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Adaptive procedures for discriminating between arbitrary tensor-product quantum states

Sarah Brandsen *

Department of Electrical and Computer Engineering, Duke University, North Carolina 27708, USA

Mengke Lian
Google Mountain View, California 94043, USA

Kevin D. Stubbs
Department of Mathematics, University of California Los Angeles, California 90095, USA

Narayanan Rengaswamy
Department of Electrical and Computer Engineering, The University of Arizona, Arizona, 85721 USA

Henry D. Pfister
Department of Electrical Engineering, Duke University, North Carolina 27708, USA

and Department of Mathematics, Duke University, Durham, North Carolina 27708, USA

(Received 29 March 2022; accepted 17 June 2022; published 6 July 2022)

Discriminating between quantum states is a fundamental task in quantum information theory. Given two
quantum states ρ+ and ρ−, the Helstrom measurement distinguishes between them with minimal probability
of error. However, finding and experimentally implementing the Helstrom measurement can be challenging for
quantum states on many qubits. Due to this difficulty, there is great interest in identifying local measurement
schemes which are close to optimal. In the first part of this work, we generalize previous work by Acin et al.
[Phys. Rev. A 71, 032338 (2005)] and show that a locally greedy scheme using Bayesian updating can optimally
distinguish between any two states that can be written as a tensor product of arbitrary pure states. We then show
that the same algorithm cannot distinguish tensor products of mixed states with vanishing error probability (even
in a large subsystem limit), and introduce a modified locally greedy scheme with strictly better performance.
In the second part of this work, we compare these simple local schemes with a general dynamic programming
approach which finds both the optimal series of local measurements as well as the optimal order in which
subsystems are measured.

DOI: 10.1103/PhysRevA.106.012408

I. INTRODUCTION

Measurement lies at the heart of quantum mechanics. Since
the exact state of a quantum system cannot be directly ob-
served, measurement is the primary means of understanding
real quantum systems [1–6]. However, due to the inherent
uncertainty in quantum systems it is impossible to design
a quantum measurement capable of perfectly discriminat-
ing between two non-orthogonal quantum states [7,8]. The
optimal measurement for state discrimination was described
by Helstrom [9]. However, for composite quantum systems,
the Helstrom measurement is impractical to implement ex-
perimentally because it typically requires simultaneously
measuring all subsystems.

Several works in the literature have investigated techniques
that use only local operations to distinguish between two
possible qubit states [10–16]. Given N copies of the state, their
aim is to achieve or approximate the Helstrom probability of
success. Such algorithms measure one local subsystem in each
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round and determine parameters of the next measurement
as a function of the past measurement results. The simplest
strategy, a naïve “majority vote,” has been shown to have
probability of error which approaches zero exponentially fast
in N [10,11]. For N copies of mixed qubit states, tight bounds
on the error rate of the best locally adaptive protocol can be
found in Ref. [12]. Dynamic programming has also been uti-
lized to recursively minimize the expected future error over all
possible allowed measurements, and thus compute the optimal
adaptive strategy for any given family of measurements [11].
Furthermore, for the special case where the states are tensor
powers of qubit pure states, it has been shown that a greedy
adaptive strategy, involving Bayesian updates of the prior
after each measurement result, is optimal and achieves the
same success probability as the collective Helstrom measure-
ment [10]. Finally, several works have investigated alternate
hypothesis testing problems such as unambiguous state dis-
crimination [17–19] and discriminating between more than
two candidate states [20–23].

In this paper, we generalize known results and consider the
problem of discriminating between two arbitrary tensor prod-
uct quantum states (TPQSs) and also provide discussion of
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higher-dimensional quantum subsystems such as qutrits. More
specifically, we suppose that we are given either ρ+ or ρ−
with prior probability q and 1 − q, respectively, where ρ± =
ρ

(1)
± ⊗ · · · ⊗ ρ

(N )
± and ρ

( j)
± is potentially different for each

j ∈ {1, . . . , N}. This problem is of practical interest in quan-
tum communications, where we might modulate a classical
binary codeword into a TPQS in order to transmit information
through multiple uses of the channel, and each subsystem
could experience a (slightly) different channel parameter. The
received codeword set then consists of non-orthogonal noisy
TPQSs.

When distinct subsystems are in different states, the op-
timal measurement order for the subsystems depends on the
measurement outcome of the previous subsystems. We prove
that, if all of the systems are pure states, then the order of
measurement does not matter and the Bayesian update-based
strategy with locally greedy measurements is optimal. This
generalizes the result in Ref. [10] mentioned above.

When the states are mixed, the locally greedy algorithm is
no longer optimal and in fact performs worse than most non-
adaptive local strategies in the limit as N → ∞. We show that
this poor asymptotic performance arises from the local Hel-
strom measurement becoming noninformative for sufficiently
imbalanced priors. To overcome this, we introduce a modified
locally greedy adaptive strategy with strictly better perfor-
mance. A similar phenomena was observed and discussed
in Ref. [24], where it was demonstrated that for the case of
noisy qubit copies the error rate of the standard locally greedy
strategy is nonzero even in the limit of infinite copies. We
show that this modified algorithm is asymptotically optimal as
the number of subsystems approaches infinity, and conjecture
that this algorithm is optimal or near-optimal when there are a
finite number of subsystems corresponding to identical copies
of depolarized states.

We also discuss a dynamic programming-based strategy
that finds the optimal locally adaptive strategy, generalizing
the technique introduced in Ref. [11] to include optimizing
over the order in which subsystems are measured. This dy-
namic programming approach is the optimal locally adaptive
technique subject to some simple constraints and includes the
locally greedy techniques as a special case of itself.

Finally, we consider higher dimensional (qutrit) subsys-
tems and compare the performance of ternary versus binary
projective measurements. We show that, in general, multiple-
outcome measurements are needed for optimality. Numerical
results are provided for all these scenarios and the source code
used to generate them is available online [25].

II. NOTATION

Following the same notation as above, ρ is the random
variable representing the given state, so that either ρ =
ρ+ = ρ

(1)
+ ⊗ · · · ⊗ ρ

(N )
+ or ρ = ρ− = ρ

(1)
− ⊗ · · · ⊗ ρ

(N )
− , and

we refer to N as the number of subsystems. We addition-
ally require that each ρ

( j)
± be a real matrix. For qubit states,

if this condition is not satisfied one can always create a
state discrimination problem which is unitarily equivalent and
where the density matrices are real-valued. Namely, there
exists a unitary U = U (1) ⊗ · · · ⊗ U (n) such that Uρ+U †

and Uρ−U † are real matrices. A similar argument holds

for higher-dimensional subsystems and pure candidate states.
However, numerical results suggest that for the most general
state discrimination setup of higher-dimensional subsystems
and mixed candidate states, there may not always be a unitar-
ily equivalent real-valued problem.

In the qubit case, we use the parametrization ρ
( j)
± � (1 −

γ )|θ±, j〉〈θ±, j | + γ

2 I, where |θ〉 � cos θ
2 |0〉 + sin θ

2 |1〉 and j ∈
{1, 2, . . . , N} denotes the subsystem index. Without loss of
generality, we set θ+, j = −θ−, j .

The prior probability of state ρ+ is denoted by q � P [ρ =
ρ+]. The permutation σ ∈ SN , where SN is the symmetric
group on N elements, is unknown at the beginning of the
protocol, and is defined progressively in each round (index by
index) when the algorithm determines the next subsystem to
measure (assuming no grouping of subsystems, i.e., m = 1).
At round j ∈ {1, . . . , N}, we determine the next subsystem
σ ( j). Let Aσ ( j) ∈ A be the random variable corresponding to
the action in the jth round which takes values aσ ( j) ∈ A. The
measurement result upon executing the action is represented
by the random variable Dσ ( j) ∈ D whose realization is de-
noted dσ ( j). Here A is a generic action set which is specified
by the type of measurements in any specific scheme, and D
is the space containing possible outcomes for the chosen ac-
tion set. For example, if A contains projective measurements
on qubits, then D = {±1}. For a natural number n, define
[n] � {1, . . . , n}. Then at round j, the past actions and results
are recorded into the vectors aσ

[ j−1] = (aσ (1), . . . , aσ ( j−1)) and
dσ

[ j−1] = (dσ (1), . . . , dσ ( j−1)), respectively.

III. RESULTS

A. Locally greedy algorithm

First, we describe a simple extension of the locally greedy
algorithm, which was introduced as the “locally optimal
locally adaptive” algorithm for identical qubit copies in
Ref. [11]. For m = 1, at round j ∈ [N], the algorithm updates
the probability that the state is ρ+ based on the results of past
measurements. The algorithm does not consider any nontrivial
ordering of subsystems, so σ ( j) = j for all j ∈ [N]. Once
the prior is updated at round j, it performs the Helstrom
measurement on the subsystem j according to the given ρ

( j)
±

and this updated prior. To formally describe this process and
later generalize it to the dynamic-programming algorithm in
the next section, we begin by defining the conditional state
probability at round j for a nontrivial permutation σ on the N
subsystems.

Definition 1. The conditional state probability (CSP)
Cσ

j (q, aσ
[ j], dσ

[ j] ) is defined as the probability that ρ = ρ+ given
that the starting prior was q, that the first j rounds of measure-
ment were executed with ordering σ and actions aσ

[ j], and that
the results were dσ

[ j]. Therefore, the updated prior at round j
is the corresponding CSP

Cσ
j

(
q, aσ

[ j], dσ
[ j]

)
� P
(
ρ = ρ+

∣∣Aσ
[ j] = aσ

[ j], Dσ
[ j] = dσ

[ j]

)
. (1)

Thus, when j = 0 we recover the initial prior as Cσ
0 (q) � q.

The dependence of the conditional probability on the initial
prior q is left implicit in the above definition and in the
following.
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Then, the CSP can be computed using past actions and results as

Cσ
j

(
q, aσ

[ j], dσ
[ j]

) = P
(
ρ+, dσ ( j)|aσ

[ j], dσ
[ j−1]

)
P
(
dσ ( j)|aσ

[ j], dσ
[ j−1]

) = P (dσ ( j)|ρ+, aσ ( j) )Cσ
j−1

P (dσ ( j)|ρ+, aσ ( j) )Cσ
j−1 + P (dσ ( j)|ρ−, aσ ( j) )

(
1 − Cσ

j−1

) , (2)

where in the above, Cσ
j−1 is an abbreviation for

Cσ
j−1(q, aσ

[ j−1], dσ
[ j−1]) (see Appendix A for further details

of computing the CSP).
We can simplify the notation by defining two quantities:

L(p, a, d ) � P (d|ρ+, a)p + P (d|ρ−, a)(1 − p), (3)

P (p, a, d ) � P (d|ρ+, a)p

L(p, a, d )
. (4)

The naming follows from observing that they represent a
likelihood and a posterior, respectively. Thus we can write

P
(
dσ ( j)|aσ

[ j], dσ
[ j−1]

) = L
(
Cσ

j−1, aσ ( j), dσ ( j)
)
, (5)

Cσ
j

(
q, aσ

[ j], dσ
[ j]

) = P
(
Cσ

j−1, aσ ( j), dσ ( j)
)
, (6)

where Cσ
j−1 is an abbreviation for Cσ

j−1(q, aσ
[ j−1], dσ

[ j−1]). This
completes the description of the Bayesian update in the locally
greedy algorithm.

Next we discuss the performance of this algorithm when
the N subsystems are identical copies of qubits. In this
case, the ordering of the subsystems is clearly immaterial.
At round j, the locally greedy algorithm uses the CSP
Cσ

j−1(q, aσ
[ j−1], dσ

[ j−1]) and applies the (optimal) Helstrom
measurement on the jth subsystem. This measurement is de-
fined by the projector

�(p, j) �
∑

|v〉∈V (p, j)

|v〉〈v|, (7)

where, for M � (1 − p)ρ ( j)
− − pρ ( j)

+ ,

V (p, j) � {|v〉| M|v〉 = λ|v〉; λ � 0}, (8)

and p = Cσ
j−1(q, aσ

[ j−1], dσ
[ j−1]). Since ρ

(i)
± = ρ

( j)
± for all i, j ∈

[N], the projector �(p, j) changes at every round only be-
cause of the changing prior p. The outcome probabilities for a
given measurement element � are given by

P (d|ρ ( j)
± ,�) =

{
1 − Tr(�ρ

( j)
± ) if d = +1

Tr(�ρ
( j)
± ) if d = −1.

(9)

Thus, the probability of error for a decision after round j of
the locally greedy algorithm is given by

Perr, j = (1 − p)[1 − Tr(�(p, j)ρ ( j)
− )] (10)

+ pTr(�(p, j)ρ ( j)
+ ). (11)

Under the locally greedy algorithm, the probability of suc-
cessfully distinguishing between states ρ+ and ρ− is given by

Plg(q, ρ±) � 1 − Perr,N . (12)

For the case where ρ± is a tensor product of arbitrary pure
states, we now prove that the locally greedy algorithm (and

hence the MOODY algorithm) achieves the optimal Helstrom
probability of success.

Theorem 2. Let Ph(q, ρ±) and Plg(q, ρ±) denote the proba-
bilities of successful state discrimination, given initial prior
P (ρ = ρ+) = q, using the joint N-system Helstrom mea-
surement and the locally greedy measurement technique,
respectively. If ρ+ and ρ− are pure states, i.e., ρ

( j)
± =

| ± θ j〉〈±θ j | where |θ〉 � cos θ
2 |0〉 + sin θ

2 |1〉, for some θ j ∈
(0, 2π ) for every j ∈ [N], then

Ph(q, ρ±) = Plg(q, ρ±) (13)

=
(
1 +
√

1 − 4q(1 − q)�N
j=1 cos2 (θ j )

)
2

. (14)

Proof. See Appendix B. The idea is to prove the result for
N = 2 and then extend via induction for arbitrary N. �

1. Plateau with locally greedy algorithm

We now demonstrate that the locally greedy algorithm ex-
hibits a plateau in performance for mixed (depolarized) states
using the following experimental setup. For now, we assume
the prior q = 1

2 in all cases unless specified otherwise:
(1) We choose Sdep = {0.01, 0.05, 0.1, 0.3} to be our set

of allowed depolarizing parameters (i.e., possible values of
γ .) This set thus includes the case of minimal depolarization
(γ = 0.01) and moderate depolarization (γ = 0.3) as well as
intermediate values. We set the number of trials to be ntrial =
1000.

(2) Generate θ
(t )
± ∈ (0, 2π ) uniformly, where t ∈ [ntrial]

denotes the trial index.
(3) For each γ ∈ Sdep, define the corresponding qubit

quantum states ρ±(γ , t ) � (1 − γ )|θ (t )
± 〉〈θ (t )

± | + γ

2 I , where

|θ〉 � cos
θ

2
|0〉 + sin

θ

2
|1〉. (15)

Note that the subscript ± in θ
(t )
± is used to represent that the

angles are chosen independently for the ρ+ and ρ− states.
(4) For all γ ∈ Sdep and all N = 1, 2, . . . , 12, we define

the candidate TPQS generated by the random sampling as
denoted by

Psucc(N, γ ) = 1

ntrial

ntrial∑
t=1

Plg(ρ±(γ , t )⊗N ), (16)

where Plg(ρ±) is the success probability for the locally
greedy algorithm and candidate states ρ±(γ , t )⊗N .

In the above, we randomly sample a set of pure states
{|θ (t )

± > 〈θ (t )
± |}|ntrial

t=1 and generate the corresponding set of
candidate states {ρ±(γ , t )⊗N }|ntrial

t=1 for each N and γ . Thus,
Psucc(N, γ ) represents the Monte Carlo average of perfor-
mance for fixed N and γ .
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FIG. 1. Comparison of the probability of success as a function of the number of available systems for the case of identical copies. As
the depolarizing parameter γ increases, the LG probability of success levels off for large N while the MLG probability of success converges
to 1.

We plot the results of this computational experiment in
Fig. 1(a). We observe that the average probability of success
(asymptotically) approaches a value strictly less than 1 when
the depolarizing parameter is sufficiently high. In the limit
as γ = 0, the probability of success must approach 1 with
increasing N because the locally greedy approach recovers
the optimal Helstrom performance (see Theorem 2). Next,
we prove a result that explains the performance plateau in
Fig. 1(a) and then define a modified locally greedy approach
that overcomes this suboptimality.

Lemma 3. For two d-dimensional qudit states ρ+ and ρ−,
suppose we are given ρ+ with probability q where q � 1

2 . Let
the depolarized versions of ρ± be denoted by

ρ
dep
± := (1 − γ )ρ± + γ

d
I. (17)

Let the probability of distinguishing ρ+ and ρ− be Psucc. If

γ

1 − γ

1 − 2q

d

is less than the magnitude of the largest negative eigenvalue of
(1 − q)ρ− − qρ+, then the probability of distinguishing ρ

dep
+

and ρ
dep
− is given by

Pdep
succ = γ q + γ (1 − 2q)k

d
+ (1 − γ )Psucc, (18)

where k is the rank of the Helstrom projector distinguishing
ρ+ and ρ−.

Proof. See Appendix C. �
In the case of qubits, this lemma implies the following

corollary:
Corollary 4. Consider the problem of distinguishing be-

tween two distinct single qubit states ρ
dep
+ and ρ

dep
− with prior

probabilities q and 1 − q respectively. Assume that ρ
dep
+ and

ρ
dep
− are depolarized such that there exist pure states |ψ±〉

where

γ± ∈ [0, 1] and ρ
dep
± � (1 − γ±)|ψ±〉〈ψ±| + γ±

2
I.

For any choice of γ±, q ∈ [0, 1] the probability of correctly
distinguishing ρ

dep
+ and ρ

dep
− , is denoted by Pdep

succ and satisfies

Pdep
succ � max

{
1 − q, q, 1 − γmin

2

}
(19)

where γmin � min(γ+, γ−).
Proof. See Appendix D. �
Assume with loss of generality that q � 1

2 . Then, ob-
serve that 1 − q � 1 − γ

2 implies γ � 2q and therefore
γ

1−γ

(1−2q)
qd � 1 (d = 2). In the notation of Lemma 3, set

ρ± = |ψ±〉〈ψ±|. Since the spectrum of [(1 − q)|ψ−〉〈ψ−| −
q|ψ+〉〈ψ+|] lies in the interval [−1, 1], Eq. (C1) implies that
the smallest eigenvalue of [(1 − q)ρdep

− − qρ
dep
+ ] will now be

non-negative and hence �Hel,ρ± = I will be trivial. In Ap-
pendix I we show that such trivial measurements cause the
local greedy method to exhibit plateaus in success probability
for general TPQS.

This result provides motivation for us to modify the
conventional locally greedy method discussed above (first
introduced by Refs. [10] and [11]).

B. Modified locally greedy algorithm

Like the locally greedy algorithm, the MLG algorithm
updates the prior after each measurement round. Then, it per-
forms the modified Helstrom measurement according to the
new prior, with the modified Helstrom measurement defined
by

�∗(p, j) �

⎧⎪⎨
⎪⎩

�(p, j) if �(p, j) /∈ {I, 0}∣∣vλmax

〉〈
vλmax

∣∣ if �(p, j) = 0

I − ∣∣vλmin

〉〈
vλmin

∣∣ if �(p, j) = I,

(20)
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where, for M = (1 − p)ρ ( j)
− − pρ ( j)

+ , we define

λmax � max
λ

{λ|M|vλ〉 = λ|vλ〉}, (21)

λmin � min
λ

{λ|M|vλ〉 = λ|vλ〉}, (22)

and where the final state is decoded as ρ̂ = ρ+ if
Cσ

N (q, aσ
[N], dσ

[N] ) � 1
2 and as ρ̂ = ρ− otherwise.

The key idea is that, in the case where the Helstrom mea-
surement is trivial, the MLG algorithm creates an informative
measurement by partitioning projectors based on the ordering
of their eigenvalues rather than the sign of the eigenvalues.
Thus, it separates out the projector that is most strongly pre-
dictive of the less-likely candidate state.

Denote by Ps,MLG(q, ρ±) the success probability of dis-
tinguishing {ρ+, ρ−} with initial prior q using the MLG
algorithm. We now show that the MLG method exhibits the
desired asymptotic behavior in the limit of large N .

Lemma 5. For any ρ± where ρ
( j)
+ 	= ρ

( j)
− for all subsystems

j, then in the limit N → ∞, Ps,MLG(q, ρ±) = 1.
Proof. See Appendix E. �
From the above, we can conclude that Ps,MLG(ρ±) �

Ps,LG(ρ±) as the MLG and LG methods are equivalent when-
ever the Helstrom measurement is nontrivial. When the Hel-
strom measurement is trivial, it follows that the MLG method
does strictly better. The improved asymptotic behavior of the
MLG algorithm is depicted in Fig. 1(b), where we repeat the
previous experimental setup with the MLG algorithm, and
plot the resulting Psucc(N, γ ) = 1

ntrial

∑ntrial
t=1 Ps,LG(ρ±(γ , t )⊗N ).

In the next section, we generalize to a dynamic program-
ming based algorithm capable of optimizing over the order
of subsystem measurement as well as the measurement per-
formed on each subsystem.

IV. DYNAMIC-PROGRAMMING ALGORITHMS

A. Order-optimized modified locally greedy algorithm

In the order-optimized MLG algorithm, we choose σ ( j)
carefully in each round j. To do this, we recursively compute
an expected future risk function RS : [0, 1] → [0, 1], where S
denotes the set of subsystem indices that are yet to be mea-
sured and where the domain is the updated prior. Formally, at
round j,

S � [N] \ σ ([ j − 1]). (23)

(i) For the base case S = ∅, one can make a hard decision
on Cσ

N (q, aσ
[N], dσ

[N] ), i.e., by comparing it to 0.5. Namely, upon
setting p = Cσ

N (q, aσ
[N], dσ

[N] ), we have

R∅(p) = min (p, 1 − p) (24)

for p ∈ [0, 1].
(ii) For the general case S 	= ∅ and j = N − |S| + 1,

N − |S| measurements have been performed. The goal is to
choose the best subsystem σ ( j) to be measured next with
the modified Helstrom measurement in order to minimize the
expected error probability over the remaining measurements,

i.e.,

RS
[
Cσ

N−|S|
(
q, aσ

[N−|S|], dσ
[N−|S|]
)]

= min
k∈S

∑
dk∈D

P
(
dk|q,
(
aσ

[N−|S|], ak
)
, dσ

[N−|S|]
)

RS\{k}
[
Cσ

N−|S|+1

(
q,
(
aσ

[N−|S|], ak
)
,
(
dσ

[N−|S|], dk
))]

,

(25)

where ak = �∗(p, k) is the modified Helstrom
measurement, with p = Cσ

N−|S|(q, aσ
[N−|S|], dσ

[N−|S|] ) =
Cσ

j−1(q, aσ
[ j−1], dσ

[ j−1]).
This expression can be written as a function of p ∈ [0, 1]

as

RS (p) = min
k∈S

∑
dk∈D

L(p,�∗(p, k), dk ) (26)

RS\{k}[P (p,�∗(p, k), dk )]. (27)

The next mapping for σ at round j can be defined as

σ ( j) � argmin
k∈S

∑
dk∈D

L(p,�∗(p, k), dk ) (28)

RS\{k}[P (p,�∗(p, k), dk )], (29)

where L and P are defined in (11).
Similar to the case of identical copies, the measurement

outcome probabilities are given by (9) with �(p, j) replaced
by �∗(p, j), the probability of error at round j is given
by (10), and the overall probability of success of the order-
optimized locally greedy algorithm is given by (12) with N
replaced by σ (N ).

B. Measurement- and order-optimized dynamic algorithm

The measurement- and order-optimized dynamic
(MOODY) algorithm is a generalization of the order-
optimized locally greedy algorithm described above for the
distinct subsystems scenario. During execution of round j,
the algorithm optimizes over all choices of σ ( j) as well as the
measurement actions that could be performed over the chosen
subsystem σ ( j). Hence, the expected future risk function is
given by

RS (p) = min
(k,ak )∈S×A

∑
dk∈D(A)

L(p, ak, dk )RS\{k}[P (p, ak, dk )].

(30)

An optimal choice for the next subsystem, k ∈ S, and the
optimal action to be performed on that subsystem, ak ∈ A, are
given by the minimizer ÂS (p) = (k, ak ) of the above function:

ÂS (p) � argmin
(k,ak )∈S×A

∑
dk∈D(A)

L(p, ak, dk )RS\{k}[P (p, ak, dk )].

(31)

Therefore, during round j of the algorithm, we have j = N −
|S| + 1 and we choose

(σ ( j), aσ ( j) ) = ÂS
(
Cσ

j−1

(
q, aσ

[ j−1], dσ
[ j−1]

))
. (32)

The MOODY algorithm can be summarized as below.
Once the DP subroutine is completed, we have a set of
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expected future error functions {RS|S ⊆ [N]} and a set of best
measurement action functions {AS|S ⊆ [N]}. Setting p0 =
P (ρ̂ = ρ̂+) = q and S0 = {1, . . . , N}, we then have for i =
0, . . . , N − 1:

Perr
i = RSi (pi ), (33a)

ÂSi (pi ) = (σ (i + 1), aσ (i+1)), (33b)

L(pi, aσ (i+1), d ) = P (dσ (i+1) = d|pi, aσ (i+1)), (33c)

pi+1 = P (pi, aσ (i+1), dσ (i+1)), (33d)

Si+1 = Si \ {σ (i + 1)}. (33e)

Finally, after N rounds of measurements one makes the deci-
sion to decode ρ as ρ̂ for

ρ̂ =
⎧⎨
⎩

ρ+, if pN > 0.5
ρ−, if pN < 0.5
random guess, if pN = 0.5,

(34)

and Psucc = max(pN , 1 − pN ).
For more details about implementation and complexity, see

Appendix F.

C. Results for qubits and qutrits

We demonstrate that the order in which subsystems are
measured can generally affect the success probability. We first
show this analytically by considering candidate states of the
form

ρ+ =
(

1 − x 0
0 x

)
⊗ |θ〉〈θ |,

ρ− =
(

x 0
0 1 − x

)
⊗ |−θ〉〈θ |.

Measuring the subsystems in the best order (diagonal ma-
trices first followed by |±θ〉〈±θ |) yields a success probability
of Psucc,best = 1

2 {1 + [1 − 4(1 − x)x cos2(2θ )]1/2}, whereas
measuring in the reverse order yields a probability of success
of Psucc,worst = max{x, 1 − x, 1

2 (1 + [1 − 1
2 cos2(2θ )]1/2)}.

We now provide numerical experiments illustrating the
difference between “best” and “worst” ordering: results for the
qubit case are discussed in Appendix G where we demonstrate
that there is a small difference in success probability between
the best and worst case ordering. Additionally, this difference
persists even when using the MOODY algorithm.

We now discuss the qutrit case.

D. Qutrit results

We begin our qutrit results by investigating whether binary
projectors are sufficient for qutrit (3-dimensional) quantum
subsystems.

Definition 6. Action space A is sufficient for state space H
if and only if for all ρ± ∈ H and q ∈ [0, 1],

Psucc,A(q, ρ±) = Psucc,Aall (q, ρ±),

where Aall is the set of all quantum measurements of dimen-
sion dim(ρ±) and Psucc,A(q, ρ±) is the probability of success
of the order-optimized MOODY algorithm for a given action
space A.

For pure states, Theorem 2 confirms that binary projectors
are sufficient, and by the definition of the Helstrom measure-
ment, binary projectors are additionally sufficient whenever
N = 1.

We show by example that binary projective measurements
are not sufficient for general state spaces. To this aim, we de-
fine Hqutrit to be the space of depolarized, real qutrit states and
define the action space of real binary (ternary) measurements
as Ab (At):

Ab �
{{

�b
j

}2
j=1

∣∣�b
j�

b
j′ = δ j, j′�

b
j ∀ j, j′ ∈ {1, 2}, (35)

rank
(
�b

1

) = 2, rank
(
�b

2

) = 1
}
, (36)

At �
{{

�t
j

}3
j=1

∣∣�t
j�

t
j′ = δ j, j′�

t
j, (37)

rank
(
�t

j

) = 1 ∀ j, j′ ∈ {1, 2, 3}}. (38)

Parametrizing the action spaces is equivalent to
generating (with some quantization) all orthonormal
bases {|u1〉, |u2〉, |u3〉} and defining the corresponding
ternary positive operator-valued measure (POVM)
�t ({|u1〉, |u2〉, |u3〉}) and three corresponding binary POVMs
�b,k ({|u1〉, |u2〉, |u3〉}), for k ∈ {1, 2, 3} as follows:

�t({|u j〉}|3j=1

)
� {|u1〉〈u1|, |u2〉〈u2|, |u3〉〈u3|}, (39)

�b,k
({|u j〉}|3j=1

)
�
{∑

l 	=k

|ul〉〈ul |, |uk〉〈uk|
}

. (40)

We define |u j〉 = R(φ, θ )�v j (ω), where

�v1(ω) =
⎡
⎣cos (ω)

sin (ω)
0

⎤
⎦,

�v2(ω) =
⎡
⎣− sin (ω)

cos (ω)
0

⎤
⎦, �v3(ω) =

⎡
⎣0

0
1

⎤
⎦.

and

R(φ, θ ) =
⎛
⎝− sin(φ) cos(φ) cos(θ ) cos(φ) sin(θ )

cos(φ) sin(φ) cos(θ ) sin(φ) sin(θ )
0 − sin(θ ) cos(θ )

⎞
⎠.

For details of quantization of (φ, θ, ω) and sufficiency of
using real-valued quantum measurements, see Appendix H.

Using the following procedure, we demonstrate
that for general real depolarized qutrit states {ρ̂+, ρ̂−},
Psucc,Ab ( 1

2 , ρ̂±) < Psucc,At (
1
2 , ρ̂±), and hence binary projective

measurements are not sufficient.
(1) Set N = 3, Sdep = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and

ntrial = 1000.
(2) Generate α

(t, j)
± , β

(t, j)
± ∈ (0, 1) uniformly, where t ∈

[ntrial] denotes the trial index, and j = 1, 2, . . . , N denotes
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FIG. 2. Left-hand side depicts the average probability of success for the best and worst ordering using both ternary and binary pro-
jective measurements for qutrit product states when N = 3. Results are averaged over 1000 trials. Right-hand side depicts difference in
average success probability for the various methods, namely, Pdiff,order (γ ,A) as a function of γ when N = 3. Results are averaged over
1000 trials.

the subsystem index. Set φ(t, j)
± = 2πα

(t, j)
± and θ = arccos(1 −

2β
(t, j)
± )
(3) For each γ ∈ Sdep, define the corresponding qutrit

quantum states

ρ±(γ , t, N ) �
N⊗

j=1

(
(1 − γ )

∣∣v(φ(t, j)
± , θ

(t, j)
±
)〉

× 〈v(φ(t, j)
± , θ

(t, j)
±
)∣∣+ γ

3
I

)
. (41)

(4) For each ρ±(γ , t, N ) perform the MOODY algorithm
for Ab and At for both best ordering and worst ordering.

(5) For γ ∈ Sdep, given an order of “best” or “worst,” and
given an action space A ∈ {Ab,At}, denote

Ps,order (γ ,A) = 1

ntrial

ntrial∑
t=1

Porder (ρ±(γ , t, N ),A), (42)

where Porder (ρ±,A) indicates that we perform the MOODY
algorithm over action space A with corresponding ordering
on states ρ±.

We plot the results of all four methods in Fig. 2(a),
and compare the difference of the remaining three meth-
ods to the ternary, best ordering method [Pdiff,order (γ ,A) =
Ps,best (γ ,At ) − Ps,order (γ ,A)] in Fig. 2(b). We observe that
the best ternary ordering is better than best binary ordering,
and affects performance even in the MOODY algorithm. We
conjecture that, for any action space and any adaptive ap-
proach, there is a candidate state set such that the order of
subsystem measurement will affect the success probability.
It remains an open question whether it is always sufficient
to consider d rank-1 orthogonal projectors for d-dimensional
real quantum subsystems.

V. CONCLUSION

In this work, we investigated simple locally greedy and
modified locally greedy algorithms as well as more general
dynamic programming-based algorithms for quantum state
discrimination when the given states are tensor products of
N arbitrary qubit or qutrit states. We analytically proved that
when the individual subsystems are pure states the simple
locally greedy algorithm achieves the optimal performance of
the joint N-system Helstrom measurement. For the scenario
where each subsystem contains identical copies of arbitrary
qubit states, we demonstrated a plateau in the probability of
success attained by the locally greedy algorithm with increas-
ing N and introduced a modified locally greedy algorithm with
strictly better performance whose state discrimination became
perfect in the large-N limit.

For the general MOODY algorithm, we show that order-
ing of subsystems continues to affect the performance when
the individual subsystems have distinct states. Finally, for
qutrit states, we showed that binary projective measurements
are inadequate to achieve optimal performance. Our work
has potential implications for developing locally adaptive
measurement protocols in more general quantum hypothesis
settings.
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APPENDIX A: CONDITIONAL STATE PROBABILITY

The CSP can be computed using past actions and results as

Cσ
j

(
q, aσ

[ j], dσ
[ j]

) = P
(
ρ+, dσ ( j)|aσ

[ j], dσ
[ j−1]

)
P
(
dσ ( j)|aσ

[ j], dσ
[ j−1]

) (A1)

= P
(
ρ+, dσ ( j)|aσ

[ j], dσ
[ j−1]

)
P
(
ρ+, dσ ( j)|aσ

[ j], dσ
[ j−1]

)+ P
(
ρ−, dσ ( j)|aσ

[ j], dσ
[ j−1]

) (A2)

= P
(
dσ ( j)|ρ+, aσ

[ j], dσ
[ j−1]

)
P
(
ρ+|aσ

[ j], dσ
[ j−1]

)
∑

x∈{+,−} P
(
dσ ( j)|ρx, aσ

[ j], dσ
[ j−1]

)
P
(
ρx|aσ

[ j], dσ
[ j−1]

) , (A3)

where, in the second equality, we have marginalized over the possible values of ρ in the denominator. Now we make some
observations that will allow us to simplify this expression. Since all measurements are performed on different subsystems, the
outcome of the jth measurement does not depend on the previous j − 1 measurements once the jth action is given, i.e.,[

dσ ( j) ⊥ (q, aσ
[ j−1], dσ

[ j−1]

)]|aσ ( j) (A4)

�⇒ P
(
dσ ( j)|ρ±, aσ

[ j], dσ
[ j−1]

) = P (dσ ( j)|ρ±, aσ ( j) ). (A5)

Executing a measurement action without knowing the outcome does not help with inference, namely,

P
(
ρ = ρ+|aσ

[ j], dσ
[ j−1]

) = P
(
ρ = ρ+|aσ

[ j−1], dσ
[ j−1]

)
(A6)

= Cσ
j−1

(
q, aσ

[ j−1], dσ
[ j−1]

)
, (A7)

and

P
(
ρ = ρ−|aσ

[ j], dσ
[ j−1]

) = P
(
ρ = ρ−|aσ

[ j−1], dσ
[ j−1]

)
(A8)

= 1 − Cσ
j−1

(
q, aσ

[ j−1], dσ
[ j−1]

)
. (A9)

For two different permutations σ and τ , if for all i = 1, . . . , j we have σ (i) = τ (i), aσ (i) = aτ (i), and dσ (i) = dτ (i), then
Cσ

j (q, aσ
[ j], dσ

[ j] ) = Cτ
j (q, aτ

[ j], dτ
[ j] ).

Applying these observations, we find that Cσ
j (q, aσ

[ j], dσ
[ j] ) is equivalent to

P (dσ ( j)|ρ+, aσ ( j) )Cj−1

P (dσ ( j)|ρ+, aσ ( j) )Cσ
j−1 + P (dσ ( j)|ρ−, aσ ( j) )

(
1 − Cσ

j−1

) . (A10)

where in the above, Cσ
j−1 is an abbreviation for Cσ

j−1(q, aσ
[ j−1], dσ

[ j−1]).

APPENDIX B: PROOF OF THEOREM 2

We prove the statement by induction, first considering the base case where N = 2 and additionally specifying q = 1
2 . We

leave q implicit in the following until stated otherwise. Then the probability of success can be written as

Plg

(
1

2
, ρ±

)
=
∑

d1∈{+,−}
P (ρ = ρ+)P (d1|ρ+)P (d2 = +|ρ+, d1) +

∑
d1∈{+,−}

P (ρ = ρ−)P (d1|ρ−)P (d2 = −|ρ−, d1)

= 1

2

∑
d1∈{+,−}

[P (d1|ρ+)P (d2 = +|ρ+, d1) (B1)

+P (d1|ρ−)P (d2 = −|ρ−, d1)] (B2)

= P (d1 = +|ρ+)P (d2 = +|ρ+, d1 = +) (B3)

+P (d1 = +|ρ−)P (d2 = −|ρ−, d1 = +), (B4)

where the final equality follows from symmetry of probability outcomes for pure states, i.e.,

P (d j = +|ρ+, d1 = ±) = P (d j = −|ρ−, d1 = ∓).

From the definition of the Helstrom measurement, we observe that

P (d1 = ±|ρ±) = 1
2 [1 + sin (θ1)], P (d1 = ±|ρ∓) = 1

2 [1 − sin (θ1)]. (B5)
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Hence the updated prior is p1(d1) = 1
2 [1 + d1 sin(θ1)]. Then according to the locally greedy algorithm,

P (d2|ρ±, d1) =
{

1 − Tr[�(p1(d1), j = 1)ρ±] if d2 = +
Tr[�(p1(d1), j = 1)ρ±] if d2 = −.

(B6)

Equations 2.13 and 2.14 from Ref. [9] provide a solution for P (d2|ρ±, d1). Upon simplifying, we observe

P (d2 = ±|ρ+, d1 = ±) = 1

2

(
1 ± sin2 θ2 ± cos2 θ2 sin θ1√

cos2 (θ2) sin2 (θ1) + sin2 (θ2)

)
. (B7)

Again using the symmetry property we have

P (d2 = ±|ρ−, d1 = ±) = 1

2

(
1 ∓ sin2 θ2 ± cos2 θ2 sin θ1√

cos2 (θ2) sin2 (θ1) + sin2 (θ2)

)
. (B8)

Upon substitution we obtain

Plg
(

1
2 , ρ±
) = P (d1 = +|ρ+)P (d2 = +|ρ+, d1 = +) + P (d1 = +|ρ−)P (d2 = −|ρ−, d1 = +) (B9)

= 1
2 (1 +
√

cos2 (θ2) sin2 (θ1) + sin2 (θ2))

= 1
2 (1 +
√

1 − cos2 (θ1) cos2 (θ2)). (B10)

For the inductive step, we define a new variable θ̃ ∈ [0, π ] such that cos2(θ̃ ) � �N−1
i=1 cos2(θi ). Then by assumption

Plg
(

1
2 , ρ

(1,...,N−1)
±

) = 1
2

(
1 +
√

1 − �N−1
i=1 cos2 (θi )

) = 1
2 (1 +
√

1 − cos2(θ̃ )). (B11)

We then apply the previously shown statement for N = 2, letting the first subsystem now be the combined subsystems
1, 2, . . . , N − 1, i.e., ρ

(1,...,N−1)
± .

Plg
(

1
2 , ρ±
) = 1

2 (1 +
√

1 − cos2(θ̃ ) cos2 (θN )) = 1
2

(
1 +
√

1 − �N−1
i=1 cos2 (θi ) cos2 (θN )

)
(B12)

= 1
2

(
1 +
√

1 − �N
i=1 cos2 (θi )

)
. (B13)

Now we consider the case of general priors. We can artificially rearrange this problem so that it is mathematically equivalent
to a new quantum state discrimination problem between two transformed states ρ̂ ′±. We start by defining θ0 such that q =
1
2 [1 + sin(θ0)]. For pure states, we have Ps,h(q, ρ±) = Ps,h(1 − q, ρ±), so

Ph(q, ρ±) = 1

2

[
Ps,h

(
1 + sin θ0

2
, ρ±

)
+ Ph

(
1 − sin θ0

2
, ρ±

)]
= Ps,LG

(
1

2
, ρ

(0)
± ⊗ ρ±

)

= 1

2
[P (d0 = +|ρ (0) = ρ

(0)
+ )P (dN = +|d0 = +, ρ = ρ+) + P (d0 = +|ρ (0) = ρ

(0)
− )P (dN = −|d0 = +, ρ = ρ−)

+ P (d0 = −|ρ (0) = ρ
(0)
+ )P (dN = +|d0 = −, ρ = ρ+) + P (d0 = −|ρ (0) = ρ

(0)
− )P (dN = −|d0 = −, ρ = ρ+)],

where we define the newly appended states ρ
(0)
± � |θ0,±〉〈θ0,±| such that |〈θ0,+|θ0,−〉|2 = cos2(θ0). Here P (dN |d0, state) denotes

the probability of obtaining dN as the measurement result on the N th subsystem given the updated prior P1(q0 = 1
2 , d0) and state,

with all local measurements determined by the locally greedy algorithm.
Since we have restricted all quantum subsystems to be in pure states, we can simplify through symmetry as follows:

P (dN = +|d0 = −, ρ = ρ+) = P (dN = −|d0 = +, ρ = ρ−)

P (dN = −|d0 = −, ρ = ρ−) = P (dN = +|d0 = +, ρ = ρ+).

Substituting these properties we obtain

Ph(q, ρ±) = P (d0 = +|ρ (0) = ρ
(0)
+ )P (dN = +|d0 = +, ρ = ρ+) + P (d0 = +|ρ (0) = ρ

(0)
− )P (dN = −|d0 = +, ρ = ρ−)

= qP (dN = +|d0 = +, ρ = ρ+) + (1 − q)P (dN = −|d0 = +, ρ = ρ−) = Plg(q, ρ±).

The last equality follows from noting that the updated prior P1(q0 = 1
2 ,+) = 1

2 [1 + sin(θ0)] = q. Thus, the probability of success
is equivalent under both the joint N-system Helstrom measurement and the locally greedy method for pure states.
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APPENDIX C: PROOF OF LEMMA 3

The Helstrom measurement is given by the orthogonal projector onto the positive eigenspace of the operator [(1 − q)ρ− −
qρ+]. More explicitly, it is given by the orthogonal projector onto the vector space spanned by all eigenstates |v〉 such
that

〈v|[(1 − q)ρ− − qρ+]|v〉 � 0.

Let us denote this projector as �Hel. Using this orthogonal projector, the probability of success is given by

Psucc = qTr((I − �Hel )ρ+) + (1 − q)Tr(�Helρ−) = q + Tr(�Hel[(1 − q)ρ− − qρ+]).

Now let us consider the optimal measurement for distinguishing ρ
dep
+ and ρ

dep
− . Calculating the analogous operator for ρ

dep
+ and

ρ
dep
− gives

(1 − q)ρdep
− − qρ

dep
+ = (1 − q)

[
(1 − γ )ρ− + γ

d
I

]
− q

[
(1 − γ )ρ+ + γ

d
I

]
= γ (1 − 2q)

d
I + (1 − γ )[(1 − q)ρ− − qρ+].

Since γ < 1, we can divide by 1 − γ without changing the positive eigenspace. Therefore, the Helstrom optimal measurement
projects onto the space of eigenstates |v〉 such that the following is positive:

〈v|
(

γ

1 − γ

1 − 2q

d
I + [(1 − q)ρ− − qρ+]

)
|v〉 = 〈v|[(1 − q)ρ− − qρ+]|v〉 + γ

1 − γ

1 − 2q

d
. (C1)

Therefore, if γ is sufficiently small, then the optimal projector distinguishing ρ
dep
+ and ρ

dep
− is �Hel. Hence, for γ sufficiently

small, we have

Pdep
succ = q + Tr(�Hel[(1 − q)ρdep

− − qρ
dep
+ ])

= q + γ (1 − 2q)

d
Tr(�Hel ) + (1 − γ )Tr(�Hel[(1 − q)ρ− − qρ+]) = γ q + γ (1 − 2q)k

d
+ (1 − γ )Psucc.

APPENDIX D: PROOF OF COROLLARY 4

Let us denote the Helstrom measurement for {|ψ+〉〈ψ+|, |ψ−〉〈ψ−|} by �Hel,|ψ±〉〈ψ±| and the Helstrom measurement for
{ρdep

+ , ρ
dep
− } by �Hel,ρ± . Since ρ

dep
± are qubit states, rank(�Hel,ρ± ) is 0, 1, or 2.

If rank(�Hel,ρ± ) = 0, then �Hel,ρ± = 0 and

Pdep
succ = q + Tr[�Hel,ρ± ((1 − q)ρdep

− − qρ
dep
+ )] = q.

If rank(�Hel,ρ± ) = 2, then �Hel,ρ± = I and

Pdep
succ = q + Tr[�Hel,ρ± ((1 − q)ρdep

− − qρ
dep
+ )] = 1 − q.

Finally, consider the case where rank(�Hel,ρ± ) = 1. The state discrimination problem between {ρdep
+ , ρ

dep
− } is physically

equivalent to a black box which outputs one of the following four separate discrimination problems:{
{|ψ+〉〈ψ+|, |ψ−〉〈ψ−|},

{
|ψ+〉〈ψ+|, I

2

}
,

{
I

2
, |ψ−〉〈ψ−|

}
,

{
I

2
,
I

2

}}
,

with probabilities

{p1, p2, p3, p4} � {(1 − γ+)(1 − γ−), (1 − γ+)γ−, γ+(1 − γ−), γ+γ−},
respectively. (This follows from viewing ρ

dep
± as corresponding to a quantum system prepared in state |ψ±〉〈ψ±| with probability

1 − γ± and prepared in state I
2 with probability γ±.)

We denote by Psucc(ρ+, ρ−,�) the probability of successfully discriminating between {ρ+, ρ−} given measurement {�, I −
�} where the prior is implicitly defined as q. Then we can upper-bound the success probability as

Pdep
succ � p1 max

|ψ+〉,|ψ−〉,�
Psucc(|ψ+〉〈ψ+|, |ψ−〉〈ψ−|, �) + p2 max

|ψ+〉,�
Psucc

(
|ψ+〉〈ψ+|, I

2
, �

)

+ p3 max
|ψ−〉,�

Psucc

(
I

2
, |ψ−〉〈ψ−|, �

)
+ p4 × 1

2

= p1Psucc(|0〉〈0|, |1〉〈1|, �Hel,{|0〉〈0|,|1〉〈1|}) + p2Psucc

(
|0〉〈0|, I

2
, �Hel,{|0〉〈0|,|1〉〈1|}

)
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+ p3Psucc

(
I

2
, |1〉〈1|, �Hel,{|0〉〈0|,|1〉〈1|}

)
+ p4

2

= Psucc

(
(1 − γ+)|0〉〈0| + γ+

2
I, (1 − γ−)|1〉〈1| + γ−

2
I, �Hel,{|0〉〈0|,|1〉〈1|}

)
.

Thus, the success probability for ρ
dep
± is upper bounded by the success probability when |ψ+〉 and |ψ−〉 are orthogonal (with

loss of generality we have set |ψ+〉 = |0〉 and |ψ−〉 = |1〉). Upon solving for Psucc(|0〉〈0|dep, |1〉〈1|dep, �Hel,{|0〉〈0|,|1〉〈1|}), it
immediately follows that

Pdep
succ �
(

1 − γ+
2

)
q +
(

1 − γ−
2

)
(1 − q) � 1 − γmin

2
.

APPENDIX E: PROOF OF LEMMA 5

We begin with a lemma demonstrating that, when the Helstrom measurement is trivial, any measurement is locally optimal.
Lemma 7. Let ρ

( j)
± and p be such that �(p, j) = I or �(p, j) = 0. Then

max
�

(
pTr[ρ ( j)

+ �]

Tr[�((1 − p)ρ ( j)
− + pρ ( j)

+ )]

)
<

1

2

or

min
�

(
pTr[ρ ( j)

+ �]

Tr[�((1 − p)ρ ( j)
− + pρ ( j)

+ )]

)
� 1

2
,

respectively. Namely, any local measurement is optimal given posterior-based decoding.
Proof. Define M � (1 − p)ρ− − pρ+ and let the resulting projector be �h(p, ρ±) = I. Then the eigenvalues of M satisfy

λ j > 0 ∀ j, and as M is Hermitian the eigenvectors {|v j〉} are orthogonal and form a basis. Any projector diagonal in this
basis may be defined �S ≡∑ j∈S |v j〉〈v j | for some set of indices S. It follows that Tr[M�s] =∑ j∈S λ j > 0, so Tr[�S pρ+] <

Tr[�S (1 − p)ρ−]. Then, the updated prior upon obtaining measurement corresponding to �S is

p′ = Tr[�Sρ+ p]

Tr[�S pρ+] + Tr[�S (1 − p)ρ−]
<

1

2
∀ S.

Now suppose the projector is diagonal in an arbitrary basis {|wk〉} s.t. |wk〉 =∑ j αk, j |v j〉 where {αk, j} form the entries of some
unitary operator. Then it is sufficient to show that Tr[M|wk〉〈wk|] > 0 for all k, since then Tr[M

∑
k∈S |wk〉〈wk|] > 0 for all S.

We observe

Tr[M|wk〉〈wk|] =
∑
j, j′

αk, jα
∗
k, j′λ jTr[|v j〉〈v j′ |] =

∑
j

|αk, j |2λ j > 0.

Similarly, for any basis {|wk〉}, then Tr[M|wk〉〈wk|] � 0 if �h(p, ρ±) = 0. �
Now we prove Lemma 4.
It is sufficient to show that for all j ∈ {0, 1, . . . , N} and for all pj ∈ (0, 1) we have

f+(p j ) � E[p j+1|ρ = ρ
( j)
+ ,�∗(p j, j)] > p j

and

f−(p j ) � E[p j+1|ρ = ρ
( j)
− ,�∗(p j, j)] < p j,

and that f±(p j ) is continuous with no fixed points other than p j = 0 or 1. For simplicity, we drop the superscript on ρ
( j)
± in the

following whenever the subsystem index is unambiguous. We denote the modified Helstrom measurement as � = �∗(p j, j),
such that by definition Tr[�ρ−] > Tr[�ρ+].

Let x � Tr[�ρ−] − Tr[�ρ+] = Tr[�⊥ρ+] − Tr[�⊥ρ−] s.t. x ∈ (0, 1]. Then, there exists y ∈ [ x
2 , 1 − x

2 ] such that the condi-
tional measurement probabilities may be represented as follows:

Tr[�⊥ρ±] = y ± x

2
, Tr[�ρ±] = 1 − y ∓ x

2
.

Finally, we calculate f+(p j ) as follows:

f+(p j ) = Tr[�ρ+]

(
p jTr[�ρ+]

Tr[�(p jρ+ + (1 − p j )ρ−)]

)
+ Tr[�⊥ρ+]

(
p jTr[�⊥ρ+]

Tr[�⊥(p jρ+ + (1 − p j )ρ−)]

)

= p j

( (
1 − y − x

2

)2
p j
(
1 − y − x

2

)+ (1 − p j )
(
1 − y + x

2

) +
(
y + x

2

)2
p j
(
y + x

2

)+ (1 − p j )
(
y − x

2

)
)

> p j,
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where the final line follows from solving symbolically for the range p j ∈ (0, 1), x ∈ (0, 1), y ∈ [ x
2 , 1 − x

2 ]. We then check for
any fixed points p∗

j = f+(p j ). This results in the condition p∗
j[−x2 + 2p∗

jx
2 − (p∗

jx)2] = 0 so the only fixed points are p∗
j = 0 or

1. Additionally, it is clear that f+(p j ) is continuous in p j .
A similar argument holds for the case ρ = ρ−. Thus, the probability of success converges to 1 under the MLG algorithm.

APPENDIX F: IMPLEMENTATION AND COMPLEXITY

We compute the functions RS and ÂS using dynamic programming (DP), which requires mapping the states
(q, aσ

[N−|S|], dσ
[N−|S|] ) ∈ [0, 1] × AN−|S| × DN−|S| to Cσ

N−|S|(q, aσ
[N−|S|], dσ

[N−|S|] ) ∈ [0, 1]. Moreover, these functions can be stored
for later use in problems with same states but different initial priors or if one needs to run MOODY on a larger system where the
current system is a subsystem of it.

Since the interval [0, 1] and action space A are not discrete, they are quantized to give a tractable implementation. The
computational complexity and memory requirements of DP are highly dependent on this quantization. In our implementation,
we again apply a quantized version of the above DP where the input p is quantized into Qp equi-spaced points over [0, 1] and the
measurement action space A is quantized into a size Qa set to make the minimization over A tractable. To store expected future
error functions {RS|S ⊆ [N]} and a set of best measurement action functions {AS|S ⊆ [N]}, the memory complexity is O(2N Qp).
Besides, each value is obtained from a minimization over S × A, so the total computation is of complexity O(2N QpNQa). The
number of DP functions AS and RS is 2N because the order of measurement matters in general. However, DP still represents a
speedup over the case of naive exhaustion for all possible orders, which has complexity N!.

If all the qubits are identical copies, then the ordering is immaterial, and the different subsets S with same size correspond to
the same case. Therefore, in this scenario the memory complexity is O(NQp) and the computation complexity is O(NQpQa).

Since there are only two possible states ρ+ and ρ−, we can also use log-likelihood ratios (LLR) to describe the probabilities.
This parametrization simplifies the computation of CSPs. For j ∈ [N], define

�σ
0 (q) � ln

(
q

1 − q

)
, (F1)

�σ
j

(
q, aσ

[ j], dσ
[ j]

)
� ln

(
Cσ

j

(
q, aσ

[ j], dσ
[ j]

)
1 − Cσ

j

(
q, aσ

[ j], dσ
[ j]

)
)

, (F2)

�̃σ ( j)(aσ ( j), dσ ( j) ) � ln

(
P (dσ ( j)|ρ+, aσ ( j) )

P (dσ ( j)|ρ−, aσ ( j) )

)
. (F3)

It is easy to check that

exp
[
�σ

j (q, aσ
[ j], dσ

[ j] )
] = Cσ

j (q, aσ
[ j], dσ

[ j] )

1 − Cσ
j

(
q, aσ

[ j], dσ
[ j]

)
= P (dσ ( j)|ρ+, aσ ( j) )Cσ

j−1

(
q, aσ

[ j−1], dσ
[ j−1]

)
P (dσ ( j)|ρ−, aσ ( j) )

[
1 − Cσ

j−1

(
q, aσ

[ j−1], dσ
[ j−1]

)]
= exp[�̃σ ( j)(aσ ( j), dσ ( j) )] exp

[
�σ

j−1

(
q, aσ

[ j−1], dσ
[ j−1]

)]
.

This yields the simplified recursive equation

�σ
j

(
q, aσ

[ j], dσ
[ j]

) = �̃σ ( j)(aσ ( j), dσ ( j) ) + �σ
j−1

(
q, aσ

[ j−1], dσ
[ j−1]

)
. (F4)

APPENDIX G: RESULTS FOR BEST AND WORST ORDERING: QUBIT CASE

We then perform experiments when ρ̂
( j)
± are all real qubit states. The set of measurements Aqubit is taken to be the standard

action space of real orthogonal projectors [11]

Aqubit �
{
{|φ〉〈φ|, |φ⊥〉〈φ⊥|} : φ ∈

[
0,

π

2

]}
, (G1)

where we quantize φ into Qφ = 128 equally spaced points. The experimental setup is as follows:
(1) Choose a set of depolarizing parameters Sdep = {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and number of trials

ntrial = 1000.
(2) Generate θ

(t, j)
± ∈ (0, 2π ) uniformly, where t ∈ [ntrial] denotes the trial index, and j = 1, 2, . . . , 7 denotes the subsystem

index.
(3) For each γ ∈ Sdep and N ∈ {3, 4, 5, 6, 7}, define the corresponding qubit quantum states:

ρ±(γ , t, N ) �
N⊗

j=1

(
(1 − γ )|θ (t, j)

± 〉〈θ (t, j)
± | + γ

2
I

)
. (G2)
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FIG. 3. Left-hand side depicts probabilities Ps,best (N = 3, γ ) and Ps,worst (N = 3, γ ) as a function of the depolarising parameter γ over
1000 trials. Although Ps,best (N = 3, γ ) 	= Ps,worst (N = 3, γ ), the relative difference is small. Right-hand side depicts difference in maximum
and minimum probability of success, Psucc,diff (N, γ ), as a function of the depolarizing parameter γ over 1000 trials for N = 3, 4, 5, 6, 7.

(4) For each ρ±(γ , t, N ) perform two separate optimizations corresponding to the best and worst ordering respectively, where
the corresponding future risk functions are

RS,best(p, {ρ±(γ , t, N )}) � min
(k,ak )∈S×A

∑
dk∈{+,−}

L(p, ak, dk )RS\{k}[P (p, ak, dk )], (G3)

RS,worst[p, {ρ±(γ , t, N )}] � max
k∈S

min
ak∈A

∑
dk∈{+,−}

L(p, ak, dk )RS\{k}[P (p, ak, dk )]. (G4)

(5) For γ ∈ Sdep and N ∈ {3, 4, 5, 6, 7}, given an order of “best” or “worst,” denote:

PS,order (N, γ ) � 1

ntrial

ntrial∑
t=1

Ps,order (ρ±(γ , t, N )), (G5)

where Ps,order (ρ±) indicates that we perform the MOODY algorithm with the specified ordering on states ρ±.
We plot Ps,order (N = 3, γ ) as a function of γ in Fig. 3(a) and we also compare the difference Psucc,diff (N, γ ) � Ps,best (N, γ ) −

Ps,worst (N, γ ) for N ∈ {3, 4, 5, 6, 7} in Fig. 3(b). From these results, we observe that the difference in probability of success with
respect to ordering is quite small and persists even when using the MOODY algorithm.

APPENDIX H: DETAILS OF QUTRIT ACTION SPACE QUANTIZATION

First, we note that it is sufficient to consider real quantum measurements, as Tr[ρ �] = Tr[ρ Re(�)] for any Hermitian
projector � and so the resulting statistics will be invariant upon taking only the real part of any measurement set. Subject
to the constraint that each subsystem may be measured only once, any ternary set of orthogonal projectors may be chosen
to have all elements rank 1 because any rank 2 or 3 element can be viewed as grouping the corresponding rank 1 projectors
postmeasurement.

Now we implement the quantization of such real-valued qutrit measurements using the following steps:
(1) We quantize the unit sphere by subdividing an icosahedron for T steps according to vector �r = [r1, . . . , rT ] such that at

the jth step we subdivide each segment by r j . Then according to the Euler characteristic of convex polyhedrons, the number of
vertices after all subdivisions are complete is given by 10

∏T
i=1 r2

i + 2, and we denote this set of vertices as Sub(�r ).
(2) For each point (x, y, z) in Sub([2, 2, 2]), convert to polar coordinates (φ, θ ) according to

x = sin (θ ) cos (φ), y = sin (θ ) sin (φ), z = cos (θ ).

(3) For each pair (φ, θ ), define the rotation matrix R(φ, θ ) as

R(φ, θ ) �

⎡
⎣− sin (φ) cos (φ) cos (θ ) cos (φ) sin (θ )

cos (φ) sin (φ) cos (θ ) sin (φ) sin (θ )
0 − sin (θ ) cos (θ )

⎤
⎦.
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FIG. 4. Left-hand side depicts probability of success for varying γ in the distinct subsystems scenario as a function of the number of
available systems, N . Results are average over 1000 trials. Right-hand side compares probability of success as a function of the number of
available systems, N , for depolarizing parameter γ = 0.3. Results are averaged over 1000 trials.

(4) Choose Q as the resolution on the equatorial plane, let ω ∈ { πq
2Q }Q−1

q=0 and define

�u1(φ, θ, ω) = R(φ, θ )

⎡
⎣cos (ω)

sin (ω)
0

⎤
⎦, �u2(φ, θ, ω) = R(φ, θ )

⎡
⎣− sin (ω)

cos (ω)
0

⎤
⎦, �u3(φ, θ, ω) = R(φ, θ )

⎡
⎣0

0
1

⎤
⎦.

APPENDIX I: FURTHER PROPERTIES OF THE LOCALLY GREEDY METHOD

We show the plateau remains in the order-optimized locally greedy algorithm by generalizing the experiment from identical
copies to the case where the subsystems are distinct. The primary change is that we now sample states parametrized by θ

(t, j)
± so

that each subsystem in both ρ+ and ρ− can have (potentially) distinct copies. Also, the vector of success probabilities is altered
accordingly.

(1) Choose a set of depolarizing parameters and number of trials. Again we set Sdep = {0.01, 0.05, 0.1, 0.3} and ntrial = 1000.
(2) Generate θ

(t, j)
± ∈ (0, 2π ) uniformly, where t ∈ [ntrial] denotes the trial index, and j = 1, 2, . . . , 12 denotes the subsystem

index.
(3) For each γ ∈ Sdep and N = 1, 2, . . . , 12, define the corresponding qubit quantum states

ρ±(γ , t, N ) �
N⊗

j=1

(
(1 − γ )

∣∣θ (t, j)
±
〉〈
θ

(t, j)
±
∣∣+ γ

2
I

)
. (I1)

(4) For all γ ∈ Sdep and all N = 1, 2, . . . , 12, denote

Psucc(N, γ ) = 1

ntrial

ntrial∑
t=1

Plg(ρ±(γ , t, N )), (I2)

where Plg(ρ±) indicates that we perform the locally greedy algorithm on states ρ±.
We plot the results of this experiment in Fig. 4(a). When the subsystems are not identical copies, we notice that the plateau

is much higher when compared with the case of identical copies. At first glance this appears to violate the bound obtained in
Corollary 4, since here the pair of states in each subsystem are pure states depolarized with the same parameter γ , as required
in the hypothesis of Corollary 4. However, the reason for the higher plateau is as follows. The algorithm orders the subsystems
in such a way that the credulity can be updated to be as close to 1 − γ

2 as possible (where we assume the states ρ± may be
relabeled at any step to ensure the credulity is always greater than 1

2 ). In the next round, it is still possible to obtain one more
nontrivial measurement, after which either the updated credulity exceeds 1 − γ

2 and all subsequent rounds are trivial, or the
credulity is lowered below the threshold and another measurement is permitted until the updated credulity again exceeds 1 − γ

2 .
This permitted “jump” in credulity due to the final measurement explains why the value appearing as the plateau in Fig. 4(a) can
be larger than 1 − γ

2 .
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The best “jump” beyond 1 − γ

2 is obtained when the states in that subsystem are an orthogonal pair of pure states subjected
to the depolarizing channel and a measurement result which increases the credulity is attained, as formalized in the following
lemma.

Lemma 8. Suppose that we are given one of two quantum states ρ+ =⊗N
j=1[(1 − γ )|θ j,+〉〈θ j,+| + γ

2 I] and ρ− =⊗N
j=1[(1 −

γ )|θ j,−〉〈θ j,−| + γ

2 I] where γ is a fixed depolarizing parameter. Then, an upper bound on the probability of success using the
locally greedy method is given by

Ps,LG

(
1

2
, ρ±

)
� Pbound(γ ) ≡

(
1 − γ

2

)2(
1 − γ

2

)2 + ( γ2 )2 .

Proof. We show that the probability of success is upper bounded by the maximal attainable credulity after N measurements,
and proceed by induction. For details, see Appendix J. �

To illustrate the predictive value of this bound, we list the observed numerical asymptotic values found when N = 12 for
nonidentical subsystems [Pobs(γ )] and the predicted upper bound for γ = 0.1, 0.3, 0.4, 0.5, respectively:

{(Pobs(0.1) = 0.9943, Pbound(0.1) = 0.9972), (Pobs(0.3) = 0.9549, Pbound(0.3) = 0.9698),

(Pobs(0.4) = 0.9198, Pbound(0.4) = 0.9412), (Pobs(0.5) = 0.8732, Pbound(0.5) = 0.9000)}.
Finally, we compare the two scenarios for the specific value of the depolarizing parameter γ = 0.3 in Fig. 4(b). This plot
shows the nontrivial advantage obtained from subsystems being distinct rather than copies of each other, which is the case most
considered in the literature. For the special case of γ = 0, we have shown in Theorem 2 that the order of subsystems does not
matter and that the simple locally greedy algorithm itself achieves the optimal performance obtained with the joint N-system
Helstrom measurement.

APPENDIX J: PROOF OF LEMMA 8

Given the sequence of measurement results d[N], the probability of success is max(pN , 1 − pN ) where pN = Cσ
N (q, aσ

[N], dσ
[N] )

[and where aσ ( j) = �( j, p j )]. We suppose that at any step we may swap the labels of the composite states to enforce
p j � 1

2 ∀ j. Then, the probability of success is upper bounded by the maximal attainable probability, namely Ps,LG( 1
2 , ρ±) �

maxdσ
[N]∈DN [Cσ

N ( 1
2 , dσ

[N] )].
We then show by induction that

p j �
(
1 − γ

2

)2
(
1 − γ

2

)2 + ( γ2 )2
∀ j ∈ {0, 1, . . . , N}. For the base case, j = 0 and the statement is trivially true as p0 = q = 1

2 . For the inductive step, we assume
that the statement holds for j ∈ {0, 1, . . . , N − 1} and show that it then also holds for j + 1. First, consider the case where the
updated prior at the jth step exceeds the critical value 1 − γ

2 � p j . Then, all future measurements are trivial and pk = p j for all
k � j. Thus, the inductive hypothesis again holds.

Next, consider the case where pj ∈ [ 1
2 , 1 − γ

2 ]. For simplicity, we define p j+1(p j, dσ
j+1) � Cσ

j+1(q, aσ
[ j+1], dσ

[ j+1]) with aσ ( j) =
�( j, p j ). If the Helstrom measurement �hel ≡ �( j + 1, p j ) is trivial, then p j = p j+1 and the inductive hypothesis holds. In the
case where �hel is nontrivial, the prior will increase when d j+1 = + and the new maximal credulity p∗

j+1 is defined as follows:

p∗
j+1 = max

(
p j+1
(
p j, dσ

j+1 = +), p j+1
(
p j, dσ

j+1 = −)) = p j+1
(
p j, dσ

j+1 = +)
= p jTr

[
(I − �h)

(
(1 − γ )|θ j,+〉〈θ j,+| + γ

2 I
)]

Tr
[
(I − �h)

(
p j (1 − γ )|θ j,+〉〈θ j,+| + (1 − p j )(1 − γ )|θ j,−〉〈θ j,−| + γ

2 I
)]

= (1 − γ )p jTr[(I − �h)|θ j,+〉〈θ j,+|] + p jγ

2

(1 − γ )Tr[(I − �h)(p j |θ j,+〉〈θ j,+| + (1 − p j )|θ j,−〉〈θ j,−|)] + γ

2

= (1 − γ )p jx+ + p jγ

2

(1 − γ )(p jx+ + (1 − p j )x−) + γ

2

,

for x± ≡ Tr[(I − �h)|θ j,±〉〈θ j,±|] ∈ [0, 1]. The third line follows from substituting into Bayes’ law and simplifying. In the
following, we derive an upper bound on p∗

j+1 and thus the success probability by optimizing over x+, x−, p j without placing any
restrictions on whether the optimal set {x∗

+, x∗
−, p∗

j} is actually physically realizable.

p∗
j+1 � max

x±∈[0,1]
max

p j∈[ γ

2 ,1− γ

2 ]

(
(1 − γ )p jx+ + p jγ

2

(1 − γ )[p jx+ + (1 − p j )x−] + γ

2

)
= max

x+∈[0,1]
max

p j∈[ γ

2 ,1− γ

2 ]

(
(1 − γ )p jx+ + p jγ

2

(1 − γ )p jx+ + γ

2

)

= max
p j∈[ γ

2 ,1− γ

2 ]

(
(1 − γ )p j + p jγ

2

(1 − γ )p j + γ

2

)
= (1 − γ )

(
1 − γ

2

)+ γ

2

(
1 − γ

2

)
(1 − γ )

(
1 − γ

2

)+ γ

2

=
(
1 − γ

2

)2(
1 − γ

2

)2 + ( γ2 )2 .
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Thus,

Ps,LG

(
1

2
, ρ±

)
� p∗

j+1 �
(
1 − γ

2

)2
(
1 − γ

2

)2 + ( γ2 )2 .

Finally, we note that the bound on p∗
j+1 is tight and is achieved when p j = 1 − γ

2 and ρ
( j)
± = (1 − γ )| ± π

4 〉〈±π
4 | + γ

2 I.
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