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Does the remote measurement disturbance of the quantum state of a system B by a measurement on system
A entangled with B constitute a real disturbance, i.e., an objective alteration, of B in an operational sense?
Employing information-theoretic criteria motivated by operational considerations alone, we argue that the
disturbance in question is real for a subset of steerable correlations. This result highlights the distinction between
quantum no-signaling and the relativistic signal locality. It furthermore suggests a natural reason why a convex
operational theory should be nonsignaling, namely, to ensure consistency between the properties of reduced
systems and those of single systems.
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I. INTRODUCTION

A basic phenomenon underlying important quantum infor-
mation processing tasks, such as remote state preparation [1],
quantum teleportation [2], device-independent (DI) certifica-
tion of randomness [3], and DI cryptography [4], is the remote
“collapse” or reduction of the quantum state of an entangled
system B by means of a local measurement on its partner
system A. This phenomenon, which famously figures in the
Einstein-Podolsky-Rosen (EPR) paradox [5], lies at the heart
of quantum nonlocality [6]. As it happens, the basic nature of
this remote measurement disturbance of system B’s state—in
particular, the issue of whether the disturbance constitutes
an objective change in B in an operational sense or merely
a subjective update to the observer’s knowledge of B—has
remained moot in quantum mechanics (QM).

This state of affairs is part of the broader question of
whether the quantum state is real, and is tied to the fact that
the interpretation of QM is still not universally agreed upon
[7,8]. Certain interpretations of QM are consistent with the
idea that the quantum state is real [9–15], while others that
are inspired by the Copenhagen interpretation of QM [16] are
consistent with the idea that the quantum state represents our
knowledge about only measurement outcomes or underlying
ontic variables [17–21]. Correspondingly, the wave-function
collapse takes on an ontic sense, or not, in these interpreta-
tions.

Bell’s theorem [6] itself cannot help here. Its operational
significance is not an indication of the reality of this remote
disturbance, but rather a complementarity between signaling
and unpredictability [22–26]. This leads, via the assumption
of no-signaling, to the possibility of device-independent ran-
domness generation [27] and key distribution [4] but does not
give any guidance on addressing the foundational issue raised
above.

These considerations prompt the question of whether a
relevant concept of reality can be indicated that is independent
of the physical interpretation or mathematical representation

of QM. Here, we wish to show that this can be achieved based
only on basic operational considerations about measurement-
induced disturbance. Here, it will be convenient to use
the framework of generalized probability theories (GPTs)
[28–31], which will make it clear that the concept of reality
developed here is purely of operational origin and independent
of the Hilbert-space formalism. Our point of departure is the
intuitive idea that if a measurement disturbance can be the
basis for communication, then it constitutes an objective fact
and is thus real. Requiring only operational criteria and not
extraneous paraphernalia such as hidden variables and par-
allel worlds, this approach promises to provide an intrinsic
interpretation of QM.

The remainder of this article is arranged as follows. Start-
ing with a brief note on the concept of “operational,” we
define the concept of operational reality of local measurement
disturbance in Sec. II. This is then extended in Sec. III to
the case of remote measurement disturbance, which is shown
in Sec. IV to be related to EPR steering. Building on this, a
device-independent approach to indicate remote measurement
disturbance is discussed. Finally, we present our conclusions
and related discussion in Sec. V. Here, we argue that the
case for operationally real nonlocality highlights the tension
between quantum no-signaling and relativistic signal locality.

II. MEASUREMENT DISTURBANCE AND UNCERTAINTY
IN SINGLE SYSTEMS

The operational formulation of a physical theory (such as
quantum mechanics) consists of an abstract characterization
of the theory as a GPT, also known as convex operational
theory, i.e., in terms of rules governing preparation proce-
dures, probabilities for measurement outcomes, and reversible
operations, while avoiding concepts that cannot be accessed
directly, such as the Hilbert space, complex global phase,
etc. [30,32]. In other words, the operational formulation cor-
responds to the basic “syntax” of a theory, devoid of the
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“semantics” pertaining to its physical interpretation or mathe-
matical representation.

An operational feature of a theory is one that can be defined
as an element of its GPT formulation. For example, a state ϕ is
operationally understood as an equivalence class of prepara-
tion procedures. Given a bipartite state ϕAB, the marginal state
of system A, denoted ϕ#

A, is the GPT analog of the reduced
density operator obtained via partial tracing over B. An en-
tangled state in a GPT corresponds to a valid composite state
that cannot be expressed as a convex combination of product
states.

In practice, we would require a detailed characterization
of the subsystems in order to indicate a given joint state
in a GPT is entangled. A device-independent formulation
represents a further level of abstraction where even such a
characterization is not required, as the input-output statistics
can self-test, typically based on the violation of Bell-type
inequalities [6,33].

A basic feature of QM, and indeed of any nonclassical
GPT, is that the act of measurement can disturb, i.e., randomly
alter, the measured state of the given system, even in the case
of a pure state. This phenomenon is ultimately due to the
nonsimpliciality of the relevant state space of the theory [34].

Definition 1. Suppose measurement x is performed on a
quantum or GPT system A prepared in state ϕA, producing
outcome a, with probability p(a|x, ϕ). Let the normalized
postmeasurement state be denoted ϕ

a|x
A . The state change

ϕA −→ ϕ
a|x
A (1)

is called the measurement(-induced) disturbance of the initial
state ϕA. �

Here, the measurement used, including the state update
rule, may be considered the GPT analog of the Lüders in-
strument in the context of quantum measurement [35]. As it
happens, no experiment to date has succeeded in observing
such a disturbance of a quantum state, called a collapse or
state reduction in this context. The quantum measurement
problem is concerned with the question of whether state re-
duction happens objectively. Revisiting this issue, we ask,
Is the measurement disturbance represented in Eq. (1) real?
That is, does the measurement objectively alter system A,
or is measurement disturbance only epistemic, i.e., one that
updates only the observer’s knowledge about a preexisting
property of A, without objectively altering A?

Given a GPT, consider a communication protocol P1 be-
tween Alice and Bob, wherein Alice transmits the nonclassical
system A either in the state ϕA or in the postselected state ϕ

a|x
A .

(She measures x and discards states ϕ
a′ |x
A for which a′ �= a).

Importantly, she does not send any supplementary classical
information to Bob. By performing on A a measurement x′ in-
compatible with x [36], Bob tries to determine which out of ϕA

and ϕ
a|x
A Alice transmitted. If he succeeds with a probability p

better than a random guess (i.e., p > 1
2 ), then it is quite natural

to infer that Alice’s measurement objectively disturbed system
A. Letting SA→A denote the amount of information (in bits)
that Alice can communicate on average to Bob using protocol
P1, we have the following intuitive, operational concept of the

reality of Alice’s measurement disturbance, applicable to any
GPT:

Definition 2. Given state ϕA and measurement x, if it is the
case in protocol P1 that for some outcome a

SA→A > 0, (2)

then the measurement disturbance Eq. (1) constitutes an oper-
ationally real disturbance of A. �

Note that the concept of reality in Definition 2 avoids any
reference to a “hidden-variable” (HV) ontology. In a practical
implementation of protocol P1, it is not necessary to posts-
elect on a specific outcome a. Let Mx(ϕA) ≡ ∑

a p(a|x)ϕa|x
A

represent the nonselective state obtained by ignoring the
outcome. Alice can use ϕA and Mx(ϕA) as symbols for com-
municating. If this works, then obviously, ‖ϕA − Mx(ϕA)‖ >

0, and by convexity, ∃a‖ϕA − ϕ
a|x
A ‖ > 0, from which Eq. (2)

follows, and reality is inferred via Definition 2.
As an illustration in QM, suppose Alice chooses to perform

or not to perform measurement σX on qubit A initialized in the
state ϕA = cos2(θ/2)|0〉〈0| + sin2(θ/2)|1〉〈1|, with 0 � θ �
π
2 and θ �= π/4. She communicates with Bob by sending ei-
ther the state ϕA or MσX (ϕA) := I

2 . Since these two states are
probabilistically distinguishable, it follows that SA→A > 0.
Thus, we infer that Alice’s measurement really disturbs the
system in the operational sense.

If A is not an isolated single system but is entangled with
another system B, then the above criterion may not be appli-
cable. For example, suppose Alice and Bob share the bipartite
state |�(θ )〉AB = cos(θ )|00〉AB + sin(θ )|11〉AB, θ ∈ [0, π

2 ].
Alice measures A in the basis σZ , and sends A to Bob. As
SA→A = 0 here, Definition 2 is unable to indicate the reality
of A’s measurement disturbance.

In this situation, an entanglement-assisted version of pro-
tocol P1 can be used, which we call P2. Here, Alice and
Bob share the entangled state ϕAB, with A being initially with
Alice and B with Bob. As in P1, Alice sends A to Bob after
measuring x0 on it. Bob performs a joint measurement on
A and B that is incompatible [36,37] with x0 (see Sec. A1).
If he can (probabilistically) determine whether or not Alice
measured x0, he infers that her measurement really disturbed
A in an operational sense. We denote by SA→AB the amount
of information (in bits) about Alice’s measurement choice that
can be communicated to Bob in this way. In place of Defini-
tion 2, we have the following operational criterion (applicable
to any sufficiently rich GPT):

Definition 3. Given bipartite state ϕAB and local measure-
ment x on A in protocol P2, if it is the case that

SA→AB > 0, (3)

then the measurement disturbance (1) constitutes an opera-
tionally real disturbance of A. �

In the context of the above example with state
|�(θ )〉AB, the postmeasurement bipartite state with Bob
is distinguishable from the initial bipartite state, i.e., ρ

(Z )
AB ≡

cos2(θ )|00〉AB〈00| + sin2(θ ) |11〉AB 〈11| �= |�(θ )〉AB〈�(θ )|,
implying the satisfaction of Eq. (3). Accordingly, Bob infers
the operational reality of the measurement disturbance of A
per Definition 3. Analogous situations of disturbance can be
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pointed out, for example, in the case of Spekkens’ toy theory
[20] and the box world [38].

III. REMOTE MEASUREMENT-DISTURBANCE
IN A BIPARTITE SYSTEM

Suppose Alice and Bob share the quantum state |�(θ )〉.
Alice measures σX on qubit A obtaining outcome |±〉 ≡

1√
2
(|0〉 ± |1〉)A. Correspondingly, Bob’s particle B collapses

to the state |θ±〉 ≡ cos(θ )|0〉B ± sin(θ )|1〉A. Does this remote
collapse constitute a real disturbance of system B?

More generally, in a GPT context, suppose Alice and Bob
share an entangled state ϕAB = ∑

λ pλϕ
λ
AB, with p(λ) being a

probability distribution, where Bob’s marginal (or, reduced)
state is denoted ϕ#

B. Alice’s measurement of x on A condi-
tioned on her obtaining outcome a leaves Bob’s system in the
un-normalized (indicated by a tilde) state:

ϕ̃
a|x
B =

∑

λ

pλp(a|x, λ)ϕa|x,λ
B . (4)

Denote its normalized version by ϕ
a|x
B ≡ N ϕ̃

a|x
B , where N ≡

[
∑

λ p(λ)p(a|x, λ)]−1. Does the state change

ϕ#
B −→ ϕ

a|x
B , (5)

which is the remote analog of Eq. (1), constitute a real distur-
bance of B in an operational sense? That is, can one advance
a purely operational argument in support of the claim that Al-
ice’s remote measurement-disturbance of system B constitutes
an objective change in B?

An appeal here to the direct analog of Definition 2 is ob-
viously ruled out by virtue of no-signaling, which entails that
SA→B = 0. Furthermore, in an instance where Eq. (3) holds
true, the signal would be attributed to the (local) disturbance
of A rather than to the (remote) disturbance of B. Thus, a
simple adaptation of Definition 3 is also ruled out. We now
present an indirect, operational criterion to indicate the reality
of a remote disturbance.

We will require a specific feature of our ontological formal-
ism, which is that it should satisfy a reasonable consistency
principle in assigning reality to the measurement disturbances
of multiple particles in a given measurement situation. In
particular, given a pure joint state ϕAB, if the disturbances
to A and B are identical (to each other) when either particle
is measured, then the operational reality status of the two
disturbances must also be identical. This notion of consistency
is natural since holding the disturbance of one of the particles
to be real but not that of the other particle that is identically
disturbed in the same measurement situation would make this
operationally inspired ontological system somewhat incoher-
ent. Formally, we have the following:

Feature 1. Suppose ϕAB is a pure state such that the dis-
turbances of A and B are identical (to each other) under a
measurement of x on A. That is, the marginal states of A and
B in ϕAB are identical,

ϕ#
A = ϕ#

B, (6)

and furthermore, their respective postmeasurement states are
also identical,

ϕ
a|x
A = ϕ

a|x
B . (7)

Then, consistency requires that any attribution of operational
reality to the disturbances of A and B should be identical; that
is, either both disturbances are deemed operationally real, or
both are deemed not operationally real. �

Here, we note that in QM, any pure bipartite state has the
symmetric property of Eq. (6). Therefore, to fulfill the condi-
tions of Feature 1, it suffices to choose a suitable measurement
satisfying the symmetry property Eq. (7). Feature 1 is a means
for (indirectly) addressing the question of the reality of B’s re-
mote measurement disturbance [Eq. (5)], given the constraint
of no-signaling. This argument may be formalized as follows:

Theorem 1. Given pure state ϕAB and Alice’s measurement
x0 on system A, if the (local) measurement disturbance of A is
(a) operationally real per the criterion of Definition 3 and (b)
identical to the (remote) measurement disturbance of system
B, then the latter disturbance is operationally real.

Intuitively, the idea here is that if the correlations between
A and B are local, then Alice’s measurement should oper-
ationally disturb only A and not B. In particular, nontrivial
disturbances of A and B could not be identical. But Theorem
1 gives conditions under which A is operationally disturbed
and yet this identicality holds, thereby negating the locality
supposition. The proof of Theorem 1 below is essentially a
formal elaboration of this idea.

Proof. Suppose that locality holds on the operational level,
meaning that Alice’s measurement on A does not disturb the
state of system B in an operational sense. More precisely,
there exists a preexisting ensemble of states on Bob’s side
χ ≡ {q(μ), φμ

B } such that the postmeasurement state of B can
be expressed as ϕ̃

a|x
B = ∑

μ q(μ)q(a|x, μ)φμ
B , where q(μ) and

q(a|x, μ) are probability distributions. It follows in view of
symmetry condition (b), specifically requirement Eq. (7), that
the joint state of the composite system AB conditioned on
Alice’s measurement is given by

ϕ̃
a|x
AB =

∑

μ

q(μ)q(a|x, μ)ϕμ
A ϕ

μ
B ,

such that ϕ
μ
A = ϕ

μ
B . This implies that, from Bob’s perspective

the nonselective joint state is given by
∑

a

ϕ̃
a|x
AB =

∑

μ

q(μ)ϕμ
A ϕ

μ
B ,

which is independent of x, entailing that Alice’s choice x
cannot be deduced by Bob via his joint measurement of AB,
contradicting condition (a). Therefore, given the satisfaction
of condition (a), it follows that particle B is necessarily dis-
turbed from afar by Alice’s measurement in the sense that no
such local ensemble χ exists for Bob. In this case, the general
expression Eq. (4) should hold, where the specific outcome
state ϕ̃

a|x
AB depends on x.

To show that this remote disturbance of B is operationally
real, we note that by condition (b), the disturbance at B is
identical to that at A. By Feature 1, the same reality status
should be assigned to both disturbances. Therefore, the op-
erational reality of B’s disturbance follows, given that of A’s
disturbance by virtue of fulfillment of condition (a). �

A state ϕAB that admits such a remote measurement-
disturbance in the above sense may conveniently be called
nonlocal in an operationally real (OR) sense. The state |�(θ )〉
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is evidently OR nonlocal according to Theorem 1, with mea-
surement x0 ≡ σZ .

In the standard Bell test and EPR steering scenarios, the
particles A and B are measured in geographically separated
stations. By contrast, in the present scenario, Alice sends A to
Bob such that he can subsequently perform a joint measure-
ment on the composite system AB. Specifically, condition (a)
above corresponds to the violation of a type of no-signaling
in time (NSIT) by particle A. In the context of temporal cor-
relations, NSIT is a statistical characterization of noninvasive
measurability [39,40]. Given that both particles are available
at the same place for the second measurement in the above
scenario, it would be desirable to elucidate the operational
sense in which Theorem 1 establishes the nonlocality of the
correlations between A and B.

To this end, we may consider an alternative, equivalent
protocol that makes this nonlocality explicit. We now make
the important, if somewhat straightforward, observation that
conditions (a) and (b) can be guaranteed through local opera-
tions and classical communication (LOCC), without requiring
Alice to transmit particle A to Bob for his joint measurement.
We note that the initial state ϕAB must be entangled in order
for Alice to be able to reprepare B’s state and thereby disturb
it. Alice’s measurement disentangles ϕAB into a product state
ϕ̂

a|x
A ⊗ ϕ̃

a|x
B , where ϕ̂

a|x
A denotes the normalized outcome ob-

tained by Alice on A and ϕ̃
a|x
B is given by Eq. (4). Both the

initial state ϕAB and the final product state can be ascertained
by LOCC in a GPT with the local tomographic property. Thus,
symmetry condition (b) can be directly checked. Moreover,
noting that

∑
a ϕ̂

a|x
A ⊗ ϕ̃

a|x
B �= ϕAB, it follows that condition (a)

can also be checked by LOCC.
The above considerations show that the conditions of The-

orem 1, and thus the reality of the remote disturbance, can be
verified using only LOCC and without any quantum or non-
classical communication from Alice to Bob, thereby bringing
the scenario of the OR nonlocality closer to that of Bell
nonlocality or EPR steering. As shown below, this allows OR
nonlocality to be deduced by a steeringlike statistical inequal-
ity. Later, this will be shown to correspond to a one-sided DI
characterization of OR nonlocality.

Mixed states present a kind of “operational prepara-
tion contextuality,” somewhat reminiscent of HV-ontological
preparation contextuality [41]. This is related to the fact that a
nonclassical GPT, being characterized in general by a nonsim-
plicial state space, admits multiple pure-state decompositions
of a given mixed state ϕAB, whereas the concept of reality
will arguably depend on the actual decomposition that is the
case. Accordingly, with regard to indicating OR nonlocality,
we have the following criterion.

Definition 4. Given state ϕAB prepared by a known proba-
bilistic procedure of mixing an OR nonlocal component and a
separable component, with probabilities p and 1 − p, respec-
tively, the remote measurement-disturbance of B in state ϕAB

is OR nonlocal with probability p. �
For example, suppose Charlie prepares state |�(θ )〉

with probability f and the four computational basis states
|00〉, |01〉, |10〉, and |11〉 with equal probability (1 − f )/4. He
sends the first particle to Alice and the second to Bob. Accord-
ingly, Alice and Bob share the Werner-like state W ( f , θ ) ≡

f |�(θ )+〉〈(|1 − f ) I4
4 with mixing parameter f ∈ [0, 1]. Then

Charlie can assert that the remote measurement-disturbance
of Bob’s particle is operationally real with probability f , with
the choice x0 ≡ σZ .

Also, the state W ( f , θ ) can be prepared by Charlie mix-
ing the state |�(θ + π

2 )〉 with probability 1− f
2 and |�(θ )〉

with probability 1+ f
2 . Since both |�(θ )〉 and |�(θ + π

2 )〉 are
nonlocal in an operationally real sense, Charlie asserts that
given the state W ( f , θ ) under this preparation, the remote
measurement disturbance of Bob’s particle is operationally
real with probability 1. Setting f ≡ 0 here, we find that even a
maximally mixed state can be potentially OR nonlocal to the
maximum extent. This surprising observation essentially has
to do with the idea that the underlying reality of disturbance
should be unaffected by the observer’s state of knowledge.

If the preparation information of a given mixed state ϕAB is
unavailable, then its remote measurement-disturbance under
measurement x is said to be probabilistically OR nonlocal if
ϕAB contains a nonvanishing OR nonlocal component under
any pure-state decomposition. Here, a direct application of
conditions (a) and (b) of Theorem 1 can be misleading. For ex-
ample, the separable state 1

2 (|θ+〉〈θ+| ⊗ |0〉〈0| + |θ−〉〈θ−| ⊗
|1〉〈1|), when x ≡ σZ , satisfies (a) and also, with high proba-
bility, condition (b) by choosing sufficiently small θ . Yet it is
evident that there can be no remote measurement-disturbance
of B for any separable state.

Therefore, to obtain a lower bound on OR nonlocality a
different approach is required for mixed states. Here, a key
observation, noted above in the proof of Theorem 1, is that
Alice steers Bob’s state. Given a steerable state ρ, the required
lower bound is associated with the pure-state decomposition
that gives the lowest fraction of OR nonlocality. In the above
example of the state W ( f , θ ), the first decomposition provides
the minimal decomposition. Thus, if f is sufficiently large to
guarantee steerability, then the mixture is OR nonlocal with
probability of at least f .

To witness steering in an arbitrary GPT, we use the un-
certainty principle. This refers to the feature whereby two or
more observables cannot simultaneously assume exact values
[38]. Let p(b|y) represent the probability of outcome b upon
measurement of y on a given operational state ϕ. Define
P (y) ≡ maxb p(b|y). Given measurements y0, y1, and y2, an
uncertainty relation exists if for any state ϕ

P (y0) + P (y1) + P (y2) � υ (8)

such that υ < 3. For classical theory, υ = 3 for any triple of
sharp measurements. Here, it is assumed that the measure-
ments y j are not “trivial,” such as the one that produces a fixed
outcome for any measured state ϕ. In this case, of course, there
is trivially no uncertainty.

Consider protocol P3, where Alice and Bob share the state
ϕAB. Alice performs measurement x j on particle A and pre-
dicts the outcome for Bob, who performs the corresponding
measurement y j on B. We consider the conditional version of
Eq. (8), namely,

P (y0|x0) + P (y1|x1) + P (y2|x2) � υ, (9)

where P (y j |x j ) represents Bob’s certainty in y j measured
on B, conditioned on Alice’s measurement of x j on A and
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knowing the outcome. The violation of Eq. (9) certifies
that Alice’s measurement genuinely reprepares—and thereby
disturbs—the state of B. As such, Eq. (9) represents an EPR
(spatial) steering inequality. A necessary condition here is
that the measurement pairs x0, x1, and x3 must be pairwise
incompatible for its violation (see Sec. A2).

Given a pure state ϕAB in a GPT and a pair of measure-
ments (x0, y0), if measuring x0 on A and y0 on B produce
identical results, i.e., Eq. (7) holds, then the pair (x0, y0) is
said to be commensurate for ϕAB. For a mixed state prepared
by combining such ϕAB (with probability p) and other states,
the pair (x0, y0) is said to be commensurate with probability
(at least) p. For example, the measurements x0 = y0 := σZ

is commensurate for the state |�(θ )〉. Consider mixed states
such as W ( f , θ ), which are known to be noisy versions of
pure states that have identical marginal states [i.e., satisfy
Eq. (6)] and either admit a pair of commensurate measure-
ments or can be brought to that form by application of suitable
local reversible operations [i.e., satisfy Eq. (7)]. Promised
a mixed state with this commensurate measurement prop-
erty, the following result shows that the degree of violation
of Eq. (9) can be used to lower bound the degree of OR
nonlocality.

Theorem 2. Given the violation of inequality Eq. (9)
with observed correlation υ∗ > υ, the remote measurement-
disturbance of B under measurement x0 on A is operationally
real with a probability of at least υ∗−3/2

υmax−3/2 , where υmax is the
largest violation (�3) allowed in the given GPT.

Proof. In Eq. (4), if the remote repreparation of the state
of B can be explained by a preexisting, hidden-state ensemble
of B states {q(μ), φμ

B }, then conditioning on x will not provide
information to beat the uncertainty relation Eq. (8) for system
B. Therefore, the EPR steering inequality Eq. (9) will hold. It
follows that under its violation, the measurement disturbance
of A disturbs system B.

Let the minimal pure fraction leading to the violation in
all possible pure-state decompositions of the given state ϕAB

be f . Then f � fmin, where fminυmax + (1 − fmin) 3
2 = υ∗ and

υmax and 3
2 are, respectively, the theory-dependent maximum

and the algebraic minimum value attainable by υ in Eq. (9).
Solving the equation, we find fmin = υ∗−3/2

υmax−3/2 . By assumption,
the mixed state is a noisy version of a pure state with identical
marginal states and the commensurate measurement associ-
ated with the pair (x0, y0). Therefore, with a probability of at
least fmin, the conditions of Theorem 1 must be satisfied. �

To clarify Theorem 2, we note that the violation of in-
equality Eq. (9), as discussed, entails the remote preparation
of B’s state [Eq. (4)] and hence the disentanglement of the
initial state ϕAB. This in turn implies the verification of the
reality condition (a) in the equivalent LOCC scenario. How-
ever, quantifying how closely condition (b) is supported by the
experimental conditional probabilities P (y j |xk ) would require
certain theory-dependent assumptions. Furthermore, experi-
mentally estimating the violation of inequality Eq. (9) in terms
the theory-specific quantity υmax presupposes that the states
of B are well characterized. On the other hand, the probability
p(a|x, λ) in Eq. (4) can be arbitrary. This situation corresponds
to one-sided device independence, which is of practical im-
portance in cryptography [42]. In Sec. IV, we show how the

above result can be strengthened to a fully device independent
characterization of OR nonlocality.

As a specific realization of Eq. (9), we consider P (y0|x0) +
P (y1|x1, a1) + P (y2|x1, a1) � υ, where Alice has only two
measurement choices, x0 and x1, while Bob has three. If Alice
measures x0, then Bob measures y0. If her measurement is
x1, then corresponding to her outcome a1 (a1), Bob measures
y1 (y2). For an application to the quantum context, we set
x0 = y0 := σZ , x1 := σX , y1 := sin(2θ )σX + cos(2θ )σZ , and
y2 := sin(2θ )σX − cos(2θ )σZ . For these settings of Bob, the
single-system uncertainty bound is given by υ = 5

2 .
The state |�(θ )〉 under the above settings entails a violation

of Eq. (9) up to its algebraic maximum of 3 for any θ in the
above range. Moreover, the margin of maximal violation over
the local bound υ is 3

υ
= 6

5 for the optimal choice θ = π/6
here. This can be shown to be larger than the optimal margin
of 2

υ
= 2

√
2√

2+1
≈ 1.17 in the case of the analogous two-term

steering inequality (see the Appendix). Thus, inequality (9) is
suitable for the nonmaximally entangled state |�(θ )〉.

IV. RELATION TO BELL NONLOCALITY

Bell nonlocality is a stronger condition than steering. With
measurement settings as above, the bound υ := 5

2 in Eq. (9).
If f > 2

3 , Werner-like states W ( f , π
6 ) violate the inequality.

Using the two-qubit nonlocality criterion [43], we find that
the state W ( f , π

6 ) is Bell nonlocal for f > 2√
7
. Thus, in the

range f ∈ [ 2
3 , 2√

7
], the state W ( f , π

6 ) is Bell local but nonlocal
in an operationally real way. It is important to stress that
the existence of such Bell-local states does not undermine
the operational reality of the remote measurement-disturbance
precisely because the hidden variables of the Bell-local the-
ory are not part of the operational theory of interest here.
Indeed, the basic premise here is that we decide the reality
of a disturbance by operational considerations alone, without
recourse to hidden-variable ontology. Another point is that
given correlation P(a, b|x, y) of OR-nonlocal but Bell-local
correlations in a GPT, the classical dimension |λ| of shared
randomness in a local model will be larger than the dimen-
sion d of the correlated systems of the GPT; that is, such
correlations will be superlocal [44,45]. It is reasonable to
assume that the GPT encompasses classical theory, so any
local correlation requiring shared randomness |λ| � d can be
produced by local measurements on separable states of the
GPT. Thus, OR nonlocality entails superlocality, i.e., |λ| > d.

Finally, let us point out that the above characterization
of OR nonlocality in the LOCC scenario naturally leads to
a DI characterization thereof. The idea is to obtain a suf-
ficient condition for OR nonlocality without reference to
theory-dependent parameters such as υmax. We suppose that
in protocol P3, Alice and Bob perform their measurements
simultaneously on the preshared state ϕAB. Importantly, there
is no classical communication from her to Bob or vice versa
until after their measurements. Further, we suppose that from
a subset of the resulting conditional probabilities P(a, b|x, y),
Alice and Bob construct a Bell-type inequality, e.g.,

P=
11 + P=

12 + P=
21 + P �=

22 � 3, (10)
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where P=
jk ≡ P(a j = bk|x j, yk ) and P �=

jk ≡ P(a j �= bk|x j, yk ).
In an arbitrary GPT, under maximal violation of this
inequality, the quantity on the left-hand side can go up to the
algebraic maximum of 4, while in QM it is 2 + √

2 ≈ 3.414.
By design, if Alice’s conditional probability has the local-

realist form P(b|a, x, y) = ∑
λ pλp(a|x, λ)pB(b|y, λ), i.e.,

Bob’s measurement merely reveals a preexisting value of y
on B, then the satisfaction of inequality Eq. (10) follows. Ac-
cordingly, the violation of the inequality implies the absence
of such a value and can thereby serve as the basis to certify the
entanglement in state ϕAB in a DI manner, i.e., irrespective of
the details of the operational theory governing the subsystems
A and B. Alice and Bob may perform a follow-up measure-
ment on their respective particles to confirm the absence of
entanglement in the postmeasured particles, which trivially
requires no theory-specific assumptions. By thus verifying the
disentangling action of their measurements, they obtain a DI
check of the reality condition (a) of Theorem 1.

In regard to condition (b), it turns out that in the context
of device independence, it can be relaxed by not requiring the
disturbances of particles A and B to be identical. As the viola-
tion of Eq. (10) precludes the possibility of a preexisting value
of y on B, Bob’s conditional state here is, in a sense, created
by Alice’s act of measurement. (To improve the semantics, we
let Bob’s measurement happen slightly later in their common
reference frame but in such a way that their measurements are
spacelike separated.) Ontological consistency of the formal-
ism then requires that the remote measurement-disturbance
of B be OR, given that the measurement disturbance of A is
OR under a violation of inequality Eq. (10). Otherwise, we
would have the incoherent situation in which A’s measurement
disturbance is real but the remote state preparation that it is
certified (by the Bell inequality) to have produced is not. This
observation provides a natural extension to the consistency
requirement of Feature 1 in the DI scenario.

We thus have the following strengthening of Theorem 2:
Given the violation of inequality Eq. (10), the remote mea-
surement disturbance of B under measurement x on A is
operationally real with a nonzero probability.

V. DISCUSSION AND CONCLUSIONS

The ontological question of whether measurement-induced
disturbance is real in QM or other nonclassical operational
theories was addressed in the present work by employing,
ironically, only operational considerations. As such, it can be
construed as providing a different response to the EPR para-
dox [5,46] than both Bohr’s [47] and Bell’s [48] responses.

Einstein, Podolsky, and Rosen asserted essentially that
quantum spatial steering entailed a “spooky action at a dis-
tance” [49], which they hoped could be banished in a more
complete version of QM. Employing a different criterion of
reality than Einstein, Podolsky, and Rosen, the present work
argued that the action at a distance is an unavoidable feature
of operational QM itself and not just of QM’s ontological
completion (as follows from Bell’s theorem).

The operational reality of remote measurement-
disturbance sheds light on the tension [50] between quantum
nonlocality and special relativity. In particular, it highlights
that quantum no-signaling is distinct from relativistic signal

locality. The former is a consequence of the tensor product
structure of the state space, with no association to light
speed, whereas the latter is essentially a prohibition of
superluminal transmission of information arising from the
Lorentz invariance of the light cone. Evidently, these two
no-go conditions belong to two distinct frameworks. In
point of fact, quantum nonlocality is nonsignaling even in
nonrelativistic QM.

In an instance of OR nonlocality, as far as Alice can
say, when she measures x and obtains outcome a, particle
B is instantaneously left in the state ϕ̃

a|x
B , given by Eq. (4).

The remote measurement-disturbance of B, given by Eq. (5),
thus represents a spacelike influence linking the event of
A’s measurement and the event of repreparation of B’s state.
Per Theorem 2, this influence is, nevertheless, real in an
operational sense and thus arguably imposes an intrinsic
time ordering on the two events. This observation under-
scores a further aspect of the distinction between quantum
no-signaling and signal locality in special relativity. Whereas
the latter is conceivably a not unanticipated speed limit on
information propagation, by contrast the former seems sur-
prising in light of OR nonlocality and prompts the question,
especially relevant in the context of reconstructing QM from
operational or information-theoretic principles [51–53], of
why an OR nonlocal theory, such as QM, is nonsignaling.
Indeed, we understand the complementaristic role played here
by the randomness of measurement outcomes in suppressing
the signaling (cf. [23–25]), but this answers only the “how”,
rather than the “why” aspect of the question.

Here, we offer a simple and brief answer: that no-signaling
is a consequence of the natural requirement of consistency
between the properties of single systems and those of reduced
systems. Suppose no-signaling could be violated in a GPT.
Then, inequality Eq. (9) could be violated without Alice’s
classical communication of the outcome of her measurement
x j . But if so, it would essentially mean violation of the local
uncertainty principle Eq. (8) at Bob’s end, contradicting this
property in the context of single systems.
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APPENDIX

1. Measurement incompatibility and disturbance

Suppose measuring x0 does not disturb the joint state ϕAB,
i.e., Mx0⊗u(ϕAB) = ϕAB (where u represents an identity op-
eration on B). Let xJ be the joint measurement on A and B
that is used to check for disturbance of A. This would entail
that x0 ⊗ u and xJ are compatible because we can construct
their joint measurement, given by J (a0, aJ |x0, xJ , ϕAB) ≡
p(a0|x0, ϕAB)p(aJ |xJ , ϕAB) for this state, simply by first mea-
suring x0 and then xJ and noting the respective outcome
probabilities. Thus, the measurement of x0 must (globally)
disturb ϕAB. This disturbance can, in principle, be detected
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by joint measurement xJ on systems A and B, whereby
SA→AB > 0.

2. Incompatibility and steering

The violation of Eq. (9) implies that the measurements
x0, x1, and x2 are pairwise incompatible. To show this, for sim-
plicity consider the two-term variant of the above inequality:

P (y0|x0) + P (y1|x1) � υ2, (A1)

where υ2 is the local uncertainty bound for two mea-
surements. Suppose x0 and x1 are jointly measurable

[36,37]. In place of Eq. (4), we would have ϕ̃
a0,a1|x0,x1
B ≡∑

λ p(λ)p(a0, a1|x0, x1, λ)ϕa0,a1|x0,x1,λ
B , where the conditional

probability p(aj |x j, λ) for either measurement should be
derivable as the marginal statistics of a “master measure-
ment”: p(a j |x j, λ) = ∑

a j
p(a0, a1|x0, x1, λ), where j ≡ j +

1mod2. But this means that the states ϕ
a0,a1|x0,x1,λ
B constitute

hidden states to reproduce the result of the two measure-
ments. Specifically, to implement the measurement of x0,
one marginalizes over a1: ϕ̃

a0|x0
B ≡ ∑

a1
ϕ̃

a0,a1|x0,x1
B and vice

versa.
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