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We discuss a class of quantum speed limits (QSLs) based on unified quantum (α,μ)-entropy for nonunitary
physical processes. The bounds depend on both the Schatten speed and the smallest eigenvalue of the evolved
state and the two-parametric unified entropy. We specialize these results to quantum channels and non-Hermitian
evolutions. In the first case, the QSL depends on the Kraus operators related to the quantum channel, while in the
second case the speed limit is recast in terms of the non-Hermitian Hamiltonian. To illustrate these findings, we
consider a single-qubit state evolving under the (i) amplitude damping channel and (ii) the nonunitary dynamics
generated by a parity-time-reversal symmetric non-Hermitian Hamiltonian. The QSL is nonzero at earlier
times, while it becomes loose as the smallest eigenvalue of the evolved state approaches zero. Furthermore,
we investigate the interplay between unified entropies and speed limits for the reduced dynamics of quantum
many-body systems. The unified entropy is upper bounded by the quantum fluctuations of the Hamiltonian of the
system, while the QSL is nonzero when entanglement is created by the nonunitary evolution. Finally, we apply
these results to the XXZ model and verify that the QSL asymptotically decreases as the system size increases.
Our results find applications to nonequilibrium thermodynamics, quantum metrology, and equilibration of
many-body systems.
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I. INTRODUCTION

The processing of quantum information involves the ability
to successfully distinguish quantum states [1,2]. In recent
years, information science has established a modern language
to address this issue, thus contributing to the understand-
ing of quantum metrology [3–5], quantum computing [6,7],
quantum thermodynamics [8,9], and quantum communication
[10,11]. The idea is to introduce information-theoretic quan-
tifiers that capture the sensitivity of these states in response to
some phase encoding process or a certain quantum evolution
protocol [12,13]. Importantly, some of these quantifiers have a
clear geometric meaning in terms of distances, thus endowing
the space of quantum states with Riemannian metrics that are
contractive under dynamical maps [14–17].

As a matter of fact, von Neumann entropy is one of
the most remarkable information-theoretic quantifiers, and
finds applications ranging from quantum information science
[18–22] to condensed matter physics [23–25]. Its classical
analog, i.e., Shannon entropy [26], also plays a role in applied
sciences [27]. In turn, such quantities constitute particular
cases of a broader set of information measures given by the
Rényi [28] and Tsallis entropies [29], and have found appli-
cations as resource measures of coherence and entanglement
[30–33]. So far, several generalizations for these two en-
tropies have been proposed, e.g., Petz-Rényi relative entropy
[34–36], sandwiched Rényi relative entropy [37,38], and α-z-
relative Rényi entropy [39], some of them not fully compatible
with data processing inequality [40]. In particular, the Petz-
Rényi relative entropy has been applied in the study of phase

encoding protocols [41], and quantum speed limits [42] in
closed quantum systems, but the case of nonunitary dynamics
still remains as an issue.

The quantum unified entropy (UQE), also known as
unified-(α,μ) entropy, stands out as another important
information-theoretic quantifier [43]. In turn, UQE denotes
a two-parametric, continuous, and positive information mea-
sure, particularly recovering both the Rényi and Tsallis
entropies as limiting cases [44]. It is worth mentioning that
UQE encompasses a whole family of quantum entropies that
can be readily recovered by setting the parameters (α,μ). It
is noteworthy that UQEs finds applications ranging from wit-
nessing monogamy of entanglement in multipartite systems
[45–48] to characterizing quantum channels [49,50] and in
the study of complexity beyond scrambling [51]. Furthermore,
UQE stands as a particular case of the unified (α,μ)-relative
entropy [52].

Here we will address the interplay of unified quantum
entropies and quantum speed limits for nonunitary physical
processes. The idea is investigate the QSL under the viewpoint
of this versatile information-theoretic quantifier. We consider
the rate of change of UQE and derive a class of quantum
speed limits for general nonunitary evolutions. The bounds
depend on the smallest eigenvalue of the quantum state, also
being a function of the Schatten speed. We specialize these
results to the case of quantum channels and for non-Hermitian
systems. In particular, we set the single-qubit state and present
numerical simulations to support these theoretical predictions.
Moreover, for closed many-body quantum systems, we find
the QSL for the marginal states of the system is a function of
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UQE, and the variance of the Hamiltonian. Importantly, our
main contribution lies on the derivation of QSLs and bounds
on UQE for nonunitary dynamics.

The paper is organized as follows. In Sec. II we review
useful properties regarding UQEs. In Secs. III and IV we
address the connection between UQE and the quantum speed
limit for nonunitary dynamics. In Secs. IV A 1 and IV B we
specialize these results to the case of quantum channels and
dissipative systems described by non-Hermitian Hamiltoni-
ans, respectively. In Sec. V we focus on the QSL for the
reduced dynamics of multiparticle systems, and illustrate our
findings by means of the XXZ model. Finally, in Sec. VI we
summarize our conclusions.

II. UNIFIED QUANTUM ENTROPIES

In this section, we briefly review the main properties of
unified quantum entropies. Let us consider a quantum system
with finite-dimensional Hilbert space H, with d = dim H.
The space of quantum states S ⊂ H is a set of Hermitian,
positive semidefinite, trace-one, d × d matrices, i.e.,
S = {ρ ∈ H | ρ† = ρ, ρ � 0, Tr(ρ) = 1}. The quantum
unified (α,μ)-entropy (UQE) is defined as [43,44]

Eα,μ(ρ) := 1

(1 − α)μ
{[ fα (ρ)]μ − 1}, (1)

with

fα (ρ) = Tr(ρα ), (2)

where α ∈ (0, 1) ∪ (1,+∞) and μ ∈ (−∞, 0) ∪ (0,+∞).
Note that fα (ρ) in Eq. (2) plays a role of α-purity and denotes
a real-valued, nonnegative function for all α. Indeed, taking
the spectral decomposition ρ = ∑

j p j | j〉〈 j| in terms of the
basis of states {| j〉} j=1,...,d , with 0 � p j � 1 and

∑
j p j = 1,

we find that fα (ρ) = ∑
j pα

j � 0.
The unified entropy is nonnegative, Eα,μ(ρ) � 0,

and remains invariant under unitary transformations
on the input state, i.e., Eα,μ(V ρV †) = Eα,μ(ρ), with
VV † = V †V = I, for all α ∈ (0, 1) ∪ (1,+∞) and
μ �= 0. In addition, UQE satisfies the upper bound
Eα,μ(ρ) � [(1 − α)μ]−1 {[rank(ρ)](1−α)μ − 1}, for all α �= 1
and μ �= 0 [43]. Importantly, the latter bound reproduces the
inequality S(ρ) � ln [rank(ρ)] for the von Neumann entropy
in the limit α → 1 and μ �= 0, with S(ρ) = −Tr(ρ ln ρ) [53].

Furthermore, it has been verified that UQE satisfies
the properties: (i) concavity,

∑
l plEα,μ(ρl ) � Eα,μ(ρ) for

0 < α < 1 and 0 � μ � 1, where ρ = ∑
l plρl , with 0 �

pl � 1 and
∑

l pl = 1; (ii) subadditivity, Eα,μ(ρ1 ⊗ ρ2) �
Eα,μ(ρ1) + Eα,μ(ρ2) for 0 < α < 1 and μ < 0 (α � 1 and
μ � 0), where the inequality is reversed for α > 1 and μ < 0
(0 < α < 1 and μ > 0); (iii) Lipschitz continuity |Eα,μ(ρ1) −
Eα,μ(ρ2)| � (α(α − 1))−1‖ρ1 − ρ2‖1, where ‖ • ‖1 is the
trace distance; (iv) nondecreasing under projective measure-
ments, Eα,μ(ρ) � Eα,μ(�(ρ)), with �(ρ) = ∑

l MlρMl

for a given set {Ml} of measurement operators; and
(v) triangle inequality |Eα,μ(ρ1) − Eα,μ(ρ2)| � Eα,μ(ρ12) for
α > 1 and μ � 1/α, with the marginal states ρ1,2 =
Tr2,1(ρ12) [43,44,50].

Next, we comment on some particular cases of the uni-
fied entropy. On the one hand, the Tsallis entropy Hα (ρ) =

FIG. 1. Phase diagram for the function [ fα (ρ )]μ−1, with ρ ∈ S.
On the one hand, the α-purity satisfies the inequality fα (ρ ) � 1
for α ∈ [0, 1], and one finds [ fα (ρ )]μ−1 � 1 for 0 < μ < 1, while
[ fα (ρ )]μ−1 � 1 for μ > 1. On the other hand, the α-purity be-
haves as fα (ρ ) � 1 for α � 1, which implies that [ fα (ρ )]μ−1 � 1
for 0 < μ < 1, while we have that [ fα (ρ )]μ−1 � 1 for μ > 1.

Eα,1(ρ) = (1 − α)−1[ fα (ρ) − 1] is recovered for μ = 1, with
α > 0 and α �= 1. In particular, for α = 2 it reduces to the
linear entropy H2(ρ) = 1 − Tr(ρ2), a quantity measuring the
mixedness of a given quantum state [54]. On the other hand,
the Rényi entropy Rα (ρ) = Eα,0(ρ) = (1 − α)−1 ln[ fα (ρ)] is
recovered for μ = 0, with α > 0 and α �= 1. In particular,
α = 0 implies the max-entropy R0(ρ) = ln [rank(ρ)], while
the min-entropy R∞(ρ) = − ln ‖ρ‖∞ is obtained in the limit
α → ∞, where ‖ • ‖∞ is the infinity norm [55]. Moreover, the
case α = 2 sets the second-order Rényi entropy, also known
as collision entropy [37,56], which finds application in the
characterization of quantum information for Gaussian states
[57]. Finally, for α = 1, UQE recovers the von Neumann
entropy.

III. BOUNDING UQE

The aim of this section is to derive an upper bound on UQE
for a quantum state evolving under nonunitary dynamics. We
consider a quantum system initialized at the state ρ0 ∈ S
undergoing a time-dependent nonunitary evolution Et (•), with
t ∈ [0, τ ]. The evolved quantum state ρt = Et (ρ0) stands as a
nonsingular, full-rank density matrix. Unless otherwise stated,
from now on we will focus on the range 0 < α < 1 and
0 < μ < 1. For simplicity, we set h̄ = 1. The absolute value
of the time derivative of unified quantum entropy Eα,μ(ρt )
read as∣∣∣∣ d

dt
Eα,μ(ρt )

∣∣∣∣ = 1

|1 − α|
[

fα (ρt )

]μ−1∣∣∣∣ d

dt
fα (ρt )

∣∣∣∣. (3)

Figure 1 shows a depiction of the phase diagram for the
function [ fα (ρ)]μ−1 in the α − μ plane. We point out that, for
α ∈ (0, 1), the α-purity fulfills the lower bound fα (ρ) �
1, with ρ ∈ S . In this case, it follows that the condition
[ fα (ρ)]μ−1 � 1 is satisfied for μ ∈ (0, 1) [44]. Hence, apply-
ing such bound into Eq. (3) yields∣∣∣∣ d

dt
Eα,μ(ρt )

∣∣∣∣ � α

|1 − α|
∣∣∣∣ d

dt
fα (ρt )

∣∣∣∣. (4)
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In Appendix A we prove that, for ρt being a nonsingular
density matrix and α ∈ (0, 1), the absolute value of the time
derivative of α-purity satisfies the inequality∣∣∣∣ d

dt
fα (ρt )

∣∣∣∣ � [κmin(ρt ) + 1 − α][κmin(ρt )]
α−2

∥∥∥∥dρt

dt

∥∥∥∥
1

, (5)

where ‖Ô‖p := {Tr [(O†O)p/2]}1/p denotes the Schatten p-
norm, and κmin(ρt ) sets the smallest eigenvalue of the evolved
state ρt . It is worthwhile noting that the right-hand side of
Eq. (5) depends on the trace speed ‖dρt/dt‖1, also known as
Schatten speed [58]. Next, by combining Eqs. (4) and (5), one
gets that the rate of change of the UQE fulfills the upper bound∣∣∣∣ d

dt
Eα,μ(ρt )

∣∣∣∣ � hα[κmin(ρt )]

∥∥∥∥dρt

dt

∥∥∥∥
1

, (6)

where we define the auxiliary function

hα[x] := α

1 − α
(1 − α + x)xα−2. (7)

To obtain an upper bound on UQE for the general nonunitary
dynamics, we integrate Eq. (6) over the interval t ∈ [0, τ ] and
use the fact that |∫ dt g(t )| �

∫
dt |g(t )|, which implies that

|Eα,μ(ρτ ) − Eα,μ(ρ0)| �
∫ τ

0
dt hα[κmin(ρt )]

∥∥∥∥dρt

dt

∥∥∥∥
1

. (8)

It is noteworthy that Eq. (8) is the first main result of this
article. We see that the right-hand side of Eq. (8) depends
on both the trace speed and the smallest eigenvalue of the
evolved state. The Schatten norm ‖dρt/dt‖1 characterizes the
quantum speed that is induced by the general physical process.
In turn, such quantity can be explicitly evaluated by specifying
the nonunitary evolution ρt = Et (ρ0), thus being rewritten in
terms of the operators that generate the nonunitary dynamics.
We find that the weight function hα[κmin(ρt )] depends on the
smallest eigenvalue κmin(ρt ) of the evolved density matrix,
also being labeled by the parameter α that sets the UQE. We
note that the left-hand side of Eq. (8) signals how far the
initial and final states are by means of the absolute difference
of UQEs for both the states. In turn, such a quantity is up-
per bounded by average speed, i.e., the Schatten 1-norm of
the rate of change of the instantaneous state of the quantum
system. It is worth mentioning that the bound requires low
computational cost since its evaluation requires the smallest
eigenvalue of the evolved state. For example, this can be use-
ful in the study of UQE for higher dimensional systems, e.g.,
quantum many-body models, in which evaluating the full
spectrum of the density matrix can be a formidable compu-
tational task.

In order to investigate the tightness of the bound on UQE
in Eq. (8), we introduce the figure of merit as follows:

δα,μ(τ ) := 1 − |Eαμ(ρτ ) − Eα,μ(ρ0)|∫ τ

0 dt hα[κmin(ρt )]‖dρt/dt‖1

. (9)

Overall, the smaller the relative error in Eq. (9), the tighter
the bound on UQE in Eq. (8). For our purposes, through-
out the paper we will focus on the normalized relative error
δ̃α,μ(τ ), with x̃ := [x − min(x)]/[max(x) − min(x)], noting
that 0 � δ̃α,μ(τ ) � 1. In Secs. IV and V we will discuss in
detail the relevance of this quantity. We emphasize that the

tightness of the bound in Eq. (8) has a different meaning
from the geometric perspective discussed in Refs. [59–63], for
example. In those cases, given the evolution between initial
and final states, the bound on QSL is saturated when the
dynamical evolution coincides with the length of the geodesic
path that connects the two states. Here the tightness of Eq. (8)
is assigned by the relative error in Eq. (9), which in turn
quantifies the deviation of the absolute difference of UQEs
with respect to the average quantum speed. Therefore, the
bound saturates when the rate of change of the unified entropy
coincides with the product between the weight function and
quantum speed induced by the nonunitary dynamics. In the
following, starting from Eq. (8), we present a family of speed
limits for nonunitary processes that are related to the quantum
unified entropy.

IV. UQE AND QUANTUM SPEED LIMITS

How fast does a quantum system evolves under a given
nonunitary dynamics? In this section we derive a two-
parametric class of speed limits rooted on the UQE for
quantum states evolving nonunitarily. In essence, the QSL
denotes the minimum time of evolution for quantum states
undergoing a certain dynamics. For closed quantum sys-
tems, the QSL time for orthogonal states |ψ0〉 and |ψτ 〉 is
given by τQSL = max{h̄π/(2
E ), h̄π/(2〈ψ0|H |ψ0〉)}, where
(
E )2 = 〈ψ0|H2|ψ0〉 − 〈ψ0|H |ψ0〉2 is the variance of the
time-independent Hamiltonian of the system [64–66]. In this
regard, we point out that Ref. [63] presented a unified QSL
bound by means of the changing rate of phase of the quantum
system, which in turn is based on the transition speed of
states and the accumulation phase of the quantum system.
Noteworthy, QSLs have been addressed in different scenarios,
and find applications ranging from the dynamics of either
closed and open quantum systems [60,62,67–71], to quantum
many-body systems [72–80], also including the discussion of
quantum-classical limits [81–83], quantum thermodynamics
[42,74,84,85], and non-Hermitian systems [86,87]. Interest-
ingly, QSLs have been also applied to the study of the
dynamics of cosmological coherent states in the context of
loop quantum gravity [88]. We refer to Ref. [89] for a recent
topic review on quantum speed limits and its applications.

Here we put forward this discussion and address a family of
QSLs based on unified entropies. In detail, by considering the
UQE as a useful information-theoretic quantifier, we present a
lower bound on the time of evolution for nonunitary physical
processes. Starting from Eq. (8), the time required for an
arbitrary nonunitary evolution driving the quantum system
from ρ0 to ρτ is lower bounded as τ � τQSL

α,μ , with the QSL
time given by

τQSL
α,μ := |Eα,μ(ρτ ) − Eα,μ(ρ0)|

〈〈hα[κmin(ρt )] ‖dρt/dt‖1〉〉τ
, (10)

where 〈〈g(t )〉〉τ := 1
τ

∫ τ

0 dt g(t ) stands for the time average,
and 0 < α < 1 and 0 < μ < 1. We stress that Eq. (10) is
the second main result of the paper. The QSL in Eq. (10) is
a time-dependent function, which comes from the fact that
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we are distinguishing two arbitrary states ρ0 and ρτ . Indeed,
we note that the absolute value of the difference of UQEs
in Eq. (10) captures the distinguishability of initial and final
states, somehow assigning a geometric interpretation in terms
of a distance between these states. Note that UQE satisfies
the so-called Lipschitz continuity |Eα,μ(ρτ ) − Eα,μ(ρ0)| �
(α(α − 1))−1‖ρτ − ρ0‖1 [see Sec. II]. We see that the abso-
lute difference of UQEs is upper bounded by the trace distance
of initial and final states [12]. The absolute difference of
UQEs must be smaller than the trace distance, which in turn
attributes the notion of how far apart two neighboring states
are in the space of quantum states. Note that the absolute
difference of UQEs also signals the sensitivity of the figure of
merit respective to the dynamics generated by the nonunitary
evolution.

In addition, the QSL depends on the Schatten speed, which
in turn depicts the quantum speed induced by the dynamics
respective to changes in time over the interval t ∈ [0, τ ]. This
means that τQSL is related to the dynamics of the eigenstates
of the generators that govern the nonunitary evolution of
the system [89]. The QSL time is inversely proportional to
the average speed, given the weight function depending on
the smallest eigenvalue of the state. We point out that the
tightness of the QSL in Eq. (10) is related to the tightness
of the bound in Eq. (8). Hence, the relative error in Eq. (9)
stands as a useful figure of merit to infer the tightness of the
QSL bound presented in Eq. (10).

Next, we comment on the behavior of the QSL in Eq. (10)
in the limiting cases of Rényi and Tsallis entropies. On the one
hand, UQE reduces to the Rényi entropy for μ → 0, and one
gets τ

QSL
α,0 = |Rα (ρτ ) − Rα (ρ0)|/〈〈hα[κmin(ρt )] ‖dρt/dt‖1〉〉τ .

In turn, by taking the limiting case α → 1, the Rényi
entropy collapses into the von Neumann entropy, while
limα→1 hα[κmin(ρt )] → ∞ [see Eq. (7)], and one concludes
that limα→1 τ

QSL
α,0 ≈ 0. On the other hand, for μ → 1, UQE

reduces further to the Tsallis entropy, and the QSL becomes
τ

QSL
α,1 = |Hα (ρτ ) − Hα (ρ0)|/〈〈hα[κmin(ρt )] ‖dρt/dt‖1〉〉τ .

In the limit α → 1, Tsallis entropy also recovers the von
Neumann entropy, and we expect that limα→1τ

QSL
α,1 ≈ 0

approaches zero in the same way as in the previous case
since limα→1 hα[κmin(ρt )] → ∞. In both the aforementioned
limiting cases, one gets the lower bound τ � 0. This means
that, for μ → 0 (or μ → 1) and α → 1, these bounds become
insensitive to the nonunitary dynamic properties of the
quantum system, thus implying a trivial QSL.

In the following we will specialize the results in Eqs. (8),
(9), and (10) in view of two paradigmatic nonunitary evo-
lutions, thus specifying the Schatten speed for each case.
The first one is given by quantum channels, i.e., completely
positive dynamical maps. The second case addresses the
nonunitary dynamics of dissipative quantum systems that can
be described by effective non-Hermitian Hamiltonians. To
illustrate our findings, we investigate the dynamics of a single-
qubit state undergoing each of these evolutions.

A. Quantum channels

We shall begin considering the dynamical evolution gener-
ated by the completely positive and trace-preserving (CPTP)

quantum operation, Et (•) = ∑
� K� • K†

� , with {K�}�=1,...,q be-
ing the set of time-dependent Kraus operators fulfilling∑

� K†
� K� = I [12]. In this case, we obtain that the trace speed

is upper bounded as

∥∥∥∥dρt

dt

∥∥∥∥
1

� 2
∑

�

‖K�ρ0K̇†
� ‖1, (11)

where we have used the triangular inequality ‖∑� O�‖1 �∑
�‖O�‖1, and the unitary invariance of the Schatten norm

as ‖O†‖1 = ‖O‖1. Hence, Eq. (8) becomes

|Eα,μ(ρτ ) − Eα,μ(ρ0)|
� 2τ

∑
�

〈〈hα[κmin(ρt )] ‖K�ρ0K̇†
� ‖1〉〉τ , (12)

which in turn allows us to write the relative error

δα,μ(τ ) = 1 − |Eα,μ(ρτ ) − Eα,μ(ρ0)|
2

∑
�

∫ τ

0 dt hα[κmin(ρt )] ‖K�ρ0K̇†
� ‖1

. (13)

In addition, by substituting Eq. (11) into Eq. (10), one gets the
QSL time as follows:

τQSL
α,μ = |Eα,μ(ρτ ) − Eα,μ(ρ0)|

2
∑

�〈〈hα[κmin(ρt )] ‖K�ρ0K̇†
� ‖1〉〉τ

. (14)

It is noteworthy that Eq. (14) provides a lower bound on the
time of evolution between states ρ0 and ρτ for a system evolv-
ing under a CPTP map, as a function of the absolute value of
the UQE. The bound depends on the set of Kraus operators
that characterizes the evolution and the smallest eigenvalue of
the evolved state. In the following, we will discuss Eqs. (14)
and (13) focusing on a single-qubit state.

1. Amplitude damping channel

Here we consider a two-level system undergoing the
noisy evolution modeled by an amplitude damping chan-
nel, which is given by the following Kraus operators:
K0 = |0〉〈0| + e−γ t/2 |1〉〈1| and K1 = √

1 − e−γ t |0〉〈1|. Here
{|0〉, |1〉} stand for the computational basis states in the
complex two-dimensional vector space C2, while γ −1 de-
fines the characteristic time of the dissipative process [90].
The system is initialized at the single-qubit state ρ0 =
(1/2)(I + �r · �σ ), with I the 2 × 2 identity matrix, where
�r = {r sin θ cos φ, r sin θ sin φ, r cos θ} is the Bloch vector,
with r ∈ [0, 1], θ ∈ [0, π ] and φ ∈ [0, 2π [, while �σ =
{σx, σy, σz} is the vector of Pauli matrices. The evolved
state is given by ρt = ∑

�=1,2 K�ρ0K†
� , and its α-purity

reads as fα (ρt ) = (κmin(ρt ))α + (1 − κmin(ρt ))α , with the
smallest eigenvalue κmin(ρt ) = (1/2)(1 − √

1 − e−γ tξt ), and
the auxiliary function ξt = 1 − r2 + (1 − e−γ t )(1 − r cos θ )2.
In particular, for t = 0, α-purity reduces to fα (ρ0) =
2−α[(1 − r)α + (1 + r)α]. The QSL time respective to the
nonunitary evolution between states ρ0 and ρτ is given by
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FIG. 2. Density plot of QSL time τQSL
α,μ [see Eq. (15)] and the normalized relative error δ̃α,μ(τ ) [see Eq. (13)], as a function of the

dimensionless parameter γ τ , for a single-qubit state evolving under the amplitude damping channel. Here we choose the initial state
ρ0 = (1/2)(I + �r · �σ ) with {r, θ} = {1/2, π/4, π/4}.

τQSL
α,μ =

∣∣{κα
min(ρτ ) + [1 − κmin(ρτ )]α

}μ − 2−αμ[(1 − r)α + (1 + r)α]μ
∣∣

1
2γαμ 1

τ

∫ τ

0 dt e−γ t [1 − α + κmin(ρt )] κα−2
min (ρt )[1 − r cos θ +

√
(1 − r cos θ )2 + eγ t r2sin2θ]

. (15)

In Fig. 2 we show plots of the QSL time and the relative
error for the for the initial single-qubit state parametrized as
{r, θ, φ} = {1/2, π/4, π/4}. In Figs. 2(a) and 2(b) we show
the plots of the QSL in Eq. (15) for Rényi (μ = 0) and
Tsallis entropies (μ = 1), respectively. We see that, regardless
α ∈ (0, 1), both quantities τ

QSL
α,1 and τ

QSL
α,0 exhibit nonzero

values at earlier times and approach zero at later times of the
nonunitary dynamics. Overall, the two QSLs show slightly
different quantitative behaviors, but the same qualitative
features.

In Figs. 2(c) and 2(d), we plot the normalized relative error
δ̃α,μ(τ ) for the Rényi and Tsallis entropies, respectively [see
Eq. (13)]. We find that, for all 0 < α < 1, such a quantity ap-
proaches small values around 0 � γ τ � 3, while it becomes
close to the unit at later times of the dynamics. We see that
limτ→∞ δ̃α,μ(τ ) ≈ 1 for all α ∈ (0, 1), and the QSL τQSL

α,μ ≈ 0
approaches zero [see Figs. 2(a) and 2(b)], thus implying that
τ � 0 as time increases. This means that, the larger the time,
the looser is the QSL bound in Eq. (15). To see this, we first
remind that the amplitude damping channel shrinks the Bloch
sphere towards the north pole. In detail, for τ � γ −1, the
evolved state of the two-level system approaches the inco-
herent pure state |0〉〈0|, which in turn has a vanishing UQE

and a zero-valued smallest eigenvalue. In this case, we expect
the smallest eigenvalue of ρτ to exhibit asymptotic behav-
ior κmin(ρτ ) ≈ κmin(|0〉〈0|) ≈ 0 at later times, which implies
that the function hα[κmin(ρτ )] ≈ hα[κmin(|0〉〈0|)] will assume
larger values, for all α ∈ (0, 1) [see Eq. (7)]. In this case, one
arrives at the trivial bound τ � 0.

B. Non-Hermitian evolution

Dissipative systems whose dynamics can be modeled by
effective non-Hermitian Hamiltonians have triggered con-
siderable efforts in theoretical and experimental research
[91–99]. We note, for instance, that Refs. [62,63,67] have
addressed the study of the quantum speed limit for the
dynamics of quantum systems described by non-Hermitian
Hamiltonians. In the following, by using Eqs. (8), (9), and
(10), we investigate the interplay between UQE and QSL
for a quantum system undergoing the nonunitary evolution
Et (•) = e−it H̃ • e+it H̃†

that is generated by a general effec-
tive non-Hermitian Hamiltonian H̃ = H + i�, where H =
(1/2)(H̃ + H̃†) and � = (1/2i)(H̃ − H̃†) are Hermitian op-
erators. The normalized time-dependent quantum state ρt =
Et (ρ0)/Tr[Et (ρ0)] fulfills the equation of motion dρt/dt =
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−i[H, ρt ] + {�, ρt } − 2〈�〉t ρt , where 〈•〉t = Tr(•ρt ) stands
for the expectation value at time t � 0 [100–102]. In this case,
the Schatten speed is bounded from above as∥∥∥∥dρt

dt

∥∥∥∥
1

� 2(‖H‖∞ + ‖�‖1 + ‖�‖∞), (16)

where we have invoked the following set of inequalities:
‖A1 + A2‖1 � ‖A1‖1 + ‖A2‖1, ‖[A1, A2]‖1 � 2‖A1‖∞‖A2‖1,
‖A1A2‖1 � ‖A1‖1‖A2‖1, and |Tr(A1A2)| � ‖A1‖∞‖A2‖1

[55,103,104]. In addition, we have used the identity
‖ρt‖1 = 1, which comes from the fact that ρt ∈ S [see
Sec. II]. Therefore, by combining Eqs. (10) and (16), the QSL
time for the non-Hermitian dynamics thus yields

τQSL
α,μ = |Eα,μ(ρτ ) − Eα,μ(ρ0)|

2 〈〈hα (ρt )(‖H‖∞ + ‖�‖1 + ‖�‖∞)〉〉τ , (17)

with ρτ = Eτ (ρ0)/Tr[Eτ (ρ0)], and we introduce the relative
error

δα,μ(τ ) = 1 − |Eα,μ(ρτ ) − Eα,μ(ρ0)|
2

∫ τ

0 dt hα (ρt )(‖H‖∞ + ‖�‖1 + ‖�‖∞)
.

(18)
We see that, apart from the smallest eigenvalue of the evolved
state, the lower bound in Eq. (17) depends on operators H and
�, and the unified entropy of both the initial and final states
of the system. In particular, note that the QSL in Eq. (17)
vanishes in the Hermitian limit H̃ = H (� = 0), regardless
0 < α < 1 and 0 < μ < 1. This result comes from the fact
that UQE remains invariant when the system undergoes a fully
unitary dynamics, i.e., [Eα,μ(ρt )]�=0 = Eα,μ(e−itHρ0 eitH ) =
Eα,μ(ρ0) for all t ∈ [0, τ ], thus implying the trivial bound
τ � 0. Note that the result in Eq. (17) differs from the QSL
time discussed in Ref. [67], the latter depending on the rel-
ative purity of the initial and final states of the system and
being inversely proportional to the variance of the real and
imaginary parts of the non-Hermitian Hamiltonian. Further-
more, we shall mention that the bound in Ref. [62] stands
as a general result, which in turn exhibits a clear geometric
interpretation in terms of the geometric phase of the quantum
system, also being tighter than the Mandelstam-Tamm and
Margolus-Levitin bounds in some cases.

1. PT -symmetric non-Hermitian Hamiltonian

Here we specialize the results of Sec. IV B to the
parity-time-reversal (PT ) symmetric non-Hermitian
Hamiltonian H̃ = �σx + iησz, where � ∈ R plays the
role of a coupling strength, and η ∈ R denotes a dissipation
rate [105]. It is noteworthy that this system exhibits three
phases: (i) unbroken PT symmetry-preserving phase
(η/� < 1) with real eigenvalues ±

√
� 2 − η2; (ii) gapless,

critical phase, at the exceptional point η = � , where the
spectrum coalesces; (iii) PT symmetry-broken phase
(η/� > 1), in which the eigenvalues become purely
imaginary ±i

√
η2 − � 2. Recently, this system has been

experimentally realized in dissipative Floquet systems [106],
trapped ion setups [107], and with nuclear spins [108]. The
system is initialized at the state ρ0 = (1/2)(I + �r · �σ ), with
�r = {r sin θ cos φ, r sin θ sin φ, r cos θ}, �σ = {σx, σy, σz},
where r ∈ [0, 1], θ ∈ [0, π ] and φ ∈ [0, 2π [. In Appendix B,

we present details on the nonunitary dynamics of such
single-qubit state under the non-Hermitian Hamiltonian.

In Fig. 3 we plot the QSL time in Eq. (17) [see Figs. 3(a)–
(c)], and the relative error in Eq. (18) [see Figs. 3(d)–3(f)],
as a function of the dimensionless parameter �τ , for the
evolved state ρτ = e−iτ H̃ρ0 e+iτ H̃†

/Tr(e−iτ H̃ρ0 e+iτ H̃†
). Here

we address the case of the Rényi entropy (μ = 0) and note
that similar results hold for Tsallis entropy (μ = 1). Fig-
ures 3(a) and 3(d) show the QSL time and the relative error
for the unbroken PT symmetry-preserving phase η/� < 1,
with η = 0.5� . Figure 3(a) shows that, for α ∈ (0, 1), the
QSL time grows and exhibits nonzero values as �τ increases,
and smoothly approaches zero at later times. In Fig. 3(d)
we see that the relative error is small at earlier times, while
approaches the unity as time increases. We point out that the
smaller the relative error, the tighter is the lower bound on
UQE.

In Figs. 3(b) and 3(e) we plot the QSL time and the relative
error at the exceptional point η = � . For 0 < α < 1, one ver-
ifies that the QSL time increases and reaches nonzero values
for 0 � �τ � 1, while it becomes zero at later times. In turn,
the relative error indicates the bound in Eq. (17) becomes
loose at later times. Next, Figs. 3(c) and 3(f) show the QSL
time and the relative error for the case of PT symmetry-
broken phase η/� > 1, with η = 2� . In this case, for 0 <

α < 1, we find that the QSL is nonzero for 0 � �τ � 0.5
[see Fig 3(c)] and becomes loose for �τ � 0.5 as signaled
by the relative error in Fig 3(f). To summarize, note that the
QSL displays nonzero values in a region in the �τ–α plane
that decreases as the ratio η/� increases.

In the following, we comment on the behavior of the QSL
and the relative error. In Fig. 4 we plot the smallest eigenvalue
κmin(ρτ ) of the evolved state of the two-level system, as a
function of �τ . On the one hand, for η/� < 1 (PT un-
broken phase), κmin(ρτ ) is nonzero and periodically oscillates
as a function of �τ , and the QSL exhibit nontrivial results
[see Fig. 3(a)]. On the other hand, at the exceptional point
η/� = 1, we find that κmin(ρτ ) takes nonzero values at earlier
times, and suddenly vanishes for �τ � 2. This means that
the QSL time becomes loose at later times [see Fig. 3(b)],
which is witnessed by the relative error [see Fig. 3(e)]. Note
that this behavior persists in the PT symmetry-broken phase
with η/� > 1, with the smallest eigenvalue decaying faster as
the dissipative effect of the non-Hermitian dynamics becomes
more severe. In turn, we see that the QSL bound is suppressed
as time increases [see Fig. 3(c)].

V. UQE, QSL, AND MANY-BODY SYSTEMS

The unified entropy proved to be a useful quantity for
witnessing entanglement in multipartite systems [45–48].
Motivated by the discussion in Secs. III and IV, here we
investigate the interplay of quantum correlations and speed
limits in the nonunitary dynamics of subsystems of many-
body systems. We point out that Ref. [109] addressed the link
between QSL and geometric measure of entanglement for a
quantum system evolving unitarily. In addition, Ref. [72] pro-
vided a geometric lower bound on the QSL for driven ground
states of many-body control Hamiltonians. Recent works in-
clude the study of QSLs in many-body systems addressing the
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FIG. 3. Plot of the QSL time τ
QSL

α,0 [see Eq. (17)] and the relative error δ̃α,0(τ ) [see Eq. (13)], for the non-Hermitian two-level system
described by the Hamiltonian H̃ = �σx + iησz. The system is initialized at the single-qubit state ρ0 = (1/2)(I + �r · �σ ), with {r, θ, φ} =
{0.5, π/4, π/4}. Here we set the cases η/� = 0.5 [panels (a), (d)], η/� = 1 [panels (b), (e)], and η/� = 2 [panels (c), (f)].

Kibble-Zurek mechanism [75], orthogonality catastrophe
[77], and the dynamics of ultracold gases [78].

Let HA ⊗ HB be a finite-dimensional closed quantum sys-
tem that can be split into two subsystems, HA and HB, with
dimensions dA = dim HA and dB = dim HB, respectively. The
time-independent Hamiltonian of the whole system A + B
is given by H = HA ⊗ IB + IA ⊗ HB + HAB, where operators
HA and HB act on their respective subspaces HA and HB,
while HAB is the interacting term of the Hamiltonian. The
system A + B is initialized at the state ρ0, which can be
chosen either a pure or mixed state, and undergoes the global
unitary evolution Et (ρ0) = e−itHρ0 eitH . The marginal states

FIG. 4. Plot of the smallest eigenvalue κmin(ρτ ) as
a function of the dimensionless parameter �τ . Here
ρτ = e−iτ H̃ρ0 e+iτ H̃†

/Tr(e−iτ H̃ρ0 e+iτ H̃†
) is the evolved state

of the system, with H̃ = �σx + iησz being a two-level
non-Hermitian Hamiltonian. We set the initial single-qubit
state ρ0 = (1/2)(I + �r · �σ ), with {r, θ, φ} = {0.5, π/4, π/4}. Here
we plot the cases η/� = 0.5 (black dashed line), η/� = 1 (blue
dot dashed line), and η/� = 2 (red solid line).

are given by ρA,B
t = TrB,A(Et (ρ0)), with the time-dependent

reduced nonunitary dynamics

dρA,B
t

dt
= −i TrB,A{[H, Et (ρ0)]}. (19)

Without loss of generality, we will focus on the time-
dependent reduced state ρA

t , and investigate the dynamic
behavior of the family of entropies Eα,μ(ρA

t ) related to sub-
system A. In this case, applying the results discussed earlier in
Sec. III, the rate of change of UQE of ρA

t satisfies the upper
bound ∣∣∣∣ d

dt
Eα,μ(ρA

t )

∣∣∣∣ � hα (ρA
t )

∥∥∥∥dρA
t

dt

∥∥∥∥
1

, (20)

with the auxiliary function hα (•) defined in Eq. (7). We point
out that the bound on the time derivative of UQE in Eq. (20)
can be recast as∣∣∣∣ d

dt
Eα,μ(ρA

t )

∣∣∣∣ � 2 hα (ρA
t ) 
H, (21)

where we have used that the Schatten speed of the reduced
state ρA

t fulfills the following bounds:∥∥∥∥dρA
t

dt

∥∥∥∥
1

� ‖[H, ρ0]‖1 � 2
√

F (ρ0) � 2 
H, (22)

with F (ρ0) being the quantum Fisher information (QFI),
and (
H )2 = Tr(ρ0H2) − Tr(ρ0H )2 is the variance of H .
The proof of Eq. (22) is as follows. For a given opera-
tor O ⊂ HA ⊗ HB, it has been proved that ‖TrB(O)‖p �
d (p−1)/p

B ‖O‖p [110,111]. In particular, by choosing p = 1 and
O = −i[H, Et (ρ0)], one gets the upper bound ‖dρA

t /dt‖1 �
‖[H, ρ0]‖1, where we have applied Eq. (19) and used the
fact that the Schatten 1-norm is unitarily invariant, i.e.,
‖[H, Et (ρ0)]‖1 = ‖[H, ρ0]‖1. This result can also be re-
cast in terms of the QFI via the inequality ‖[H, ρ0]‖2

1 �
4F (ρ0) [58,112]. In addition, QFI satisfies the upper bound
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F (ρ0) � (
H )2 [113–115], with equality holding for initial
pure states. Finally, by bringing together these results, one
readily arrives at the chain of inequalities in Eq. (22).

Next, to obtain an upper bound on UQE of state ρA
t , we

integrate Eq. (21) over the interval t ∈ [0, τ ], which yields∣∣Eα,μ

(
ρA

τ

) − Eα,μ

(
ρA

0

)∣∣ � 2 τ
H
〈〈

hα

[
κmin

(
ρA

t

)]〉〉
τ
, (23)

where we have used that H is time-independent. It is note-
worthy that Eq. (23) provides a bound on UQE of initial
and final states in terms of the quantum fluctuations of the
Hamiltonian. In detail, Eq. (23) means that the entanglement
witnessed by UQE is upper bounded by the variance of the
time-independent Hamiltonian H . In addition, it is also related
to the time average of the smallest eigenvalue of the marginal
state ρA

t . Importantly, Eq. (23) implies the lower bound
τ � τQSL

α,μ , where we introduce the QSL time

τQSL
α,μ :=

∣∣Eα,μ

(
ρA

τ

) − Eα,μ

(
ρA

0

)∣∣
2 
H

〈〈
hα

[
κmin

(
ρA

t

)]〉〉
τ

. (24)

In order to discuss the tightness of Eqs. (23) and (24), it is
natural to define the relative error

δα,μ(τ ) = 1 −
∣∣Eα,μ

(
ρA

τ

) − Eα,μ

(
ρA

0

)∣∣
2 
H

∫ τ

0 dt hα

[
κmin

(
ρA

t

)] . (25)

We point out that Eq. (24) is the third main result of
the paper. Note that the QSL τQSL

α,μ is inversely proportional
to the variance of the Hamiltonian H and thus fits into the
Mandelstamm-Tamm class of QSLs. In addition, by means of
the unified entropy, Eq. (24) unveils the role of the correlations
into the time it takes to evolve ρA

0 to an entangled state ρA
t , for

all t ∈ [0, τ ]. We see that τQSL
α,μ > 0 if a nonzero amount of

entanglement is created in finite time during the evolution of
the two subregions of the quantum system. However, when
no correlation signature is captured by the figure of merit,
i.e., for Eα,μ(ρA

τ ) ≈ Eα,μ(ρA
0 ), the lower bound on the time of

evolution approaches zero τQSL
α,μ ≈ 0. In particular, for α → 1,

we find that Eq. (24) becomes zero, and in this case we
find that the von Neumann entanglement entropy is related
to a vanishing QSL. It is worth noting that, by means of the
quantum fidelity paradigm, Ref. [72] addresses the QSL for
driven ground states of many-body control Hamiltonians for
unitary evolutions. In contrast, by setting the unified quantum
entropy as a useful figure of merit, here we discuss the
nonunitary dynamics of marginal states of a given quantum
many-body system. Importantly, our approach takes in ac-
count general input states rather than those states belonging to
the ground state manifold of the many-body quantum system.

A. Example

In the following we illustrate our findings by focusing on
the spin-1/2 XXZ model with L sites and open boundary
conditions

H = J
L−1∑
j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + 
σ z

j σ
z
j+1

)
, (26)

where J is the exchange coupling constant, and 
 is the
anisotropy parameter. This model has an exact solution via the

Bethe ansatz, and its ground state exhibits three phases: a gap-
less Luttinger liquid phase for −1 < 
 � 1 and two gapped
phases with long-range order: a Néel phase for 
 > 1, and a
ferromagnetic phase for 
 � −1 [116,117]. Here we consider
the initial mixed state ρ0 = [(1 − p)/d]I + p|�〉〈�|, with the
Néel state |�〉 = |1, 0, 1, 0, . . . , 0, 1〉, where d = 2L and 0 �
p � 1, and {|0〉, |1〉} denote spin-up and -down states, respec-
tively. In this regard, one gets the variance (
H )2 = J2(L −
1){2(1 + p) + (1 − p)[1 + (L − 1)p]
2} for the XXZ model.
In the limit of larger system sizes, L → ∞, the variance will
scale with the size of the system.

In Fig. 5 we show plots of the QSL time in Eq. (24)
[see Figs. 5(a)–5(c)] and the relative error in Eq. (25) [see
Figs. 5(d)–5(f)] for the XXZ model with open boundary
conditions, respective to the Rényi entropy (μ = 0). The
results for the Tsallis entropy (μ = 1) are qualitatively sim-
ilar to the case discussed here. Here we choose J
 = 0.5,
the mixing parameter value p = 0.5 and set the system
sizes L = {2, 4, 6}, with LA = 1 and LB = {1, 3, 5}. Note that
the system A + B undergoes a unitary dynamics under the
time-independent XXZ Hamiltonian, with the subsystem A
standing as a two-level system evolving nonunitarily.

In Figs. 5(a) and 5(d) one verifies that both the QSL time
and the relative error are oscillating, time-dependent func-
tions, with the system size LA = 1 and LB = 1. Figure 5(a)
shows that, for 0 < α < 1, the QSL exhibits recurrences as a
function of time, also presenting regions in which the bound
suddenly vanishes. On the other hand, the relative error takes
small values around 0 � Jτ � 1, while approaches the unity
for Jτ � 1 as time increases. This means the QSL bound
becomes loose at later times of the dynamics of the two-level
subsystem.

Figures 5(b) and 5(e) show the QSL time and the relative
error for the system size LA = 1 and LB = 3. In Fig. 5(b)
we see that the QSL time exhibits nonperiodic oscillations,
also displaying some recurrences. Note that, for a fixed value
α ∈ (0, 1), the QSL exhibits a revival after suddenly ap-
proaching small values around 1 � Jτ � 1.6, also experienc-
ing fluctuations in its amplitude. In Fig. 5(e) one finds that
the relative error is small at earlier times, with 0 � Jτ � 1.
In particular, for Jτ � 1, one finds that δ̃α,0(τ ) ≈ 0 for all
α ∈ (0, 1), which means that both the bound on UQE in
Eq. (23), and the QSL in Eq. (24), become loose.

Next, Figs. 5(c) and 5(f) show the QSL time and the relative
error for the system size LA = 1 and LB = 5. Figure 5(c)
shows that, for all 0 < α < 1 and Jτ � 0, the QSL time
in Eq. (24) exhibits a nonperiodic behavior with decreasing
amplitudes as a function of time. In addition, for 0.8 � α � 1
and Jτ � 0, one finds the QSL smoothly vanishes as time
varies. This agrees with the fact that τ

QSL
α,0 ≈ 0 in Eq. (24) in

the limit α → 1 recovering the von Neumann entanglement
entropy. In Fig. 5(f) we find that the relative error approaches
unity for most of the time, but presents a small peak around
0 � Jτ � 0.5. This means that the bound on UQE is loose,
except at earlier times of the dynamics.

Finally, we include general comments on the QSL and
relative error for the XXZ model. The amplitude of both
quantities decreases as the system size increases. We find
that the QSL is inversely proportional to the variance of the
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FIG. 5. Plot of the QSL time τ
QSL

α,0 [see Eq. (24)] and the relative error δ̃α,0(τ ) [see Eq. (25)], for the XXZ model, with J
 = 0.5 [see
Eq. (26)]. The system is initialized at the state ρ0 = ((1 − p)/d )I + p|�〉〈�|, with d = 2L , where |�〉 = |1, 0, 1, 0, . . . , 0, 1〉 is the Néel
state, while |0〉 and |1〉 stand for the spin-up and -down state, respectively. Here we set the system sizes L = {2, 4, 6}, with open boundary
conditions, while LA = 1, and LB = {1, 3, 5}, also fixing the mixing parameter p = 0.5.

Hamiltonian, i.e., τQSL
α,μ ∼ ϑ (ρA

τ )/
H , where the func-
tion ϑ (ρA

τ ) = |Eα,μ(ρA
τ ) − Eα,μ(ρA

0 )|〈〈hα[κmin(ρA
t )]〉〉−1

τ de-
pends on the size LA of subsystem A, which can be taken small
(LA ∼ 1). For larger L, the variance will scale with the system
size, which means that the QSL time asymptotically decreases
as L grows [see Figs. 5(a)–5(c)]. This behavior should become
more evident in the limit of larger L. The relative error in
Figs. 5(d)–5(f) takes small values for Jτ � 1, thus signaling
that the QSL is loose at later times. We note that, the smaller
the relative error, the tighter the QSL in Eq. (24). It should
be noted that a similar conclusion have been reported in the
context of equilibration times of many-body systems, but with
a focus on the so-called relative purity as a distinguishability
measure of quantum states [84].

VI. CONCLUSIONS

In the present work, we have discussed speed limits based
on the unified quantum entropy for finite-dimensional quan-
tum systems undergoing arbitrary nonunitary evolutions. Our
main contribution lies on the derivation of a family of QSLs
related to the UQE for general nonunitary physical pro-
cesses. In turn, unified entropy denotes a two-parametric
information-theoretic quantifier that gives rise to a broad class
of entanglement witnesses [43,45–48]. We consider the rate of
change of UQE, and derive an upper bound on this quantity.
The bound depends on the smallest eigenvalue of the quantum
state, also being a function of the Schatten speed [see Eqs. (6)
and (8)]. It is noteworthy that the later quantity induces a
natural measure of the speed limit for the nonunitary evolution
of the quantum state.

We have further addressed the connection between the
quantum speed limit time and the unified quantum entropy.
In detail, we have derived a lower bound on the time of
evolution for nonunitary physical processes [see Eq. (10)].
We find that, apart from the UQE, the QSL depends on the

time average of the smallest eigenvalue of the evolved state,
and its Schatten speed. Importantly, this result puts forward
the discussion involving QSLs for nonunitary evolutions, and
provides a class of entropic quantum speed limits.

We have specialized these results to the case of CPTP
maps and for dissipative systems modeled by non-Hermitian
Hamiltonians. On the one hand, the QSL bound depends on
the set of Kraus operators related to the quantum channel [see
Eq. (14)]. On the other hand, for dissipative systems, the QSL
bound is recast in terms of the real and imaginary contribu-
tions of the non-Hermitian Hamiltonian [see Eq. (17)]. To
illustrate the usefulness of the bound, we consider a single-
qubit state evolving under the amplitude-damping channel
[see Sec. IV A 1], and the nonunitary dynamics dictated by
a parity-time-reversal symmetric non-Hermitian Hamiltonian
[see Sec. IV B 1]. The results suggest that the QSL time is tight
at earlier times of the dynamics, but becomes loose as time
increases and the smallest eigenvalue of the evolved state ap-
proaches zero. It is worth mentioning that the non-Hermitian
dynamics can also be recast in terms of the so-called metric
operator [118,119], a Hermitian and positive-definite matrix
that endows the Hilbert space with a nontrivial inner product.
This could motivate further studies investigating the connec-
tion between the quantum speed limit and the metric operator
in non-Hermitian systems.

For closed quantum many-body systems, we have derived
an upper bound on UQE respective to the nonunitary dy-
namics of some marginal state of the system [see Sec. V].
We find that the UQE is bounded from above by the quan-
tum fluctuations of the local multiparticle Hamiltonian [see
Eq. (23)]. The result applies to many-body systems in which
their subsystems are either weakly or strongly coupled. The
QSL time is nonzero if the local nonunitary evolution creates a
nonzero amount of entanglement in finite time [see Eq. (24)].
In addition, we find the QSL time is inversely proportional to
the variance of the Hamiltonian of the system and thus fits in
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the Mandelstam-Tamm class of QSLs. We have discussed the
QSL time for the integrable XXZ model, thus verifying that
the bound remains tight at earlier times, but asymptotically
decreases as we increase the system size [see Sec. V A].

As a final remark, one can generalize the present discus-
sion in terms of the unified (α,μ)-relative entropy [52], thus
obtaining tighter QSLs, and this is an issue that we hope
to address in further investigations. Furthermore, given the
link between speed limit and geometric measure of entan-
glement for unitary evolutions [109], one could investigate
the trade-off among QSLs, UQE, and geometric measures of
entanglement for quantum systems undergoing general phys-
ical processes. Finally, the results in this paper could find
applications in the subjects of equilibration of many-body sys-
tems [84,120–123], noisy quantum metrology [124,125], and
the study of nonequilibrium thermodynamics of dissipative
systems [126,127].
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APPENDIX A: BOUNDING α-PURITY

In this Appendix, we provide details in the derivation
of Eq. (5). Let ρt be a full rank, invertible density ma-
trix, thus satisfying the following properties: (i) ρ

†
t = ρt ,

(ii) ρt � 0, (iii) Tr(ρt ) = 1, and (iv) 0 < Tr(ρ2
t ) < 1, for

all t � 0. In this case, by means of contour integration, it
has been proved that the following integral representation
ρα

t = π−1 sin(πα)
∫ ∞

0 du uα−1 (ρt + u I)−1ρt is valid for for
all 0 < α < 1, where I denotes the identity matrix [55,128].
Using this result, the α-purity fα (ρt ) = Tr(ρα

t ) can recast as
follows:

fα (ρt ) = sin(πα)

π

∫ ∞

0

du

u1−α
Tr[(ρt + u I)−1ρt ]. (A1)

Starting from Eq. (A1), we argue that the absolute value of the
time derivative of the α-purity satisfies the upper bound∣∣∣∣ d

dt
fα (ρt )

∣∣∣∣ � sin(πα)

π

{∫ ∞

0

du

u1−α

∣∣∣∣Tr

[
(ρt + u I)−1 dρt

dt

]∣∣∣∣
+

∫ ∞

0

du

u1−α

∣∣∣∣Tr

[
(ρt + u I)−1ρt (ρt

+ u I)−1 dρt

dt

]∣∣∣∣
}
, (A2)

where we have applied the triangle inequalities |A1 + A2| �
|A1| + |A2| and | ∫ du g(u)| �

∫
du|g(u)| and used the identity

d�t/dt = �−1
t (dρt/dt ) �−1

t , with �t = ρt + u I. By using the
relation ρt ρ−1

t = ρ−1
t ρt , which holds for any invertible den-

sity matrix, for all t � 0, we obtain

ρt (ρt + u I)−1 = [ρ−1
t (ρt + u I)]−1

= (ρt + u I)−1ρt . (A3)

In this regard, substituting Eq. (A3) into Eq. (A2), one readily
gets∣∣∣∣ d

dt
fα (ρt )

∣∣∣∣ � sin(πα)

π

{∫ ∞

0

du

u1−α

∣∣∣∣Tr

[
(ρt + u I)−1 dρt

dt

]∣∣∣∣
+

∫ ∞

0

du

u1−α

∣∣∣∣Tr

[
(ρt + u I)−1(ρt

+ u I)−1ρt
dρt

dt

]∣∣∣∣
}
. (A4)

In general, given the Schatten p-norm ‖Ô‖p :=
(Tr [(O†O)p/2])1/p, the following matrix inequalities hold:
|Tr(O1O2)| � ‖O1‖∞‖O2‖1 and |Tr(O1O2O3O4)| �
‖O1‖∞‖O2‖∞‖O3‖1‖O4‖1. Hence, applying these
inequalities into the right-hand side of Eq. (A4) yields∣∣∣∣ d

dt
fα (ρt )

∣∣∣∣ � sin(πα)

π

[∫ ∞

0

du

u1−α
‖(ρt + u I)−1‖∞

+
∫ ∞

0

du

u1−α
‖(ρt + u I)−1‖2

∞

]∥∥∥∥dρt

dt

∥∥∥∥
1

, (A5)

where we have also used the identity ‖ρt‖1 = 1, which
follows from properties (i)–(iii). Next, by using that
‖(ρt + u I)−1‖∞ = (κmin(ρt ) + u)−1, where κmin(ρt ) sets the
minimum eigenvalue of the density matrix ρt , we see that
Eq. (A5) becomes∣∣∣∣ d

dt
fα (ρt )

∣∣∣∣ � sin(πα)

π

[∫ ∞

0
du

uα−1

κmin(ρt ) + u

+
∫ ∞

0
du

uα−1

(κmin(ρt ) + u)2

]∥∥∥∥dρt

dt

∥∥∥∥
1

. (A6)

Finally, by evaluating the integrals in Eq. (A6), we obtain the
upper bound as follows:∣∣∣∣ d

dt
fα (ρt )

∣∣∣∣ � [κmin(ρt ) + 1 − α][κmin(ρt )]
α−2

∥∥∥∥dρt

dt

∥∥∥∥
1

.

(A7)

Importantly, we stress that Eq. (A7) applies for ρt being a
nonsingular, invertible density matrix, for all t � 0.

APPENDIX B: SINGLE-QUBIT NON-HERMITIAN
DYNAMICS

In this Appendix we present details on the nonunitary
dynamics generated by the two-level non-Hermitian Hamil-
tonian H̃ = �u · �σ , where �u = {�, 0, iη}, with �, η ∈ R, and
�σ = {σx, σy, σz} is the vector of Pauli matrices. We set the
initial single-qubit state ρ0 = (1/2)(I + �r · �σ ), where �r =
{r sin θ cos φ, r sin θ sin φ, r cos θ}, with r ∈ [0, 1], θ ∈ [0, π ]
and φ ∈ [0, 2π [, while I is the 2 × 2 identity matrix. The
evolved state is given by ρt = Utρ0U

†
t /Tr(Utρ0U

†
t ), with

Ut = e−it H̃ being a nonunitary operator.
We shall begin considering the case η < � . In this case,

the evolution operator is given by Ut = cos(t
√

� 2 − η2 )I −
i sin(t

√
� 2 − η2 )(û · �σ ), where û = �u/

√
� 2 − η2 is a

unit vector. In this case, the evolved state becomes
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ρt = (4 + 2ct )−1(4ρ0 + ctI + �qt · �σ ), where we define

ct = 2[û · û∗ + i(û∗ × û) · �r − 1]sin2(t
√

� 2 − η2 )

− i[(û − û∗) · �r]sin(2t
√

� 2 − η2 ) (B1)

and

�qt = sin(2t
√

� 2 − η2 )[(û + û∗) × �r − i(û − û∗)]

+ 2 sin2(t
√

� 2 − η2 )[(û · �r )û∗ + (û∗ · �r )û

− (1 + û · û∗)�r + i(û × û∗)]. (B2)

Next, for the case η > � , the evolution operator is writ-
ten as Ut = cosh(t

√
η2 − � 2 )I + sinh(t

√
η2 − � 2 )(û · �σ ),

with the unit vector û = −i �u/
√

η2 − � 2. Hence, one can ver-
ify that the evolved state is given by ρt = (4 + 2ht )−1(4ρ0 +
htI + �vt · �σ ), with

ht = 2[û · û∗ + i(û∗ × û) · �r + 1]sinh2(t
√

η2 − � 2 )

+ [(û + û∗) · �r]sinh(2t
√

η2 − � 2 ) (B3)

and

�vt = i sinh(2t
√

η2 − � 2 )[(û − û∗) × �r − i(û + û∗)]

+ 2 sinh2(t
√

η2 − � 2 )[(û · �r )û∗ + (û∗ · �r )û

+ (1 − û · û∗)�r + i(û × û∗)]. (B4)

Finally, at the exceptional point η = � , the Hamilto-
nian H̃ = � (σx + iσz ) is gapless, and the evolution operator
becomes Ut = I − it� (σx + iσz ). In this case, the evolved
single-qubit state is given by ρt = (1/2)(I + �ζt · �σ ), with
�ζt = {ζx, ζy, ζz}, and

ζx = r sin θ cos φ

1 + 2� t[r cos θ + � t (1 + r sin θ sin φ)]
, (B5)

ζy = r sin θ sin φ − 2� t[r cos θ + � t (1 + r sin θ sin φ)]

1 + 2� t[r cos θ + � t (1 + r sin θ sin φ)]
,

(B6)

ζz = r cos θ + 2� t (1 + r sin θ sin φ)

1 + 2� t[r cos θ + � t (1 + r sin θ sin φ)]
. (B7)
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Acín, and M. Lewenstein, Random Bosonic States for Robust
Quantum Metrology, Phys. Rev. X 6, 041044 (2016).

[113] S. Yu, Quantum Fisher information as the convex roof of
variance, arXiv:1302.5311 (2013).

[114] G. Tóth and D. Petz, Extremal properties of the variance and
the quantum Fisher information, Phys. Rev. A 87, 032324
(2013).

[115] G. Tóth, Lower bounds on the quantum Fisher informa-
tion based on the variance and various types of entropies,
arXiv:1701.07461 (2018).

[116] M. Takahashi, Thermodynamics of One-Dimensional Solvable
Models (Cambridge University Press, Cambridge, 1999).

[117] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, Oxford, 2003).

[118] D. C. Brody, Biorthogonal quantum mechanics, J. Phys. A:
Math. Theor. 47, 035305 (2014).

[119] C.-Y. Ju, A. Miranowicz, G.-Y. Chen, and F. Nori, Non-
Hermitian Hamiltonians and no-go theorems in quantum
information, Phys. Rev. A 100, 062118 (2019).

[120] N. Linden, S. Popescu, A. J. Short, and A. Winter, On the
speed of fluctuations around thermodynamic equilibrium, New
J. Phys. 12, 055021 (2010).

[121] A. J. Short, Equilibration of quantum systems and subsystems,
New J. Phys. 13, 053009 (2011).

[122] C. Gogolin and J. Eisert, Equilibration, thermalisation, and the
emergence of statistical mechanics in closed quantum systems,
Rep. Prog. Phys. 79, 056001 (2016).

[123] T. R. Oliveira, C. Charalambous, D. Jonathan, M.
Lewenstein, and A. Riera, Equilibration time scales in
closed many-body quantum systems, New J. Phys. 20, 033032
(2018).
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