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Graph states are entangled resource states for universal measurement-based quantum computation. Although
matter qubits such as superconducting circuits and trapped ions are promising candidates to generate graph states,
it is technologically hard to entangle a large number of them due to several types of noise. Since they must be
sufficiently cooled to maintain their quantum properties, thermal noise is one of the major ones. In this paper,
we show that, for any temperature T , the fidelity 〈G|ρT |G〉 between an ideal graph state |G〉 at zero temperature
and a thermal graph state ρT , which is a graph state at temperature T , can be efficiently estimated by using only
one measurement setting. A remarkable property of our protocol is that it is passive, while existing protocols
are active, namely, they switch between at least two measurement settings. Since thermal noise is equivalent
to an independent phase-flip error, our estimation protocol also works for that error. By generalizing our
protocol to hypergraph states, we apply our protocol to the quantum-computational-supremacy demonstration
with instantaneous quantum polynomial time circuits. Our results should make the characterization of entangled
matter qubits extremely feasible under thermal noise.
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I. INTRODUCTION

Quantum computation is expected to outperform clas-
sical counterparts [1]. Driven by this expectation, several
models for achieving it have been proposed, such as the
quantum circuit model [2], adiabatic quantum computation
[3], measurement-based quantum computation (MBQC) [4],
and topological quantum computation [5]. MBQC is one of
promising universal quantum computing models due to its
wide application range, from secure cloud quantum comput-
ing [6,7] to quantum error correction [8]. In this model, the
quantum computation proceeds via adaptive single-qubit mea-
surements on an entangled resource state [e.g., graph states
(see Sec. II for its definition)]. Here, “adaptive” means that
each measurement basis can depend on all previous measure-
ment outcomes.

So far, several physical systems were proposed as can-
didates for realizing MBQC such as trapped ions [9] and
superconducting qubits [10]. However, at least with current
technology, it is hard to generate a large-scale graph state
by using them. An obstacle to its generation is the necessity
of cooling. To maintain their quantum properties, such as
superposition and entanglement, they must be cooled below
a few tens of millikelvins. If the cooling is not sufficient,
the graph state is affected by thermal noise and consequently
becomes a thermal graph state (see Sec. II for the definition).
Several effects of thermal noise on graph states are explored
in Ref. [11]. In particular, a critical temperature at which
the graph state becomes a quantum state with only classical
correlations is discussed in Ref. [12].
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As the size of MBQC increases, it becomes more impor-
tant to efficiently check whether a target graph state |G〉 is
precisely prepared, namely to efficiently estimate the fidelity
between |G〉 and an actually prepared state ρ ≡ E (|G〉〈G|)
that suffers from any noise E . This task is called the verifi-
cation of graph states. Although the fidelity can be estimated
by using quantum-state tomography [13–15] or direct fidelity
estimation [16], these protocols require an exponential num-
ber of copies of ρ. Therefore, several efficient verification
protocols tailored for graph states were proposed [17–24].
In brief, these protocols can be formalized as follows: first,
a quantum computer generates some copies of ρ and sends
each qubit one by one to a verifier. Then the verifier randomly
chooses a measurement basis and measures the received state
ρ in the basis. He/she repeats the same procedure for all
copies of ρ. Finally, by processing all measurement outcomes
with a classical computer, he/she outputs an estimated value
of (or a lower bound on) the fidelity. Note that, in most
cases, only (nonadaptive) single-qubit measurements and effi-
cient classical operations are allowed for the verifier because
multiqubit operations are technologically demanding. In this
paper, we also consider the same restriction on the veri-
fier to simplify the requirement for the verifier as much as
possible.

The above existing protocols are active, that is, the verifier
must switch between some kind of measurement settings. In
many practical scenarios, the switching of measurement set-
tings could be slow, and in some cases, it may be impossible
(e.g., see Ref. [25]). For example, it would be somewhat
demanding to change the measurement bases in the IBM
quantum cloud service. It is theoretically and experimentally
important to clarify how many measurement settings are re-
quired for the verification of graph states.
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If any n-qubit unitary operator U is allowed for the verifier,
the necessary number of measurement settings can be trivially
reduced to 1. This is because, by using the unitary operator U †

such that U |0n〉 = |G〉, the verifier can perform the measure-
ment {|G〉〈G|, I⊗n − |G〉〈G|}, where I is the two-dimensional
identity operator. However, as we mentioned above, we would
prefer not to allow the verifier to perform such multiqubit op-
erations. Furthermore, if the verifier can perform such U , then
he/she can generate the ideal graph state |G〉 by his/herself,
that is he/she can completely remove the thermal noise, which
is unrealistic. Therefore, we should consider the necessary
number of measurement settings under the assumption that the
verifier can perform only nonadaptive single-qubit projective
measurements. Unfortunately, under this assumption, at least
two measurement settings are required for the verification of
any bipartite pure entangled state that includes a subclass
of graph states [25]. Even if adaptive single-qubit projective
measurements are allowed for the verifier, at least two mea-
surement settings are still necessary [23].

In this paper, we circumvent the no-go result by assuming
that the noise E is thermal noise. More precisely, we propose
a passive verification protocol for thermal graph states that re-
quires only one measurement setting. Since the thermal noise
is a major obstacle hindering the generation of large-scale
graph states with matter qubits, our protocol is still sufficiently
practical under this assumption. Since the thermal noise can
be rephrased as an independent phase-flip error, our protocol
also works for MBQC with photonic graph states. Photons
are another promising candidate for qubits, and several ex-
periments were performed to generate photonic graph states
[26,27] and photonic thermal graph states [28]. Furthermore,
by generalizing our protocol to thermal hypergraph states that
are generalizations of thermal graph states (see Sec. II for
the definition), we apply our protocol to the demonstration of
quantum computational supremacy with instantaneous quan-
tum polynomial time (IQP) circuits [29]. The demonstration
of quantum computational supremacy is to generate a prob-
ability distribution that cannot be efficiently generated with
classical computers (under plausible complexity-theoretic as-
sumptions) [30]. Although its proof-of-principle experiments
were already performed by using random unitary circuits with
superconducting qubits [31,32] and a boson sampler with
squeezed states [33], an experiment with IQP circuits has
not yet been performed. Our protocol should facilitate the
realization of large-scale IQP circuits.

The rest of this paper is organized as follows. In Sec. II,
we review graph and hypergraph states and their thermal ana-
logues. In Sec. III, as a main result, we present our passive
verification protocol for thermal graph states and show that
it is optimal in a sense. In Sec. IV, we compare our protocol
with existing protocols. In Sec. V, we generalize our protocol
to thermal hypergraph states and apply it to the demonstra-
tion of quantum computational supremacy with IQP circuits.
Section VI concludes the paper with a brief discussion. In
Appendixes A and B, we provide a proof of Theorem 1.

II. THERMAL GRAPH AND HYPERGRAPH STATES

In this section, we formally define thermal graph and hy-
pergraph states. To this end, we first review graph [34] and

hypergraph states [35]. A graph G ≡ (V, E ) is a pair of the set
V of n vertices and the set E of edges. An n-qubit graph state
|G〉 corresponding to the graph G is defined as

|G〉 ≡
( ∏

(i, j)∈E

CZi, j

)
|+〉⊗n, (1)

where |+〉 ≡ (|0〉 + |1〉)/
√

2, and CZi, j is the controlled-Z
(CZ) gate applied on the ith and jth qubits. It is known that
Eq. (1) is a unique common eigenstate with eigenvalue +1 of
stabilizer operators {gi}n

i=1, where

gi ≡ Xi

( ∏
j: (i, j)∈E

Z j

)
(2)

for all 1 � i � n. Here, Xi and Zj are the Pauli X and
Z operators acting on the ith and jth qubits, respectively,
and the product is taken over all vertices j such that
(i, j) ∈ E .

Hypergraph states are defined by generalizing graphs to
hypergraphs. A hypergraph G̃ ≡ (V, Ẽ ) is a pair of the set V
of n vertices and the set Ẽ of hyperedges that can connect
more than two vertices, while edges can connect only two
vertices. Let Ẽ be the union of Ẽ2 and Ẽ3, which are sets
of hyperedges connecting two and three vertices, respectively
[36]. An n-qubit hypergraph state |G̃〉 corresponding to the
hypergraph G̃ is defined as

|G̃〉 ≡
⎛
⎝ ∏

(i, j,k)∈Ẽ3

CCZi, j,k

⎞
⎠

⎛
⎝ ∏

(i, j)∈Ẽ2

CZi, j

⎞
⎠|+〉⊗n, (3)

where CCZi, j,k is the controlled-controlled-Z (CCZ) gate ap-
plied on the ith, jth, and kth qubits. From Eq. (3), we notice
that graph states are special cases of hypergraph states. When
the set Ẽ3 is empty, the hypergraph state |G̃〉 becomes a graph
state. For the hypergraph state |G̃〉, we can define generalized
stabilizer operators {g̃i}n

i=1 as follows:

g̃i ≡ Xi

⎛
⎝ ∏

j: (i, j)∈Ẽ2

Zj

⎞
⎠

⎛
⎝ ∏

( j,k): (i, j,k)∈Ẽ3

CZ j,k

⎞
⎠. (4)

The equality g̃i|G̃〉 = |G̃〉 holds for any 1 � i � n, and no
other state can satisfy it for all i.

Let β ≡ 1/(kBT ) with the Boltzmann constant kB and tem-
perature T . For a Hamiltonian H,

ρT ≡ e−βH

Z , (5)

where Z ≡ Tr[e−βH] is the partition function, is called the
thermal state at temperature T . When

H = −
n∑

i=1

gi (6)

and T �= 0, we call ρT the thermal graph state, which is a
graph state at nonzero temperature. This is because when the
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temperature is zero, ρ0 = |G〉〈G|. An experiment was per-
formed toward the ground-state cooling for the Hamiltonians
that are sums of stabilizer operators [37]. In a similar way, we
call ρT the thermal hypergraph state when

H = −
n∑

i=1

g̃i (7)

and T �= 0. In this case, ρT becomes |G̃〉〈G̃| when T = 0.
These thermal states can also be represented as graph and

hypergraph states with an independent phase-flip error (i.e.,
a Pauli-Z error). Note that, in general, the replacement of
the thermal noise with a Pauli-Z error is not possible. By
restringing the ideal quantum states to graph and hypergraph
states, we make the replacement possible. Let E (p)

i (·) ≡ (1 −
p)(·) + pZi(·)Zi be the superoperator realizing the Z error on
the ith qubit with error probability p. From Ref. [38], when
H = −∑n

i=1 gi,

ρT =
(

n∏
i=1

E (pβ )
i

)
(|G〉〈G|), (8)

where pβ ≡ e−2β/(1 + e−2β ). For the thermal hypergraph
states, the same expression holds by replacing |G〉〈G| with
|G̃〉〈G̃| in Eq. (8). These expressions are useful in evaluating
our passive verification protocols.

III. PASSIVE VERIFICATION PROTOCOL

In this section, we propose our passive verification pro-
tocol for thermal graph states. Note that, since we assume
that the thermal graph states are generated due to thermal
noise, the temperature T (i.e., the value of β) is unknown for
the verifier. As a remarkable property, no switching between
measurement bases is required for the verifier in our protocol,
while previous verification protocols require it, namely they
are active. For simplicity, we assume that the size n of graph
states is 2k for a natural number k. Let S� ≡ ∏n

i=1 g�i
i with

� ≡ �1�2 . . . �n ∈ {0, 1}n. Our protocol runs as follows (see
also Fig. 1).

(1) A quantum computer generates N thermal graph states
ρ⊗N

T and sends them to the veirifier.
(2) The verifier measures S1k0k on each received state ρT .

Let oi ∈ {+1,−1} be the ith outcome for 1 � i � N .

FIG. 1. Schematic diagram of our passive verification protocol.
A quantum computer affected by thermal noise generates thermal
graph states ρ⊗N

T and sends each qubit one by one. The verifier just
measures S1k 0k on each received state ρT by using only single-qubit
Pauli measurements. No quantum memory is required for the verifier.

(a)

(b)

(c)

FIG. 2. Concrete examples of our protocol. Each circle and line
represent |+〉 and the CZ gate, respectively. X , Y , and Z represent
the Pauli X , Y , and Z measurements, respectively. The graph states
depicted on the left-hand side are the ideal states. (a) S10 = X ⊗ Z .
(b) S1100 = Y ⊗ Y ⊗ Z ⊗ Z . (c) S111 000 = −Y ⊗ X ⊗ Y ⊗ Z ⊗ Z ⊗
Z . The effect of the minus sign can be incorporated by a classical
postprocessing.

(3) The verifier outputs

Fest ≡
∑N

i=1 oi

N
(9)

as an estimated value of the fidelity.
The measurement of S1k0k in step 2 can be realized by

single-qubit Pauli measurements because S1k0k is a tensor
product of Pauli operators. Furthermore, by sequentially send-
ing qubits one by one in step 1, no quantum memory is
required for the verifier. To clarify these properties, we give
concrete examples of our protocol in Fig. 2.

For our protocol, the following theorem holds.
Theorem 1 Let 0 < ε, δ < 1, Fest be the value defined in

Eq. (9), and |G〉 and ρT be the n-qubit target graph state and
the n-qubit thermal graph state at unknown temperature T ,
respectively. When N = 	2/ε2 log (2/δ)
 and n is even and at
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(a) (b)

(c) (d)

(arb. units)(arb. units)

FIG. 3. Temperature dependence of our estimated value Fest and the value Fub obtained with the union bound for n = 50 and 100. The solid
black, dotted yellow, and dashed red lines represent the fidelity F ≡ 〈G|ρT |G〉, Fest , and Fub, respectively. In (a,b), the label of the horizontal
axis is KBT . In (c,d), it is converted to pβ . In (a,c) [(b,d)], fidelity is plotted in the case of n = 50 (100).

least 4, the estimated value Fest satisfies

|〈G|ρT |G〉 − Fest| � ne−4β

2(1 + e−2β )n
+ ε (10)

� 2

n
+ ε, (11)

with probability at least 1 − δ. Here, 	·
 is the ceiling func-
tion. Particularly, in the limit of large N , the inequality
〈G|ρT |G〉 � Fest holds with unit probability.
The proof is given in Appendix A. Theorem 1 implies that the
more the number n of qubits increases, the more the precision
of our protocol improves. In other words, our protocol is
efficient for any temperature T . Although Theorem 1 is shown
for only even n, our protocol can be applied when n is odd by
simply replacing the ideal state |G〉 with another graph state
|G〉|+〉. By adding |+〉, we can always make the number of
vertices even.

In step 2, we choose S1k0k among 2n kinds of S�. This
choice is optimal in the sense that it maximally improves
the dependence on T of the upper bound in Eq. (10). More
formally, we show the following theorem.

Theorem 2 Let wt(�) ≡ ∑n
i=1 �i be the Hamming weight

for any � ∈ {0, 1}n. Suppose that we replace S1k0k with any S�

in step 2. In the limit of large N , the upper bound in Eq. (10)
is

|(n − 2wt(�))e−2β + O(e−4β )|
(1 + e−2β )n

(12)

with unit probability for any fixed natural number n.

Proof. In the large limit of N , the values ε and δ become
zero, i.e., the estimated value Fest becomes Tr[ρT S�]. There-
fore, from Eqs. (A5) and (A6) in Appendix A, we immediately
obtain Eq. (12). �

Since Eq. (12) is asymptotically minimized when the term
of e−2β vanishes, Theorem 2 implies that our protocol is op-
timized when wt(�) = n/2 = k. Thus S1k0k is one of optimal
choices.

IV. COMPARISON WITH PREVIOUS PROTOCOLS

There exist several verification protocols for graph states.
For example, the protocol in Ref. [18] works for any type of
error even if it is a time-correlated one. However, it requires
all of S�, that is it needs 2n kinds of measurement settings
[39]. Although the necessary number of measurement settings
can be improved to n by using the union bound as shown
in Ref. [20], the obtained lower bound Fub on the fidelity
becomes loose. When the protocol is applied to the case of
thermal noise with unknown temperature T , the lower bound
is

Fub = 1 −
n∑

i=1

(
1 − Tr

[
ρT

(
I⊗n + gi

2

)])
(13)

= 1 − npβ (14)

in the limit of large N , where we used Eq. (A6) to derive the
second equality. Therefore, by increasing n, the lower bound
Fub becomes loose. In contrast, in the limit of large N , our
lower bound Fest becomes tight by increasing n [see Eq. (11)].
Figure 3 gives a comparison between Fest and Fub in the limit
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FIG. 4. A ten-qubit hypergraph state with Ẽ2 = ∅. For 1 � i �
10, the ith circle represents the ith qubit. The solid-line blue, dotted-
line orange, dashed-line green, and thin-solid-line red triangles
represent CCZ gates applied on {(4 j − 3, 4 j − 2, 4 j − 1)}2

j=1, {(4 j −
3, 4 j − 1, 4 j)}2

j=1, {(4 j − 1, 4 j, 4 j + 1)}2
j=1, and {(4 j − 1, 4 j +

1, 4 j + 2)}2
j=1, respectively.

of large N . It shows that our estimated value Fest is close to the
actual value F ≡ 〈G|ρT |G〉 even when the number n of qubits
and kBT (i.e., pβ) are large. On the other hand, Fub becomes
distinct from F when kBT is large (i.e., pβ is large).

The number of required measurement settings was further
improved by restricting the target states. In particular, only
two measurement settings are sufficient when the target state
is any bipartite graph state [17]. Recently, Li et al. generalized
this result to any bipartite pure entangled state and showed
that two settings cannot be improved to one [25]. They also
showed that any bipartite pure product state can be verified
with a single measurement setting if local projective measure-
ments are allowed for the verifier [25]. Our result implies that
a single measurement setting is sufficient even for graph states
if the type of noise is restricted. By assuming thermal noise
(i.e., the independent Z error), we circumvent the no-go result
in Ref. [25].

V. GENERALIZATIONS TO THERMAL HYPERGRAPH
STATES

In this section, we generalize our protocol to a re-
stricted class of n-qubit thermal hypergraph states that
become, at the temperature T = 0, the hypergraph states in
Eq. (3) such that Ẽ3 is the union of {(4 j − 3, 4 j − 2, 4 j −
1)}	(n+1)/4


j=1 , {(4 j − 3, 4 j − 1, 4 j)}	n/4

j=1 , {(4 j − 1, 4 j, 4 j +

1)}	(n−1)/4

j=1 , and {(4 j − 1, 4 j + 1, 4 j + 2)}	(n−2)/4


j=1 . Note that
Ẽ2 is arbitrary, and we assume that n is even. For clarity, we
depict such a hypergraph state with n = 10 and Ẽ2 = ∅ in
Fig. 4.

Let S̃� ≡ ∏n
i=1 g̃�i

i with � = �1�2 . . . �n ∈ {0, 1}n. In the
case of the hypergraph states mentioned above, by setting
� = 0101 . . . 01 = (01)n/2, we can obtain

S̃(01)n/2 =
∏

(i, j)∈Ẽ2

CZi, j

(
n/2∏
k=1

X2k

)
CZi, j . (15)

When i = 2k ( j = 2k), the equality CZi, jX2kCZi, j =
XiZ j (ZiXj ) holds. Otherwise, CZi, jX2kCZi, j = X2k . Therefore,
S̃(01)n/2 is a tensor product of n Pauli operators (up to ±1),
and just half of them are the Pauli X or Y . As a result, from
the argument in Appendix A, by replacing S1k0k with S̃(01)n/2

in step 2 of our protocol, we can also show that Theorem 1
holds for the thermal hypergraph states.

FIG. 5. A 20-qubit hypergraph state with four column qubits. For
1 � i � 20, the ith circle represents the ith qubit. The solid-line blue
triangles represent CCZ gates.

Hypergraph states in the above class have only two qubits
in the column direction while they can have any number of
qubits in the row direction (see Fig. 4). The above argument
can also be applied even if we increase the number of qubits
in the column direction to more than two. As an example,
let us consider the 20-qubit hypergraph state in Fig. 5. Since
S̃(01)10 = ∏10

i=1 X2i, we can show that theorem 1 holds for this
hypergraph state. Therefore, our verification protocol is ap-
plicable to hypergraph states from which we can obtain the
Union Jack states [40], which are universal resource states for
MBQC, under postselection.

Our verification protocol can be applied to the demonstra-
tion of quantum computational supremacy with IQP circuits
[29] under conjectures. An n-qubit IQP circuit is a quan-
tum circuit such that the initial state and measurements are
|+〉⊗n and X -basis measurements, respectively, and the ap-
plied quantum gate D is any diagonal unitary in the Z basis
[41]. For IQP circuits with D consisting of Z , CZ, and CCZ

gates, Bremner, Montanaro, and Shepherd showed that it is
hard to efficiently simulate classically any probability dis-
tribution {qz}z∈{0,1}n obtained from IQP circuits [29]. More
precisely, it is hard to generate {pz}z∈{0,1}n in classical poly-
nomial time such that

∑
z∈{0,1}n |qz − pz| � 1/192. Therefore,

the generation of a probability distribution {q′
z}z∈{0,1}n such

that
∑

z∈{0,1}n |qz − q′
z| � 1/192 is called the demonstration

of quantum computational supremacy. Since IQP circuits just
measure hypergraph states in the X basis when D consists of
Z , CZ, and CCZ gates, their result shows that if appropriate
hypergraph states can be prepared with sufficiently high fi-
delity, then quantum computational supremacy is successfully
demonstrated.

Their hardness proof is based on the anticoncentration
lemma and two plausible complexity-theoretic conjectures
(i.e., the average-case #P-hardness of the approximation of
output probabilities q0n for random D′s and infiniteness of
the polynomial hierarchy). The lemma implies that for any z,
when D is randomly chosen, the probability of qz being larger
than a certain value is at least a constant. It holds even if qubits
on which CCZ gates are applied are fixed as long as qubits
on which Z and CZ gates are applied are randomly chosen. In
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other words, hypergraph states with a fixed Ẽ3 are sufficient to
show the anticoncetration lemma. This is why our hypergraph
states mentioned above can be used to demonstrate quantum
computational supremacy under the assumption that the two
conjectures hold for our class of hypergraph states with the
fixed Ẽ3. A similar assumption was used in Ref. [42].

Although several certification protocols to check whether
the demonstration of quantum computational supremacy is
correctly achieved have been proposed for IQP circuits
[20,42–44], they are active; that is, some switching between
quantum operations is required for a certifier. In contrast, we
propose a passive certification protocol under the assumption
that the noise is thermal noise or an independent phase-flip
error. For simplicity, we set n � 4 × 105, ε = 10−6, and δ =
10−2 in Theorem 1. Our certified quantum computational
supremacy protocol proceeds as follows.

(1) An experimentalist runs a quantum computer to gen-
erate an n-qubit thermal hypergraph state ρT and measures
S̃(01)n/2 . He/she repeats the same procedure N (�1.06 × 1013)
times. Let oi ∈ {+1,−1} be the ith outcome for 1 � i � N .

(2) The experimentalist calculates

Fest =
∑N

i=1 oi

N
. (16)

(3) If Fest − 2/n � 0.999995, the experimentalist gener-
ates {q′

z}z∈{0,1}n by generating ρT s again and then measuring
them in the X basis. Otherwise, he/she declares that the pre-
cision of the quantum computer is not enough to demonstrate
quantum computational supremacy.

We show that when Fest − 2/n � 0.999995, the generated
probability distribution {q′

z}z∈{0,1}n satisfies
∑

z∈{0,1}n |qz −
q′

z| � 1/192 with probability of 0.99, that is the experi-
mentalist succeeds in demonstrating quantum computation
supremacy. Note that if the temperature is 0, the inequality
Fest − 2/n � 0.999995 can be satisfied with unit probability
because Fest = 1 and n � 4 × 105. From Ref. [2] and the
Fuchs-van de Graaf inequality [45],∑

z∈{0,1}n

|qz − q′
z| � |||G̃〉〈G̃| − ρT || (17)

� 2
√

1 − 〈G̃|ρT |G̃〉, (18)

where || · || is the trace norm. Therefore, from Theorem 1 with
ε = 10−6 and δ = 10−2, the required number N of samples is
at most 1.06 × 1013, and

∑
z∈{0,1}n

|qz − q′
z| � 2

√
1 + 10−6 −

(
Fest − 2

n

)
(19)

with probability at least 0.99. To satisfy that the right-hand
side of Eq. (19) is at most 1/192, it is sufficient to satisfy

Fest − 2

n
� 1 + 10−6 − 1

3842
(20)

= 0.999994 . . . . (21)

VI. CONCLUSION AND DISCUSSION

We proposed a passive verification protocol for thermal
graph and hypergraph states. As a remarkable property, our

verification protocol requires only one measurement setting.
This passiveness cannot be obtained when the noise is general,
even if any single-qubit projective measurements are allowed
for the verifier [23,25]. We circumvent their no-go result
by assuming thermal noise (or independent phase-flip error),
which is a major obstacle to the generation of large-scale
entangled states. Note that for Fock-basis photonic quantum
states, a passive verification protocol was already proposed
[46]. Particularly, under the two conjectures, our verifica-
tion protocol for thermal hypergraph states can be used to
demonstrate quantum computational supremacy in a certifi-
able manner. As another application, our verification protocol
can also be used as a quantum sensing protocol to estimate
unknown temperature T . This is because the fidelity 〈G|ρT |G〉
is uniquely determined by n and β [see Eq. (A5) and Figs. 3(a)
and 3(b)]. Note that in this application, the product state
|G〉 = |+〉⊗n is sufficient as an input.

It would be interesting to consider whether our protocol
can be generalized to other classes of quantum states such
as weighted graph states [47,48] and/or other types of errors
such as depolarizing noises and noises induced by the finite
lifetime of matter qubits. Recently, the authors of Ref. [49]
proposed a one-shot protocol to decide whether an error rate
is lower than a constant value a or larger than another constant
value b for any bounded-degree periodic graph states with
depolarizing noise. Their idea may be useful in generalizing
our passive verification protocol, but we leave that as a future
work.

For simplicity, we assumed that the verifier’s measure-
ments are perfect. However, independent phase-flip errors on
the measurement apparatuses can be allowed if the error prob-
abilities are the same for all apparatuses. Since measurement
errors affect the performance of our verification protocol, it
should be important to also take other measurement errors into
account. Although an active error-tolerant verification proto-
col has already been proposed [19], it is still open whether
it can be combined with our protocol to construct a passive
error-tolerant one.
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APPENDIX A: PROOF OF THEROEM 1

In this Appendix, we prove Theorem 1. First, we derive a
value to which the estimated value Fest in Eq. (9) converges.
Let m+ and m−(= N − m+) be the numbers of +1 and −1
outcomes, respectively. From Eq. (9),

Fest = (+1)
m+
N

+ (−1)
m−
N

. (A1)
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Therefore, it converges to Tr[ρT S1k0k ], and thus the Hoeffding
inequality [50] guarantees that when N = 	2/ε2 log (2/δ)
,
the inequality

|Tr[ρT S1k0k ] − Fest| � ε (A2)

holds with probability at least 1 − δ. By using the triangle
inequality and Eq. (A2),

|〈G|ρT |G〉 − Fest|
� |〈G|ρT |G〉 − Tr[ρT S1k0k ]| + |Tr[ρT S1k0k ] − Fest| (A3)

� |〈G|ρT |G〉 − Tr[ρT S1k0k ]| + ε, (A4)

with probability at least 1 − δ.
The remaining task is to upper bound |〈G|ρT |G〉 −

Tr[ρT S1k0k ]|. To this end, we calculate 〈G|ρT |G〉 and
Tr[ρT S1k0k ] in order. By substituting Eq. (8) for ρT , we obtain

〈G|ρT |G〉 = (1 − pβ )n = 1/(1 + e−2β )n. (A5)

This is because if at least one Z error occurs on the graph state
|G〉, it becomes orthogonal to the ideal state |G〉.

To calculate Tr[ρT S1k0k ], we derive a general expression
for Tr[ρT S�] with any � ∈ {0, 1}n. Recall that S� is a tensor
product of n Pauli operators, i.e., S� = (−1)s ⊗n

i=1 σi with
σi ∈ {X,Y, Z, I} and s ∈ {0, 1}. Here, Y is the Pauli Y oper-
ator. Let us call σi the ith operator in S�. From Eq. (2), we
notice that the ith operator in S� is X or Y if and only if �i = 1.
In other words, when �i = 0, the ith operator is Z or I . The
thermal noise can be considered as an independent phase-flip
error as shown in Eq. (8), and the phase-flip error is detected
by X and Y measurements. Since the m phase-flip errors occur
with probability (1 − pβ )n−m pm

β , using Eq. (8), we obtain a
general expression for Tr[ρT S�] as

Tr[ρT S�] =
n∑

m=0

C(m)(1 − pβ )n−m pm
β , (A6)

C(m) ≡
f (�,m)∑

j=w(�,m,n)

(−1) j

(
wt(�)

j

)(
n − wt(�)

m − j

)
, (A7)

where wt(�) ≡ ∑n
i=1 �i is the Hamming weight, f (�, m) ≡

min{wt(�), m}, and w(�, m, n) ≡ max{0, wt(�) + m − n}. We
assumed

(0
0

) = 1. C(m) is the summation of the outcomes of
the measurements of S� for the cases of m phase-flip errors.
The term

(wt(�)
j

)(n−wt(�)
m− j

)
is the number of patterns where j

phase-flip errors among m phase-flip errors occur on the wt(�)
qubits such that �i = 1, and the other m − j phase-flip errors
occur on the other [n − wt(�)] qubits such that �i = 0. The
factor (−1) j corresponds to the outcome of the measurement
of S� that is +1 (−1) if the number j of errors among the wt(�)
qubits is even (odd). To make our argument clearer, we give
the concrete derivation of Eq. (A6) for the ideal state CZ| + +〉
in Appendix B.

C(0) = 1 represents that the outcome of the measurement
of S� is always +1 when no error occurs. This is because |G〉
is stabilized by any S�. Note that since m = 0 does not imply
T = 0, it does not mean the ideal case. We here just claim
that when the error probability is pβ , no error occurs on all n
qubits with probability (1 − pβ )n.

We find that C(m) is equivalent to the coefficient
of the term xn−mym in the expansion of the polynomial

(x − y)wt(�)(x + y)n−wt(�). Therefore, substituting x = 1 − pβ

and y = pβ in (x − y)wt(�)(x + y)n−wt(�), we finally obtain

Tr[ρT S�]

= [(1 − pβ ) − pβ]wt(�)[(1 − pβ ) + pβ]n−wt(�) (A8)

= (1 − 2pβ )wt(�). (A9)

At zero temperature, i.e., the ideal case ρ0 = |G〉〈G|, using
pβ = 0, we obtain Tr[ρT S�] = 1 from Eq. (A9) as it should
be.

We confirm that Eqs. (A6), (A7), and (A9) include the
cases of wt(�) = n and wt(�) = 0. Setting wt(�) = n in them,
we obtain

Tr[ρT S�] =
n∑

m=0

(−1)m

(
n

m

)
(1 − pβ )n−m pm

β (A10)

= [(1 − pβ ) − pβ]n = (1 − 2pβ )n, (A11)

where we used the binomial theorem. This is the expected
result. Analogously, setting wt(�) = 0 in them, we obtain

Tr[ρT S�] =
n∑

m=0

(
n

m

)
(1 − pβ )n−m pm

β (A12)

= [(1 − pβ ) + pβ]n = 1. (A13)

This is consistent with the fact that the outcome of the mea-
surement of S0n = I⊗n is always unity.

From Eq. (A9), when n = 2k and � = 1k0k ,

Tr[ρT S1k0k ] = [(1 − pβ )2 − p2
β]k = (1 − e−4β )k

(1 + e−2β )n
. (A14)

If one expands the middle expression in Eq. (A14), one finds
that C(m) = 0 when m is odd. By using Eqs. (A5) and (A14),

|〈G|ρT |G〉 − Tr[ρT S1k0k ]| = 1 − (1 − e−4β )k

(1 + e−2β )n
(A15)

� 1 − (1 − ke−4β )

(1 + e−2β )n
(A16)

= ne−4β

2(1 + e−2β )n
(A17)

� 2

n
. (A18)

Finally, we combine Eqs. (A4), (A17), and (A18) and obtain
Eqs. (10) and (11).

In the limit of large N , the values ε and δ become zero, i.e.,
Fest = Tr[ρT S1k0k ]. Therefore, from Eqs. (A5) and (A14),

〈G|ρT |G〉 � Tr[ρT S1k0k ] = Fest. (A19)

APPENDIX B: DERIVATION OF EQ. (A6) FOR CZ| + +〉
In this Appendix, we derive the value of Tr[ρT S�] when the

ideal state is |G〉 = CZ| + +〉. From Eq. (8), the thermal graph
state ρT is

(1 − pβ )2|G〉〈G|
+ pβ (1 − pβ )(Z1|G〉〈G|Z1 + Z2|G〉〈G|Z2)

+ p2
βZ1Z2|G〉〈G|Z1Z2, (B1)
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where Zi is the Pauli Z operator on the ith qubit for i ∈ {1, 2}.
Regardless of the value of �, the ideal state |G〉〈G| satisfies
Tr[|G〉〈G|S�] = 1. Therefore,

Tr[(1 − pβ )2|G〉〈G|S�] = C(0)(1 − pβ )2, (B2)

which corresponds to the term of m = 0 in Eq. (A6).
Next, we consider the second and third terms in

Eq. (B1), which correspond to terms of m = 1 and m = 2
in Eq. (A6), respectively. The values of Tr[Z1|G〉〈G|Z1S�],
Tr[Z2|G〉〈G|Z2S�], and Tr[Z1Z2|G〉〈G|Z1Z2S�] depend on �.
For example, when wt(�) = 1,

Tr[(Z1|G〉〈G|Z1 + Z2|G〉〈G|Z2)S�] = 0, (B3)

Tr[Z1Z2|G〉〈G|Z1Z2S�] = −1. (B4)

Therefore,

Tr[pβ (1 − pβ )(Z1|G〉〈G|Z1 + Z2|G〉〈G|Z2)S�]

=
[

f (�,1)∑
j=w(�,1,2)

(−1) j

(
1

j

)(
1

1 − j

)]
(1 − pβ )pβ, (B5)

where w(�, 1, 2) = 0 and f (�, 1) = 1, and

Tr
[
p2

βZ1Z2|G〉〈G|Z1Z2S�

]
=

[
f (�,2)∑

j=w(�,2,2)

(−1) j

(
1

j

)(
1

2 − j

)]
p2

β, (B6)

where w(�, 2, 2) = f (�, 2) = 1. By combining Eqs. (B2),
(B5), and (B6), we actually obtain Eq. (A6). For the cases
of wt(�) = 0 and wt(�) = 2, a similar argument holds.
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