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Understanding the structure of nonlocal correlations is important in many fields ranging from fundamental
questions of physics to device-independent cryptography. We present a protocol that can convert extremal two-
party–two-input nonlocal no-signaling boxes of any type into any other extremal two-party–two-input nonlocal
no-signaling box perfectly. Our results are exact, and even though the number of required boxes cannot be
determined in advance, their expected number is finite. Our protocol is adaptive and demonstrates for the first
time the usefulness of using no-signaling boxes in different causal orders by the parties.
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I. INTRODUCTION

Nonlocality is amongst the most intriguing features of na-
ture. Since the seminal paper of Einstein, Podolsky, and Rosen
[1] and Bell’s quantification [2], the structure of nonclassical
correlations has been studied extensively [3], with implica-
tions on communication theory [4], cryptography [5], or game
theory [6].

One possible way to study nonlocal correlations is to in-
troduce a device (a so-called box), which has two separated,
noninteracting parts, one at Alice and one at Bob. Alice
chooses an input x from a set of possible inputs and receives a
result a from a result set. Similarly, Bob’s input is y, resulting
in an output b. The behavior of the box is fully described by
the conditional probability distribution pab|xy. If pab|xy does not
correspond to a statistical mixture of boxes with two parts that
operate independently in parallel on Alice’s and Bob’s side,
then the box is called a nonlocal box.

An important class of correlations is the one whose ele-
ments obey the no-signaling condition, compatible with the
theory of special relativity. Mathematically, the no-signaling
conditions can be formulated as

∀x1, x2, b, y
∑

a

pab|x1y =
∑

a

pab|x2y,

∀y1, y2, a, x
∑

b

pab|xy1 =
∑

b

pab|xy2 . (1)

These equations imply the existence of local marginals and,
together with the normalization of probabilities, define the
no-signaling polytope in the space of the conditional proba-
bilities pab|xy. They are necessary and sufficient for a box not
to be useful for direct communication [7]. In what follows, we
will refer to nonlocal no-signaling boxes simply as “nonlocal
boxes.”

Correlations realized by quantum systems form a convex
subset of the no-signaling polytope, which can be char-
acterized by a series of semidefinte programs [8,9]. The
no-signaling polytope is a mathematically simpler struc-
ture which includes supraquantum behaviors that cannot be
described in the framework of quantum mechanics. Un-
derstanding the complete structure of nonlocal boxes is of
fundamental importance. Notably, the extremal points, i.e.,
the vertices of the polytope are of special interest. The
most frequently mentioned example is the Popescu-Rohrlich
(PR) box [10,11], which is the extremal point of the no-
signaling polytope in the two-input two-output case. Such
“maximally nonlocal” correlations would enable incredible
communicational and computational power [12,13]. On the
other hand, somewhat surprisingly, they appear to underper-
form quantum correlations in randomness certification [14]
and in correlation-assisted multiprover interactive proofs [15].
Networks of PR boxes were used very recently to study the
structure of three-partite correlations [16]. These examples
indicate that it is possible to study nonlocality from a resource
theory point of view [17].

Regarding nonlocal correlations as a resource, it becomes
important to know what kind of other correlations can be
obtained if one has access to a given type of correlation. This
corresponds to the question of how different nonlocal boxes
can be interconverted, i.e., how boxes with certain input and
output sets and behaviors can be used together to implement
another box with different input and/or output sets and be-
havior. Barrett et al. [18] enumerated all extremal bipartite
nonlocal boxes with two inputs and arbitrary number of out-
puts. In addition, they proved that extremal two-input nonlocal
boxes of a given type can be converted to any other type,
with an arbitrarily small error. More precisely, they showed
that ∀ε > 0 there exists a number of d-boxes n so that these
boxes can simulate a d ′-box with an error probability of at
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most ε. Jones and Masanes [19] presented a protocol to ex-
actly simulate any binary-output nonlocal box with PR boxes.
Forster and Wolf [20] solved the general case of converting
any type of extremal nonlocal boxes to any other type, also
with arbitrarily small error.

There is a similar concept related to manipulating nonlo-
cal boxes, namely, nonlocal correlation distillation, in which
the target box has the same input-output arrangement as the
(not necessarily extremal) resource box [21,22]. Very recently,
Karvonen [23] studied the question of interconverting noncon-
textual and nonlocal resources in the context of generalized
resource theory. In particular, he showed that the independent
use of an ancillary correlated resource cannot catalyze any in-
terconversion of correlations, which is an important structural
property.

It was also pointed out in Ref. [23] that adaptive protocols,
that is, when nonlocal boxes are used in a way that the input
of one box can depend on another box’s output, were studied
only to a limited extent thus far. Indeed, the no-signaling
conditions allow nonlocal boxes to be used asynchronously by
the parties. Hence, it is possible that given two boxes, Alice
uses box 1 first and her input to box 2 depends on the output,
while Bob uses box 2 first, and then uses box 1 with an input
depending on the previous output he received. The possibility
of such a “crossed wiring” is prevalently known (e.g., it is also
mentioned in Ref. [18] as a side remark), but to our knowledge
there are no protocols which exploit this.

In fact, “crossed wiring” means that the boxes are used
in a different (even though definite) causal order by the two
parties. The question of causal order is deeply related to sep-
arability [24]. Indefinite causal order has been recognized as
a resource in quantum communication [25,26] and computing
[27]. It was verified experimentally [28] and recently was also
studied in the context of general relativity.

The question of causal order was also studied in the device-
independent context, which covers supraquantum (including
extremal no-signaling) correlations [29]. Although “crossed
wiring” does not realize an indefinite causal order, it is an
unusual causal structure that can potentially have implications
in this direction.

In this paper, we present a protocol which relies on the “dif-
ferent causal order” application of nonlocal boxes, enabling a
perfect (error-free) interconversion of extremal two-input non-
local boxes. The paper is organized as follows. In Sec. II A we
present relevant prior work on the interconversion of nonlocal
boxes, then, in Sec. II B our error-free protocol. In Sec. III
some modified versions of the error-free protocol are given
with which one can extend the directly reachable range of the
output boxes. We conclude in Sec. IV.

II. INTERCONVERSION PROTOCOL

A. Prior work

Our protocol can be considered an extension of the results
of Barrett et al. [18]. Let us recapitulate their main results.
First, they showed that every extremal nonlocal box is equiv-
alent to a d-box for some integer d . In a d-box the input of
both parties are binary: x, y ∈ {0, 1} and the box outputs for
them a and b with values {0, 1, . . . , d − 1}. The nonzero pab|xy

probabilities are uniform (all equal to 1/d) for inputs and out-
puts which satisfy (b − a) mod d = xy, and zero otherwise.
Two nonlocal boxes are considered equivalent if one can be
converted into the other by exchanging the roles of Alice and
Bob, or permuting the inputs of Alice, permuting the inputs of
Bob, permuting the outputs of an input, or deleting an input,
where the output is deterministic. Furthermore, in Ref. [18]
three protocols were presented to perform interconversions
between different boxes. (We note that in these algorithms
x and y denote the inputs that Alice and Bob wish to enter
into the yet-to-be simulated box.) The three protocols are the
following.

Protocol 1. Given a d1 and a d2-box, a d1d2-box can be
simulated (without error). Alice enters x into the d1-box. If
the output a1 is d1 − 1, she enters x into the d2-box, otherwise
enters 0 to the d2-box. Her overall output is computed as
a2d1 + a1. Bob enters y into both boxes. His overall output
is computed as b2d1 + b1.

Protocol 2. Given a d1d2-box, a d1-box can be simulated
(without error). Both parties enter their original input into the
d1d2-box, and take the output modulo d1.

Protocol 3. Given n pieces of a d1-box, a d2-box can be
simulated provided that d2 � dn

1 (with arbitrarily small error
by increasing n). Alice and Bob simulate a dn

1 -box using Pro-
tocol 1, and take the output modulo d2. Note that this protocol
is not error free: although the zero probabilities remain zero,
the nonzero probabilities will deviate a little from the uniform
distribution.

With the help of Protocols 1 to 3 of Ref. [18] any d-box
can be simulated using d ′-boxes, however, there is still a large
class of boxes for which a nonzero error is unavoidable. This
is the case for incommensurable d and d ′.

B. Error-free interconversion protocol

In what follows, we will show that one can construct a pro-
tocol which can operate with our error. Our protocol requires
a specific causal order in the use of the boxes: the parties have
to use certain boxes in opposite order, so that the inputs on the
box used later depends on the output of the box that is used
first. We assume that a nonlocal box can be queried only once,
so that, e.g., when the actions of the parties are repeated twice,
we assume the use of two boxes of the same type, and not to
query the same box twice. We speak of the “number of boxes”
in this sense.

Lemma 1. Given two d-boxes Alice and Bob can convert
them into one (d + 1)-box with probability (d2 − 1)/d2 or get
a specific output on both sides which signifies an unsuccessful
conversion attempt, and this happens with probability 1/d2.

The conversion can be carried out using a single round of
Protocol 4 below. Before introducing the protocol and proving
Lemma 1, let us state our main result first.

Theorem 1. Given an infinite supply of d-boxes Alice and
Bob can realize one (d + 1)-box with probability 1 and the
expected number of actually consumed boxes is 2d2/(d2 − 1).

Proof of Theorem 1. Repeating the rounds of Protocol 4 will
eventually lead to success. As the probability that the proto-
col does not halt in the current round is 1/d2, the expected
number of rounds can be computed by summing the series
(1 − 1/d2)

∑∞
k=1 k(1/d2)k−1.
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TABLE I. The joint probabilities pertaining to the inputs and
outputs of two 2-boxes utilized according to Protocol 4. The order
within the bit pairs corresponds to the temporal order of the boxes
on Alice’s side. The probabilities are determined by multiplying the
probabilities of the individual 2-boxes, which are given as paibi |xiyi =
1/2 if bi ⊕ ai = xiyi and 0 otherwise, where the subscripts i = 1, 2
refer to the first and second boxes, respectively. The notion of the
colors and output pairs displayed in boldface is explained in the
caption of Fig. 1.

x ↓ y→ 0 1
in 00 00 00 00 01 11 01 11
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

in→ out out 00 01 10 11 00 01 10 11

0 00→ 00 1/4 0 0 0 1/4 0 0 0
00→ 01 0 1/4 0 0 0 1/4 0 0
00→ 10 0 0 1/4 0 0 0 1/4 0
00→ 11 0 0 0 1/4 0 0 0 1/4

1 10→ 00 1/4 0 0 0 1/4 0 0 0
10→ 01 0 1/4 0 0 0 0 0 1/4
11→ 10 0 0 1/4 0 0 1/4 0 0
11→ 11 0 0 0 1/4 0 0 1/4 0

Protocol 4. In a single round the parties consume two
d-boxes. Alice inputs x (the value which would be the input
of the box to be simulated) into the first box. If the result is 0,
she inputs 0 to the second box, otherwise she inputs x to the
second box as well. If the overall result is not 00, then Alice
terminates the protocol and the output is a1 if a1 � a2, and
a1 + 1 if a1 > a2. If her overall result is 00, then she starts
a new round repeating these steps using two fresh d-boxes.
On the other side, Bob inputs y to the second box (note the
inverted causal order as compared to Alice’s side, i.e., the
“crossed wiring”). If the result is 0, he inputs 0 to the first
box, otherwise he inputs y to the first box as well. If the
overall result is not 00, then Bob terminates the protocol and
his output is b1 if b1 � b2, and b1 + 1 if b1 > b2. If his overall
result is 00 then he starts a new round using two new d-boxes
(similarly to Alice’s procedure).

We note that since the 00 result can only be obtained by
Alice and Bob in coincidence in the same round there is no
need for them to communicate classically in order to start a
new round of the protocol.

Before proving the correctness of Protocol 4 for arbitrary
d , let us illustrate, as a simple example, how it can convert
two 2-boxes (PR-boxes) into a 3-box. The joint probabilities
for a single round of the protocol are presented in Table I.
The inputs xy for the target box divides the table into four
blocks. Although there are 16 possible [in, out] combinations
for each user in each block, we tabulate only those four that
appear in the protocol with nonzero probability. Addition-
ally in each 4×4 block there is only a single nonzero entry
in each row and column. For instance, in the (x, y) = (1, 1)
block the probability pertaining to row 3 and column 3 means
that Bob had entered 1 to the second box, received 0, then
entered 0 to the first box and received 1. Meanwhile, Alice
had entered 1 to the first box, received 1, therefore en-
tered 1 also to the second box, and received 0. Because of
the inputs, the outputs of the first box should be correlated

TABLE II. The conditional probability distribution of the tar-
geted 3-box.

x↓ y→ 0 1
a↓ b→ 0 1 2 0 1 2

0 0 1/3 0 0 1/3 0 0
1 0 1/3 0 0 1/3 0
2 0 0 1/3 0 0 1/3

1 0 1/3 0 0 0 1/3 0
1 0 1/3 0 0 0 1/3
2 0 0 1/3 1/3 0 0

(x1 + y1 mod 2 = 0) and those of the second box should be
anticorrelated (x2 + y2 mod 2 = 1). But both outputs are cor-
related (a1 = b1, a2 = b2), therefore, this case is impossible,
so the matrix entry is 0. Observe that the upper left entries of
the blocks (corresponding to the outputs 00 for both parties)
always have probability 1/4. According to the protocol this
is the indication that the round fails and must be repeated.
As the 00 outputs can only occur in coincidence, both parties
recognize this failure without the need for any communica-
tion. The remaining lower right 3×3 submatrices of the blocks
in the table are equivalent to a 3-box (presented in Table II),
by the following relabeling of the outputs (independent of the
inputs): 01 → 0, 10 → 2, 11 → 1. Overall, each round of the
protocol succeeds with probability 3/4 and fails otherwise.

The equivalence with the 3-box can also be seen by order-
ing the possible nonzero-probability outputs into a table, as
shown in Fig. 1. This representation reveals that [apart from a
trivial one-cycle (00)] there exists a length-3 cycle among the
nontrivial output pairs. The relabelling of the outputs is then
straightforward.

Proof of Lemma 1. The proof can be accomplished by
analyzing Protocol 4 for general inputs. If any of x or y is
0, then Alice and Bob receive identical outputs, so the matrix
in these blocks is proportional to the identity matrix, therefore
it is sufficient to analyze the x = y = 1 case only. As both
parties make deterministic steps, the d2×d2 matrix of possible
outputs will still have only d2 nonzero entries, one in each
row and each column, so we can consider it as a permutation
matrix, similar to the one in Fig. 1. Studying the the cycle
structure of this permutation matrix reveals the type of boxes

01 11

00 10

FIG. 1. Nontrivial output pairs of the parties and their interde-
pendence when applying Protocol 4 on two boxes with d = 2. Pairs
of numbers represent output pairs a1 a2 or b1 b2 when x = y = 1
(highlighted in bold in Table I). If there is a nonzero probability
for a given pair of outputs, then an arrow is drawn from one pair
to the other in the sense that Alice’s output stands at the base, while
Bob’s output stands at the point of the arrow. The colors correspond
to the colored entries of Table I. Due to the nature of the d-boxes, the
correlations are unique, i.e., a1 a2 determines b1 b2 and vice versa.
Therefore, there is only one arrow starting and ending at every point.
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hiding in the result. The conditional probability distribution
of any d-box can be transformed to a form similar to that
in Fig. 1, in which three blocks are 1/d times the identity
matrix, and the fourth block is 1/d times a permutation matrix
with a single d cycle (cyclic shift of each element one step
to the right). As the different cycles of the joint probability
distributions of a single round of the protocol divide the blocks
into different submatrices each containing a cycle with a cer-
tain length, after receiving their outputs Alice and Bob can
identify the respective submatrix without communication. If
they find that their output does not correspond to the desired
submatrix, they can start a new round and can eventually reach
the targeted submatrix: the one which simulates the d ′-box
(with d ′ equals the length of the cycle in this submatrix). Thus
the cycle structure determines the types of boxes that can be
simulated by this protocol.

The permutation matrix is a permutation of the set with
elements of the form (c1, c2), where 0 � ci < d are integers.
If (a1, a2), (b1, b2) is a possible simultaneous output of Alice
and Bob, then the permutation corresponding to the matrix
takes the element (a1, a2) to (b1, b2). [Note that, for every
output of Alice, (a1, a2) there is exactly one possible output
of Bob (b1, b2)].

There are 4 (2×2) cases.
(1) If a1 = b2 = 0, then a2 = b2, and a1 = b1, therefore,

the element (0,0) goes to (0,0).
(2) If a1 = 0 and b2 	= 0, then a2 = b2, and (a1 + 1)

mod d = b1, therefore, the elements of the form (0, a2) go
to (1, a2) (a2 	= 0).

(3) If a1 	= 0 and b2 = 0, then (a2 + 1) mod d = b2, and
a1 = b1, therefore the elements of the form (a1, d − 1) go to
(a1, 0) (where a1 	= 0).

(4) If a1 	= 0 and b2 	= 0, then (a2 + 1) mod d = b2, and
(a1 + 1) mod d = b1, therefore, the elements of the form
(a1, a2) go to (a1 + 1 mod d, a2 + 1 mod d ) (where a1 	= 0
and a2 	= d − 1).

To obtain the cycle structure, let us examine the orbits of
the elements (0, a2). If a2 = 0, then (0,0) does not move,
the orbit has one element, thus, this is a 1-cycle. Otherwise,
(0, a2) first moves to (1, a2), then (1 + s, a2 + s) for 1 �
s � d − a2 − 1, then to (d − a2, 0) then to (d − a2 + s, s)
for 1 � s � a2, then returns to (0, a2). These are d + 1 steps
altogether, which is a (d + 1) cycle. The cycles do not overlap
because the first coordinate cannot become 0 before returning,
therefore, we get d − 1 (d + 1) cycles, and these cases cover
all pairs because d2 = (d − 1)(d + 1) + 1. It is easy to see
that the output function labels the consecutive elements of
every (d + 1) cycle from 0 to d . This completes the proof of
Lemma 1.

As an illustration of the proof, the case d = 5 is displayed
in Fig. 2. If all four outputs are different from 0, then the
outputs of both boxes differ by one, so in the most part of
the matrix, the arrow is upward diagonal. If, however, the first
output of Alice is one, then the second outputs must coincide,
therefore horizontal arrows start from the first column, and
similarly, vertical arrows from the first row. Alice and Bob can
get 00 at the same time, therefore, a circular arrow is drawn
into the corresponding cell. The cycles are moving mainly
diagonally, but at the first column they jump one position to
the left, and at the first row, jump back. So nearly all diagonals

04 14 24 34 44

03 13 23 33 43

02 12 22 32 42

01 11 21 31 41

00 10 20 30 40

FIG. 2. Nontrivial output pairs of the parties and their inter-
dependence when applying Protocol 4 on two boxes with d = 5.
Pairs of numbers represent output pairs a1 a2 or b1 b2. If there is a
correlation between a given pair of outputs, then an arrow is drawn
from one pair to the other in the sense that Alice’s output stands at
the base, while Bob’s output stands at the point of the arrow. The four
possible six-cycles are highlighted in red, green, blue, and black.

correspond to some six-cycle, while one of them disappeared
like in the so-called “vanishing leprechaun” puzzle [30]. As
can be seen, there is a one-cycle (00) and four six-cycles,
so a single round converts two 5-boxes into a 6-box with
probability 24/25, and is unsuccessful with probability 1/25.
Alice and Bob can unambiguously identify this latter case, and
continue with the protocol.

III. GENERALIZATIONS

Protocol 4 can be slightly modified to simulate other boxes
as well, not only d + 1 ones. To achieve this one needs to
change the number of cases when Alice or Bob enters 0 into
their respective “second” box. The case when Bob enters 0 to
the first box as a result of getting either 0 or 1 as the output of
the second box is illustrated in Fig. 3: the diagonally moving
cycle jumps left once and right twice, so after traversing the
matrix once it restarts at the next diagonal, covering the whole
matrix (except for the two stationary points). Thus, it contains
two one-cycles and a single 23-cycle. In general, one can
say that, if one party enters 0 in one case and the other one
enters 0 in two cases, then a d-box can be converted into

04 14 24 34 44

03 13 23 33 43

02 12 22 32 42

01 11 21 31 41

00 10 20 30 40

FIG. 3. Nontrivial output pairs of the parties and their interde-
pendence when applying the modified version of Protocol 4 in the
case of d = 5.
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04 14 24 34 44

03 13 23 33 43

02 12 22 32 42

01 11 21 31 41

00 10 20 30 40

FIG. 4. Nontrivial output pairs of the parties and their interde-
pendence when applying the second modified version of Protocol 4
in the case of d = 5 and s = 4.

a (d2 − 2)-box. The success probability of a single round is
(d2 − 2)/d2.

Another possible modification is when both parties en-
ter 0 to their respective “second box” if their “first” output
is smaller than some value s, i.e., if a1 < s, b2 < s (where
1 � s < d). In this case they can get a (d + s) box, but with
decreasing success probability. The permutation then has s2

one-cycles (a1 < s and b2 < s) while the (d + s) cycles con-
tain four different sections: (i) (0, a2) moves to (q1, a2), where
1 � q1 � s; (ii) (s + q2, a2 + q2), where 1 � q2 � d − a2 −
1; (iii) (d − a2 − 1, q3), where 1 � q3 � s; and finally (iv)
(d − a2 − 1 + q4, s + q4), where 1 � q4 � d − s − 1. Thus,
the success probability of a single round is (d2 − s2)/d2.
As a simple example one can choose d = 5 and s = 4, in
which case a single round can simulate a 9-box with a success
probability of 9/25 (see Fig. 4).

IV. CONCLUSION

We presented a protocol (and its relevant modified ver-
sions), which, together with Protocols 1 and 2 of Ref. [18],
enable the conversion of any d-boxes into any other d ′-box
without error. In the other similar protocols known so far the
parties have to agree on the number of turns to go below
a fixed error and they need to communicate if they want to
further improve on it. Our protocol, on the other hand, allows
for unlimited number of iterations in principle, with a halting
condition that can be verified without communication, and
an error-free conversion. The expected number of required
iterations is finite. There may be other possibilities to modify
our protocol, such as, combining two boxes of different size.

Our conversion protocol is the first one to utilize the fact
that Alice and Bob are allowed to query their parts of the
boxes in different causal order. It is an open question whether
there exists a protocol for realizing error-free interconversion
of nonlocal boxes without “crossed wiring.” It would be also
interesting to find a useful protocol in which there are three
boxes involved, and the order in which certain boxes are
used depends on the output of some other boxes. This could
potentially demonstrate the use of indefinite causal order in
the present device-independent context.
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Winter, and M. Żukowski, Nature (London) 461, 1101 (2009).

[13] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp,
and F. Unger, Phys. Rev. Lett. 96, 250401 (2006).

[14] G. de la Torre, M. J. Hoban, C. Dhara, G. Prettico, and A. Acín,
Phys. Rev. Lett. 114, 160502 (2015).

[15] Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen, Commun.
ACM 64, 131 (2021).

[16] P. Bierhorst, Phys. Rev. A 104, 012210 (2021).
[17] J. I. de Vicente, J. Phys. A: Math. Theor. 47, 424017 (2014).
[18] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D.

Roberts, Phys. Rev. A 71, 022101 (2005).
[19] N. S. Jones and L. Masanes, Phys. Rev. A 72, 052312 (2005).
[20] M. Forster and S. Wolf, Phys. Rev. A 84, 042112 (2011).
[21] J. Allcock, N. Brunner, N. Linden, S. Popescu, P. Skrzypczyk,

and T. Vértesi, Phys. Rev. A 80, 062107 (2009).
[22] B. Lang, T. Vértesi, and M. Navascués, J. Phys. A: Math. Theor.

47, 424029 (2014).
[23] M. Karvonen, Phys. Rev. Lett. 127, 160402 (2021).
[24] O. Oreshkov, F. Costa, and Č. Brukner, Nat. Commun. 3, 1092
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[25] A. Feix, M. Araújo, and Č. Brukner, Phys. Rev. A 92, 052326
(2015).

[26] D. Ebler, S. Salek, and G. Chiribella, Phys. Rev. Lett. 120,
120502 (2018).

[27] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron,
Phys. Rev. A 88, 022318 (2013).

[28] G. Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner,
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