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The Gaussian process is a widely used model for regression problems in supervised machine learning.
However, predicting new inputs via a Gaussian process model becomes computationally inefficient when training
a large data set. This paper proposes a fast quantum algorithm for prediction based on the Gaussian process
regression. The proposed quantum algorithm consists of two subalgorithms: the first one aims to efficiently
prepare the squared exponential covariance matrices and covariance functions vector with annihilation and
creation operators; the other is to obtain predictive mean values and covariance values for new inputs. Evidence
is also shown that the proposed quantum Gaussian process regression algorithm can achieve quadratic speedup
over the classical counterpart.
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I. INTRODUCTION

Resulting from the intersection of a subfield of computer
science and application of statistics, machine learning is adap-
tive and able to learn from experience. That has attracted
more and more researchers from many fields. However, clas-
sic machine learning algorithms face incredible challenges in
computational performance when addressing the skyrocketing
amount of data with the rapid development of information
technology, now and future. Quantum computing uses the
fundamental principles of quantum mechanics (such as quan-
tum superposition and quantum entanglement) to implement
computing tasks and has been demonstrated to achieve signif-
icant computational speedup, solving certain problems [1–3].
For example, Shor’s quantum algorithm for large-number
factoring has an exponential acceleration over the classical
algorithm [4], posing a serious threat to the security of widely
used RSA-based cryptography systems. In recent years, quan-
tum computing has been applied to the field of machine
learning. A variety of efficient quantum machine learning
algorithms have been proposed, such as quantum cluster-
ing analysis [5,6], quantum neural networks [7,8], quantum
classification [9,10], quantum decision tree [11], quantum
association rules mining [12], and so on. The research of
quantum algorithms and the exploration of quantum mechan-
ical properties further augment the development of artificial
intelligence [13]. Therefore it is critical to develop efficient
quantum algorithms for implementing tasks in machine learn-
ing and data mining [14].

One of the most positive directions in machine learning
is the development of practical Bayesian approaches to solve
really challenging problems [15]. Among them, the Gaussian
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process regression (GPR) is a representative instance, which
was originally proposed by Williams and Rasmussen in 1995
[16]. The applications of GPR range from geophysics (also
known as Kriging), time series analysis, image processing,
and automatic control [17,18]. The objectives of predicting
the output of new input data �x∗ are computing the mean and
variance of the output, given a number of training input-output
data points. However, prediction by GPR is quite computa-
tionally expensive, especially when the size of the training
dataset is sufficiently large. Causally, the rapid development of
quantum computing leads to the exploration of quantum algo-
rithms to accelerate GPR. For example, Zhao et al. proposed
a quantum-assisted algorithm for GPR [19] which included
a framework for approximately estimating the quantities of
〈�y|(K + σnI )−1|�k∗〉 and 〈�k∗|(K + σnI )−1|�k∗〉, corresponding
to the estimates of mean and variance of the output of �x∗,
respectively, where �y is the training output vector, K is the
covariance functions between training input data points, σn

is a constant noise variance, I is the identity matrix, and �k∗
denotes the covariance functions between �x∗ and each training
input data point. The algorithm achieves at least polynomial
speedup over the classical GPR. Nevertheless, the speedup is
satisfied by the two assumptions that both creating |�k∗〉 and
simulating K + σnI can be done efficiently. The assumptions
do not naturally hold, because both tasks entail computing
covariance functions between input data points that are hard
to do classically when the training dataset is large.

In this paper we further investigate how quantum com-
puting can be utilized to accelerate GPR and present a fast
quantum algorithm for GPR without the above-mentioned two
assumptions required in Zhao’s algorithm [19]. Instead of
encoding a whole state vector (point) in the amplitudes of a
quantum state, which is commonly adopted in most quantum
machine learning algorithms, we encode each element of a
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state vector (point). Based on this data encoding scheme, we
show how to efficiently create the quantum state |�k∗〉, simulate
K + σnI , and finally estimate the mean predictor and variance
predictor of the output of �x∗. Our quantum algorithm is expo-
nentially faster than the classical GPR algorithm if K is well
conditioned.

The rest of this paper is organized as follows. The second
section reviews the classical GPR. The third section intro-
duces how classical data are encoded on a quantum computer.
Based on this data encoding, the fourth section gives a quan-
tum algorithm for GPR, including the creation of the quantum
state |�k∗〉, estimation of the mean and variance predictors, run-
time analysis, and error analysis. Discussion and conclusion
are given in the last section.

II. A REVIEW OF CLASSICAL GAUSSIAN
PROCESS REGRESSION

In GPR we are given a training dataset with M data points
(�xi, yi )M

i=1, where �xi = (xi1, xi2, ..., xiN )T ∈ RN is a column
vector of independent input variables and yi is the correspond-
ing scalar of a single output variable. The objective of GPR is
to train a linear function y = f (�x) + ε in the limited training
dataset D that can fit the relationship between �xi and yi, where
f (�x) is real value, y is desired value. and ε ∼ N(0, σ 2

M ) is
identically independently distributed Gaussian noise. Once
obtained, f can be used to predict the output y∗ of a new
input �x∗.

A GPR model is fully specified by a mean function m(�x)
and a covariance function (also known as a kernel function)
k(�x, �x′). In 2005, Rasmussen and Williams [20] pointed out
that these two functions can be obtained in terms of weight-
space view and function-space view, whose expressions are as
follows:

m(�x) = E [ f (�x)], (1)

k(�x, �x′) = E [[ f (�x) − m(�x)][ f (�x′) − m(�x′)]], (2)

where E denotes expectation value. Thus GPR can be written
as f (�x) ∼ GP(m(�x), k(�x, �x′)), with GP as a Gaussian process.
Generally, the classical GPR specifies the covariance function
as a squared exponential covariance function [20], which is
denoted as

cov[ f (�xp, �xq )] = k(�xp, �xq ) = exp
(− 1

2 |�xp − �xq|2
)
. (3)

Therefore the central goal of a GPR model is to predict the
mean value and the covariance value of this distribution,
also known as mean predictor f̄∗ and covariance predictor
V [ f∗]. The mean predictor and covariance predictor can be
re-expressed as

f̄∗ = �kT
∗
(
K + σ 2

MI
)−1�y, (4)

V [ f∗] = k(x∗, x∗) − �kT
∗
(
K + σ 2

MI
)−1�k∗, (5)

where �k∗ is a vector that represents the kernel function of a
test point �x∗ and all training points �x’s; K denotes an M × M
dimensional covariance matrix, holding results between M
training data; and k(�x∗, �x∗) is the covariance of test points
�x∗ with itself, which is a constant. Considering Eq. (4) as a

linear combination of M kernel functions, with each of them
focusing on training points, Eq. (4) can be written as

f̄∗ =
M∑

i=1

αik(�xi, �x∗), (6)

where �α = (α1, . . . , αM )T = (K + σ 2
MI )−1�y.

The following two steps are the implementation of Gaus-
sian process distribution in the classical calculation. First,
L := Cholesky(K + σ 2

MI ) are calculated, and −→α =LT \(L\�y).
Second, the mean predictor is computed by f̄∗ = �kT

∗ �α. Since
the calculation of the Cholesky factor is numerically stable,
the runtime is proportional to O(M3). The computation of
k(�x∗, �x∗) requires only constant time. For V [ f∗], let �v := L\�k∗,
and thus

V [ f∗] := k(�x∗, �x∗) − �vT �v, (7)

which can be computed with a number of basic arithmetics.
Therefore the total runtime is O(M3). Nevertheless, in the
current era of big data, the tremendous number of input points
results in huge time complexity. That is why a quantum GPR
is needed.

III. DATA ENCODING

In quantum machine learning, encoding a large number of
data in quantum states is not trivial. To encode data efficiently,
amplitude encoding is often used, that is, the data points (vec-
tors) are encoded in the amplitudes of quantum states. Two
primary classes, coherent and incoherent encoding, are widely
used for amplitude encoding. Inspired by a quantum radial
basis network [10], our quantum algorithm for GPR uses a
coherent one [21,22] to encode the training input data points
and any test input data points. The coherent version plays
a crucial role in quantum optics and mathematical physics.
They are defined in the Fock states {|0〉, |1〉, ...}, which is a
basis of the infinite-dimensional Hilbert space H. Let a, a† be
the annihilation operator and creation operator, respectively,
of the harmonic oscillator. Then we have

a|n〉 = √
n|n − 1〉, a†|n〉 = √

n + 1|n + 1〉. (8)

For any n � 1, it is easy to see that

|n〉 = (a†)n

√
n!

|0〉. (9)

Let r be a real number and its coherent state defined by

|ϕr〉 = e−r2 / 2
∞∑

k=0

rk

√
k!

|k〉, (10)

a unit eigenvector of corresponding eigenvalue r, that is,
a|ϕr〉 = r|ϕr〉. From Eqs. (8) and (9), we also have |ϕr〉 =
e−r2/2era† |0〉 = er(a†− a

2 )|0〉, and thus |ϕr〉 is obtained by a uni-
tary operator of dimension infinity.

As for the preparation of |ϕr〉 in a finite quantum circuit,
we can consider its Taylor approximation:

|ϕ̃r〉 ∝ e−r2 / 2
T −1∑
k=0

rk

√
k!

|k〉. (11)
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Thus the upper bound on the error square is

||ϕr〉 − |ϕ̃r〉|2 � r2T

T !
. (12)

By the Stirling formula, we can get T ! ≈ √
2πT ( T

e )T . Now,
keeping the error within δ, let us take Eq. (12) � δ2, that is,
T only needs to satisfy 2 log 1

δ
− 1

2 log 2π � (T + 1
2 ) log T −

2T log r − T . Thus it is easy to get the Taylor approximation
of |ϕr〉.

From the previous analysis, |ϕr〉 can be obtained by a
unitary operator applying to |0〉. An arbitrary one-qubit com-
putation can be implemented as a sequence of at most three
Rz and Ry gates. This is due to the ZYZ decomposition [23]:
given any 2 × 2 unitary matrix U , there exist angles φ,α,β,γ
satisfying the following equation:

U = eiφRz(α)Ry(β )Rz(γ ). (13)

The nomenclature Ry and Rz is motivated by a picture of one-
qubit states as points on the surface of a sphere of unit radius.

For any vector �xi = (xi1, xi2, . . . , xiN )T , we have a unitary
operation U�xi acting as

U�xi : |0 · · · 0〉 �→ |ϕ�xi〉 ≡ |ϕxi1〉 ⊗ |ϕxi2〉 ⊗ · · · ⊗ |ϕxiN 〉. (14)

So we can have an even larger unitary operation UX that
implements every U�xi for i = 0, 1, . . . , M − 1 in a controlled
fashion,

UX : |i〉|0 · · · 0〉 �→ |i〉|ϕ�xi〉, (15)

and create a superposition of the coherent states of all M
training input data points via

UX

(
M−1∑
i=0

|i〉|0 · · · 0〉
)

= |�〉 ≡
M−1∑
i=0

|i〉|ϕ�xi〉. (16)

According to the theorem 9 of Ref. [24], disentangling a
qubit of pointed that an arbitrary (n+1)-qubit state can be
converted into a separable (i.e., unentangled) state by a circuit.
So UX is the block-diagonal sum ⊕cRy(−θc)Rz(−ϕc), and UX

can be implemented by a multiplexed Rz gate followed by a
multiplexed Ry. Therefore there is an efficient quantum circuit
to prepare the coherent state |ϕ�xi〉 up to precision δ in time
O(log 1/Nδ) [24].

This encoding method has two advantages. First, we can
directly estimate the covariance function, i.e., the kernel value

e− ‖�xi−�x j ‖2

2 between any two input data points �xi and �x j by
estimating the inner product between |ϕ�xi〉 and |ϕ�x j 〉, which
can be achieved by a swap test or its variant [25,26]. Second,
a superposition |�〉 of the coherent states of all training input
data points can be created easily. Then it is not difficult to take
the partial traces on the second register of |�〉〈�| to generate
the density operator of the following covariance matrix:

ρ = Tr2|�〉〈�|

= 1

M

M−1∑
i, j=0

exp

(
−1

2
|�xi − �x j |2

)
|i〉〈 j|. (17)

FIG. 1. The quantum circuit of the kernel vector. Here the H
represents the Hadamard transform, U and U † denote preparation
for the coherent states of step 1.2 and the inverse process of step 1.7,
respectively, and R is the controlled rotation of step 1.6.

IV. QUANTUM ALGORITHM FOR GPR

Keep in mind that the objective is to estimate the mean and
variance of the output of a new input data point �x∗ according
to Eqs. (4) and (5). Our quantum algorithm first creates a
quantum state | �k∗〉 that encodes the normalized vector �k∗ on
the amplitudes and estimates the norm of �k∗, and then it uses
the state to approximately estimate the mean and the variance.

A. Creating the quantum state |�k∗〉
The covariance functions vector �k∗ can be mathematically

written as

�k∗ =
M−1∑
i=0

exp

(
−1

2
|�x∗ − �xi|2

)
|i〉

=
M−1∑
i=0

〈ϕ�xi |ϕ�x∗ 〉|i〉 ≡
M−1∑
i=0

si|i〉. (18)

Shao [10] pointed out that the kernel function vector can
be obtained by matrix-vector multiplications. But the time
complexity at a scale of �(M ) is very high, and its encoding
unitary operator is hard to construct. Here we propose an
alternative method to create |�k∗〉 and estimate the norm of
�k∗, as shown in the schematic quantum circuit in Fig. 1. The
following eight steps provide the process of our proposed
method:

Step 1.0 Initializing the quantum state

|0 · · · 0〉1|0 · · · 0〉2|0〉3|0 · · · 0〉4

with a sufficiently large number of qubits, where the sub-
script numbers denote different registers. Then performing
Hadamard operations on each qubit of register 1 to obtain the
state

M−1∑
i=0

|i〉1|0 · · · 0〉2|0〉3|0 · · · 0〉4, (19)

and marking the indices of all the M training data points.
Step 1.1 Applying a Hadamard operation on register 3 leads

to the state

1√
2M

M−1∑
i=0

|i〉1|0 · · · 0〉2(|0〉3 + |1〉3)|0 · · · 0〉4. (20)

Step 1.2 Preparing the superposition of coherent states of
training samples’ on the second register [same as Eq. (13)]
when the third register is |0〉 and preparing the coherent states
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of test samples on the second register when the third register is
|1〉, via the controlled UX and U �x∗ acting on the registers 1–3,
i.e.,

U ≡ UX ⊗ |0〉〈0| + I ⊗ U �x∗ ⊗ |1〉〈1|, (21)

which results in

1√
2M

M−1∑
i=0

|i〉1(|ϕ�xi〉2|0〉3 + |ϕ �x∗ 〉2|1〉3)|0 · · · 0〉4. (22)

Step 1.3 Applying the Hadamard transform on the third
register, we have

1

2
√

M

M−1∑
i=0

|i〉1[(|ϕ�xi〉2 + |ϕ �x∗ 〉2)|0〉3

+(|ϕ�xi〉2 − |ϕ �x∗ 〉2)|1〉3]|0 · · · 0〉4,

≡ 1√
M

M−1∑
i=0

|i〉1|φi〉23|0 · · · 0〉4. (23)

Step 1.4 Using the quantum amplitude estimation tech-
nique [27,28] to estimate the squared amplitudes of |0〉3 part
of |φi〉, we gain the following state:

1√
M

M−1∑
i=0

|i〉1|φi〉23|(1 + si )/2〉4. (24)

It is worth noting that the unitary operation from steps 1.1–
1.3, i.e., H3UH3, acts as follows:

|i〉1|0 · · · 0〉2|0〉3 �→ |i〉1|φi〉23. (25)

Plus the operation X3Z3X3 acting on the third register which
flips the phase of |0〉3 while keeping the phase of |1〉3 un-
changed in |φi〉, we derive the unitary operation

UG ≡ [H3UH3(I − |0 · · · 0〉23〈0 · · · 0|23)H3U
†H3]X3Z3X3.

(26)

Thus, according to quantum amplitude estimation, performing
a quantum phase estimation of UG on state (23) gives rise to
state (24).

Step 1.5 Subtracting 1/2 [29] in register 4 produces the
following state:

1√
M

M−1∑
i=0

|i〉1|φi〉23|si/2〉4. (27)

Step 1.6 Appending one qubit and rotating it from |0〉5 to

(
√

1 − s2
i
4 |0〉5 + si

2 |1〉5) controlled on | si
2 〉4, we obtain the state

1√
M

M−1∑
i=0

|i〉1|φi〉23|si/2〉4

⎛
⎝

√
1 − s2

i

4
|0〉5 + si

2
|1〉5

⎞
⎠. (28)

Step 1.7 Undoing step 1.4 and steps 1.1–1.3 makes
the registers 2–4 return to their initial states, i.e.,
|0 · · · 0〉2|0〉3|0 · · · 0〉4. Then, discarding registers 2–4, we

attain the state

1√
M

M−1∑
i=0

|i〉1

⎛
⎝

√
1 − s2

i

4
|0〉5 + si

2
|1〉5

⎞
⎠. (29)

Step 1.8 Measuring the fifth register to see |1〉5, once suc-
ceeded the final state of the first register approximates the
desirable state as follows:∑M−1

p=0 si|i〉1√∑M−1
p=0 s2

i

≡ |�k∗〉. (30)

The probability of success is Pk ≡
∑M−1

i=0 s2
i

4M , which means we

need O(1/Pk ) repetitions to get |�k∗〉 with a large probability.
It is notable that this can be improved by amplitude amplifi-
cation with only O(1/

√
Pk ) repetitions.

The aim of this section is to prepare kernel function vec-
tor |�k∗〉. The state |�〉 is acquired by first preparing all the
coherent states |ϕ �xi〉 and then generating their superposition
by the Fourier transform. Therefore the time complexity is
O( 1√

Pk
MN log 1/Nδ).

B. Estimating the mean predictor and variance predictor

There is an inverse process to observe the mean predictor
and covariance predictor. Thus it is easy to think of using the
HHL algorithm [30] as a subroutine to get the desired result.
First, the covariance matrix K is a real symmetric matrix,
namely, K is the Hermitian matrix, which can be written in
spectral decomposition form [31,32],

K =
M−1∑
j=0

λ j |�u j〉〈�u j |, (31)

where {λ j}M−1
j=0 are the eigenvalues of K , and {|�u j〉}M−1

j=0 are
the corresponding eigenvectors. Without loss of generality,
we assume λ j ∈ [ 1

κ
, 1] (κ is the conditional number of matrix

K). �k∗/‖�k∗‖ can be represented by the linear combination
of {|�u j〉}M−1

j=0 , that is, �k∗/‖�k∗‖ = ∑M−1
j=0 α j |�u j〉1. Similarly,

�y/‖�y‖ can also be denoted as {|�u j〉}M−1
j=0 , namely, �y/‖�y‖ =∑M−1

j=0 β j |�u j〉1. Therefore Eqs. (4) and (5) can be expressed
in the following forms:

f̄∗ =
M−1∑
j=0

α jβ j

λ j + σ 2
M

‖�k∗‖‖�y‖, (32)

V [ f∗] = k(x∗, x∗) −
M−1∑
j=0

α2
j

λ j+σ 2
M

‖�k∗‖2. (33)

Next, the following five quantum steps, B1–B5, demonstrate
the process of acquiring the values of Eqs. (26) and (27) as
described by the following quantum steps. A corresponding
schematic of computing is shown in Fig. 2.

Step B1. Preparing quantum state |�y〉, so that �y is
|�y〉= ∑M−1

j=0 β j |�u j〉, following the detailed procedures pro-
posed by Yu et al. [33].

Step B2. Preparing the quantum kernel function initial state
|�k∗〉1 = ∑M−1

j=0 α j |u j〉1 when given new test point �x∗.
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FIG. 2. The preparation circuit of the predictive mean value and
variance value. Here PE and PE † denote the phase estimation algo-
rithm and inverse phase estimation algorithm of steps B2 and B3,
respectively. The R′ is controlled rotation of step B3. SWAP is the
swap operation of step B4.

Step B3. Adding another register in the state |0...0〉2 to the
above state |�k∗〉1. Then applying the matrix exponentiation
technique of the quantum principal component analysis [34]
to |�k∗〉1 results in

|ϕ1〉1 =
R∑

r=1

|r�t〉〈r�t |e−iKr�t |�k∗〉〈�k∗|eiKr�t (34)

for some large R. According to Lloyd et al. [34], the quantum
phase estimation algorithm leads to

|ϕ2〉12 =
M−1∑
j=0

α j |u j〉1|λ j〉2. (35)

Step B4. Adding one qubit and rotating it from |0〉3 to√
1 − ( c

λ j+σ 2
M

)2|0〉3 + c
λ j+σ 2

M
|1〉3 controlled on |λ j〉2, where

c = O[maxλ j (
1

λ j+σ 2
M

)]−1 = O( 1
κ

) is a chosen constant so that

the value c
λ j+σ 2

M
is as close to 1 as possible while still being

less than 1. Yu et al. [33] pointed out that the maximum of
1

λ j+σ 2
M

as well as c depends on the actual choice of σM , but
c

λ j+σ 2
M

= �( 1
κ

) for all possible σM . Then we undo the phase
estimation algorithm and discard the second register to obtain
the state

|ϕ3〉13=
M−1∑
j=0

α j |�u j〉1

⎛
⎝

√
1 −

(
c

λ j + σ 2
M

)2

|0〉3+
c

λ j + σ 2
M

|1〉3

⎞
⎠.

(36)

Step B5. Measuring the last register to get |1〉, the final state
of the first register then approximates

|ϕ4〉1 =
∑M−1

j=0
cα j

λ j+σ 2
M
|�u j〉1√∑M−1

j=0

( cα j

λ j+σ 2
M

)2
. (37)

The success probability of getting |1〉 is∑M−1
j=0

c2α2
j

(α j+σ 2
M )2 = �( 1

κ2 ), which implies that O(κ2) repetitions
are enough to yield the desirable state with a high probability,
and that can be improved by amplitude amplification with
O(κ ) repetitions.

Given the kernel function vector |�k∗〉 of a new test point
�x∗, the value |ϕ4〉1 can be used to predict output f̄∗ by eval-
uating the inner product of |�k∗〉 and |ϕ4〉1 via swap test [35],

TABLE I. The time complexity of each step of the whole
algorithm.

Step of section Time complexity

Step B1 O(poly log M )
Step B2 O( 1√

Pk
MN log 1/Nδ)

Step B3 O(log Mτ−3)

Step B4 of Sec. IV O(
log( 1

δ′ ) log2( κ
δ′ )

log log( 1
δ′ )

+ log Mτ−3)

which employs the Hadamard transform on ancilla qubit |0〉.
Then, by executing swap operations on |�k∗〉 and |ϕ4〉1 when
the ancilla qubit is |1〉, followed by measuring the ancilla
qubit in the basis {|0〉, |1〉}, the probability of success to
get |1〉 is 1

2 + 1
2 |〈ϕ4 | �k∗〉|2. Therefore we can get a specific

value
∑M−1

j=0
cα2

j

λ j+σ 2
M

. Similarly, we perform the swap test on

|�y〉 and |ϕ4〉1, in which the probability of success to get |1〉 is
1
2 + 1

2 |〈ϕ4 | �y〉|2. Obviously, the probability is greater than 1
2 .

It seems that we need to measure a constant number of times
to get the desired result

∑M−1
j=0

cα jβ j

λ j+σ 2
M

with probability close to

1. Because ‖�k∗‖ and ‖�y‖ can be acquired efficiently, we can
get the mean value f̄∗ and variance value V [ f∗] efficiently.

In the above operations, we may encounter a problem that

the sign of the swap test result is ambiguous.
∑M−1

j=0
cα2

j

λ j+σ 2
M

is

always greater than zero, but
∑M−1

j=0
cα jβ j

λ j+σ 2
M

may be a negative
number. To trace the signs, the following method is applied:

When the initial state |0〉1|�k∗〉2+|1〉1|�y〉2√
2

is created, follow steps
B1–B4 to get state |ϕ4〉1 when the first register is |0〉 and do
nothing when the first register is |1〉, that is, the state of the
system equals |0〉1|ϕ4〉2+|1〉1|�y〉2√

2
, which then equals the swap test

on the first register with |0〉−|1〉√
2

. The probability of success

is Pr = 1
4+ 1

4 〈ϕ4 | �y〉, which means we are able to track the
signs.

C. Runtime analysis

Let us start by discussing the time complexity of the whole
algorithm. An overview of the time complexity of each step
is listed in Table I. A detailed analysis of each step of this
algorithm is depicted as follows.

The state |�y〉 can be generated in time O(poly log M ) with
the help of QRAM [36,37], so the time complexity of step B1
is O(poly log M ). In step B2, the time complexity of prepar-
ing |�k∗〉 is analyzed in Sec. A, that is, O( 1√

Pk
MN log 1/Nδ).

Then the density matrix exponentiation is performed in step
B3, which is a powerful tool to investigate the properties
of unknown density matrices. Lloyd et al. [34] pointed out
that the ability to use r copies of K to apply the unitary
operator e−iKt allows us to exponentiate nonsparse matrices
to accuracy τ = O(t2/r) and to construct the eigenvalues and
eigenvectors of matrix K in time complexity of O(log Mτ−3).
Here M is the size of the training set. Next, in step B3 we also

apply controlled rotation. The runtime is O(
log( 1

δ′ ) log2( κ

δ′ )

log log( 1
δ′ )

) (κ

is the conditional number of covariance matrix K), which is

012406-5
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relatively negligible compared to the time taken in step B2. In
step B4, the inverse phase estimation has the same time analy-
sis as the phase estimation in step B3. The final measurement
only accounts for a constant factor, so the runtime of these two
sections is negligible.

Therefore the total runtime of getting the
predictive mean value and covariance value is
O[κ ( 1√

Pk
MN log 1

Nδ
log Mτ−3 + poly log M )]. Certainly,

it is still difficult to implement QRAMwith current technology.
If QRAM is not used, the time complexity of that step will
increase to O(M ). But this does not affect the time complexity
of the whole algorithm. It is determined by the preparation of
the kernel vector |�k∗〉, the time complexity of which is much
larger than that of preparing |�y〉.

In general, dimension N is much smaller than sample num-
ber M. Our algorithm can achieve polynomial speedup against
the classical counterparts. When N, Pk, κ = O(poly log M ),
quadratic acceleration is achievable.

D. Error analysis

In addition to time complexity analysis, another important
criterion to measure the quality of a quantum algorithm is
error analysis of the algorithm. Therefore we briefly analyze
the error of the algorithm in this section.

In the proposed algorithm there are two steps that may
introduce errors. One is from the preparation of |ϕr〉 in a finite
quantum circuit, and the other is from the implementation of
the phase estimation algorithm.

For the former, |ϕr〉 is obtained by a unitary operator of
dimension infinity, which is impossible to implement. So we
can consider its Taylor approximation |ϕ̃r〉, it is prepared in
a finite quantum circuit. Thus there is an error between the
two states. The error is related to the dimension T , so we
choose a good T to ensure that the error within δ. And any
vector �xi = (xi1, xi2, . . . , xiN )T has N |ϕr〉, so that of |ϕ�xi〉 is
less than Nδ.

The latter error occurs in estimating λ j by O(1/t0), which
translates into a relative error of O(1/λ jt0) in λ−1

j [30]. If λ j �
1/κ , taking t0 = O(κ/ε) induces a final error of ε.

Above, we explained that this error generated by the prepa-
ration of |ϕr〉 can be minimized within a controllable range
by the dimension T . And the impact of the error generated
by the phase estimation is not very large [30]. Therefore the
error of this algorithm is acceptable, that is, it can ensure
that the whole training model can predict the new input data
well.

V. CONCLUSION

GPR makes sense in real-world applications, especially
when a problem involves extrapolating from large data sets.
However, classical algorithms cost too much when data sets
are large, thus quantum GPR algorithm is proposed. In our
GPR algorithm, we first propose a way to prepare the co-
variance matrix, which makes the algorithm distinct. This is
also an innovational contribution of this paper. In the ex-
isting papers on quantum GPR [19], the authors used the
given default covariance matrix. Second, a kernel vector is
obtained by annihilation operator and creation operator, and
the kernel function vector can be acquired by amplitude es-
timation without block encoding [38]. Finally, in order to
get the exact measurement values, we propose a sign trac-
ing algorithm. Our algorithm has a polynomial speedup or
is even, compared with the classical counterpart. We hope
that our algorithm, specifically, the key technologies used
in our algorithm, will inspire more efficient quantum ma-
chine learning algorithms for application in a wider range of
fields.
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