �′ =

√
�2

0 + �2, with �0 denoting the resonant
Rabi frequency. Furthermore, the resonant Rabi frequency is
proportional to the square root of the intensity, I0, at the ion
position. Therefore, each of the independent variables δφ, top,
�, and I0 contributes to the error in a rotation gate, thus influ-
encing the accuracy of the quantum data re-upload classifier.
We have characterized these factors separately using the circle
classification problem as a test-bed. The errors shown in Fig. 8
are obtained as an inaccuracy percentage of classification
as compared to the simulation results. In the following, the
details of the influence of each of these parameters on the
accuracy of the classifier are discussed:

(i) Phase: The DDS controls the rf phase of the AOM,
which determines the relative phase of the laser. Each DDS
is synchronized to a rubidium atomic clock, which is accurate
to one part in 1010 and thus contributes negligibly to the phase
error. The DDS is, however, triggered by the FPGA, which
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FIG. 8. Systematic error analysis: All the results shown here are related to the binary classification of a circle as in Fig. 5. The errors are
classification errors. (a) The classifier error as a function of the number of repeated experiments. The error bar at each point corresponds to
one standard deviation of a number of repeat measurements for the same number of repeated experiments under the same condition. The exact
number of repeat measurements varies between 5 and 10. (b) Variation of the resonance frequency as a function of time. The range of Rabi
frequency fluctuation within a typical experimental time of �10 min is about 2 kHz. (c) Error in binary classification of a circle feature with
the variation of laser frequency detuning measured in terms of the Rabi frequency. The variation in the value of classification error is about 2%
within the experimental time of ∼10 min. (d) The same plot as in (c) but by varying the laser power measured in terms of the Rabi frequency.

has time jitter below 10 ns leading to phase noise on the qubit
below 0.1% for a Rabi π time of 12 μs.

(ii) Interaction time: The laser-qubit interaction time is
determined by the FPGA, which is precise to 1 ns. Therefore,
the contribution to the accuracy of the classifier is less than
0.01%. However, due to the time jitter below 10 ns, its con-
tribution to the accuracy is below 0.1%. Occasional collision
with the residual background gas molecule during the interac-
tion time leads to a projection to the state |0〉, thus losing the

final-state information and hence error in the classification.
Usually this error becomes smaller with larger statistics.

(iii) Laser-qubit detuning: The detuning of the laser with
respect to the qubit frequency denoted by � modifies the
Rabi frequency. To quantify the influence of any unwanted
fluctuations of the detuning on the classifier accuracy, we first
quantified the range of Rabi frequency fluctuation within the
experimental time of about 10 min. However, to ensure that
our classifier accuracy is limited by systematic errors rather

012411-10



SINGLE-QUBIT UNIVERSAL CLASSIFIER IMPLEMENTED … PHYSICAL REVIEW A 106, 012411 (2022)

FIG. 9. Classifier test results for nonconvex and nontrivial topology problems. In each pair, the left plot corresponds to QPU and the right
one to simulation. The ion-trap-based QPU classifier performed on 1000 random test data points is depicted by blue diamonds for points within
and orange circles outside the boundary separating the circular feature shown as a solid line. The resulting nonconvex and crown datasets are
computed using four layers, both from QPU and simulation. Notice that the border between classes in the experimental results is not as sharply
defined as in the simulated classification. This difference is due to the uncertainty of the quantum measurements.

than by statistical ones, we measured the statistical error in the
classification problem by repeating the experiment for each
data point between 25 and 1000 times [see Fig. 8(a)]. The
error (or inaccuracy) decreases from 12% to about 4% for
100 repetitions and then stays nearly the same, limited by
systematic error. The fluctuation of the laser frequency with
respect to the atomic resonance is captured over a time period
of 20 min (twice the duration of an experiment) as plotted
in Fig. 8(b). The random variation of the Rabi frequency
over time is mostly caused by the magnetic field noise as
we have separately measured the laser frequency drift to be
�5 kHz/24 h [35]. To minimize the impact of the residual
magnetic field noise, we use electronic levels (�m = 0) that
are weakly sensitive to such noise. In addition, the detuning
also indirectly influences the modified Rabi frequency. To
check its influence, we varied the Rabi frequency, shown in
Fig. 8(c), by varying the detuning within a 2 kHz range [as
expected from Fig. 8(b)]. The result shows below 5% accuracy
for the classifier when operating for 10 min.

(iv) Laser intensity: The Rabi frequency is fixed by set-
ting the power and frequency of the laser at the start of the
experiment. Any change in the Rabi frequency during the
experiment, therefore, leads to error in the applied qubit ro-
tation angle. Therefore, the accuracy of the classifier depends

on the Rabi frequency fluctuations due to intensity fluctua-
tion apart from detuning, as discussed earlier. The intensity
is influenced by two factors: (a) laser power noise and (b)
laser beam pointing error. In our experiment, the laser beam
is tightly focused on the ion by a high numerical aperture
(NA ∼ 0.4) in-vacuum lens. To obtain high intensity at the
ion position, the light is focused tightly to about 10 μm beam
waist. To capture the influence of laser power variations on
the classification error, we varied power (plotted in terms of
modified Rabi frequency) in Fig. 8(d). Thus it is seen that the
influence of intensity noise accounts to 5% error in accuracy.
Thus, to avoid the influence of Rabi frequency fluctuation
within the experimental time of ∼10 min, we reduce the Rabi
frequency from 312 to 40 kHz such that the absolute error
also reduces. This leads to an overall error of only 2% on the
classifier output.

APPENDIX B: ADDITIONAL RESULTS

The results depicted in Fig. 9 correspond to additional
binary classification problems. In both cases, classes are de-
fined in such a way that each one fills half the total feature
space. Notice that these classification problems are harder
than the circle discussed above [44]. The nonconvexity feature

FIG. 10. Multiclass classification for the three-class tricrown problem on the QPU (left) and the simulation (right). Results include 1000
random data points; the classes are depicted with different colors and symbols, and the boundaries are defined by solid black lines. Notice that
the border between classes in the experimental results is not as sharply defined as in the simulated classification. This difference is due to the
uncertainty of the quantum measurements.
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(b)(a)

(c)

FIG. 11. Binary classification of the hypersphere dataset. The histograms in (a) and (b) represent the class association of points within a
hypershell (given by the bin width) denoted by blue with a dashed outline (dark gray) in the left part (classified as within the hypersphere) and
orange (light gray) in the right part (outside the hypersphere) for QPU (a) and simulation (b). The boundaries are defined by solid black lines.
The overlap region (dark shaded area around the boundary lines) shows the ambiguity in classifying the points within a certain hyperradius.
The accuracy of the QPU is improved by performing the experimental optimization near the vicinity of the simulated optima in a series of ten
training steps. The reduction in the error with respect to the simulated results (b) is shown in (c).

of the nonconvex dataset presents a nontrivial challenge. In
the crown case, the different classes are not only nonconvex
but also the in-out class is disjoint. To solve the problem, the
mapping performed by the circuit must be able to reflect this
property. Nevertheless, the final result shows that all problems
can be solved in the ion-trap QPU using the re-uploading
scheme. The final accuracies obtained (Asim)/(A∗) are non-
convex: (92%)/(95%); crown: (87%)/(92%).

For the tricrown example depicted in Fig. 10, the dif-
ficulty is to add a third class to the crown problem.
This, however, makes all regions in the feature space
joint, but a nontrivial mapping is needed to transform the

topology of the dataset to the target states in the Bloch
sphere [32].

For Fig. 11 the classification results of the hypersphere are
depicted both for QPU and simulation. In this case, only the
radius and not the full description of the point is depicted
for a graphical representation. Notice that the boundary lies
partially outside the feature space, r > 1. This is due to ge-
ometrical reasons. For four and more dimensions, the n-ball
with a volume half that of the [−1, 1]n hypercube does not
fit into the hypercube itself. This changes the accuracy of
the random classifier, but it is not taken into account in this
analysis.
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