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Enhanced quantum tunneling in quantum Zeno dynamics freezing the momentum direction
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Quantum tunneling is a fundamental quantum-mechanical effect involved in plenty of physical phenomena. Its
control would impact these phenomena and the technologies based on them. We show that the quantum tunneling
probability through a potential barrier can be increased to approach unity in a quantum Zeno dynamics undergone
by the tunneling particle in which the direction of the momentum is frequently monitored. We first model the
measurements of the momentum direction as selective von Neumann projections, and then as nonselective,
direction-sensitive interactions of the particle with probe particles. Nonselective measurements are more efficient
than selective measurements in enhancing the quantum tunneling probability.
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I. INTRODUCTION

To explain the quantum Zeno effect (QZE) it is often said
that “a watched pot never boils.” Frequent measurements that
ascertain whether a quantum system remains in its initial
state slow down its evolution. The QZE has been known for
almost a century [1], was given its name after [2], and has
been observed in diverse physical systems [3,4]. The simplest
manifestations take place in quantum two-level systems, for
example, the inhibition of decay of an unstable state [3] or
inhibition of quantum tunneling (QT) in a double-well po-
tential [5,6]. If the repeated measurements are faster than
the short-term parabolic transition probability characteristic
of Schrödinger evolution, decay and QT become less proba-
ble, and impossible with continuous measurements. Still, the
QZE or “paradox” is not devoid of controversies, as it is
also in the double well with different models of measurement
[7–11].

A generalization of the QZE is quantum Zeno dynamics
(QZD) [12]. The frequent measurements of an observable of
the system ascertain here whether the state of the system is
in a multidimensional subspace of the system’s Hilbert space
[13]. In QZD, the remaining or concomitant QZE (in the sense
of freezing the evolution) is more subtle: what tends to be
frozen is the transition from the multidimensional subspace
defined by the measurements to the complementary subspace,
but the system continues to evolve coherently within each
subspace [14]. QZD has recently been observed in a rubidium
condensate, where a superselection rule between two- and
three-dimensional subspaces arises [15].

QZD becomes more involved in an infinite-dimensional
Hilbert space [13], as that of a simple moving particle. In

all previous analyses the measurements involve position mea-
surements, which, being necessarily imprecise, are meant to
ascertain the location in a region of space, say �x. Reference
[16] provides a theoretical demonstration that the QZD in the
limit of continuous, selective measurements of position, mod-
eled as von Neumann projections, becomes a unitary evolution
confined in the Hilbert subspace defined by �x with hard,
Dirichlet boundary conditions. With a discrete number N of
measurements, a free particle—the Zeno arrow—is seen to
tend to stop in �x when N → ∞, forming a quantum cat state
of the particle moving forward and backward at the same time
[17]. In Ref. [18], computer simulations of QZD (although it
is called QZE) with measurements of position, modeled either
as nonselective projections or pointer measurements, are also
seen to freeze the particle. The dynamics of a particle sub-
jected to position measurements and undergoing reflection,
localization, or exclusion from the measurement region has
been studied in detail in Refs. [19,20].

To our knowledge, the complementary QZD with momen-
tum measurements in place of position measurements has not
been addressed. Except for the harmonic oscillator, there is
no space-momentum symmetry in the dynamics of a par-
ticle, so that QZD with position and that with momentum
measurements are different dynamical problems. For a free
particle, a QZD with projective measurements of position is
of interest because each measurement changes the position
probability density at the time of the next measurement, but
a QZD with measurements of momentum is trivial because
the measurements do not change the momentum probability
density. Expressed in the terms of modern quantum infor-
mation and technologies [21–23], momentum is a quantum
nondemolition variable for a free particle the measurement
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backaction effects of which can be evaded, and position is not.
For a particle subjected to forces, however, momentum is no
longer a quantum nondemolition variable, which triggers the
rich QZD studied here.

In this paper we show that repeated measurements that
would ascertain whether the momentum is in a region of
momentum space tend to freeze the momentum in that region.
We focus on the effect of this QZD on QT through a poten-
tial barrier. For the purpose of tunneling the barrier, it turns
out that measurements that simply determine the direction
of momentum (positive or negative in our one-dimensional
geometry) suffice for the direction to freeze, and therefore
for the particle to pass the barrier (see the animation in the
Supplemental Material [24]).

We first adopt an operational approach to measurements as
selective von Neumann projections. For a particle launched
towards positive x, only the possibility that the momentum
is positive in all measurements is considered. Its simplic-
ity allows us to simulate the effect of high enough number
of measurements with which the QT probability approaches
unity. Next we move to a more physical model of measure-
ment as a nonselective interaction with a probe particle to
which information on the direction of the particle is trans-
ferred, and which reduces the state of the particle to a mixture
of states with opposite momenta [25–27]. In this picture, all
possibilities that the momentum is positive at the last measure-
ment are considered. The measurements as interactions also
cause the direction to freeze, and the particle to tunnel, with a
probability higher than with the selective measurements, and
therefore also approaching unity as their frequency increases,
pointing to the emergence of a superselection rule between
Hilbert subspaces of different momenta.

Contrary to QZE-induced QT inhibition in a double well
by measuring well occupation, QZD with momentum mea-
surements promotes QT. As such, relevant related phenomena
would be those where enhancement of QT will have an
impact, such as facilitating nucleus-nucleus collisions in col-
liders [28], or controlling of reaction kinetics [29]. In optics,
promoting electron tunneling can have an impact in photoelec-
tron ionization generating high harmonics. Vice versa, high
harmonics are being employed to probe with attosecond reso-
lution proton dynamics [30] and electrons tunneling a barrier
[31,32]. These breakthroughs would bring closer to hand an
implementation of this QZD.

II. PRELIMINARIES

We consider a particle of mass m and initial state |ψ0〉 of
wave function 〈x|ψ0〉 = ψ0(x) = ψ (x) exp(ik0x) well within
the half space x < 0. The mean momentum p0 = h̄k0 is pos-
itive and such that its kinetic energy Ec = p2

0/2m is smaller
than the peak potential energy V0 of a barrier V (x) localized
about x = 0. For concreteness we will use V (x) = V0/(1 +
|x/b|α ), where b measures the half width of the barrier, and
α > 0 (α → ∞ is a square barrier). Of course the details
of the tunneling dynamics for different barrier shapes differ,
but the results concerning QT probability under QZD are the
same. For a well-directed particle translation dominates over
wave-packet spreading, implying that p0 is larger than its

uncertainty, �p. We rewrite the Schrödinger equation,

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V ψ, (1)

using the dimensionless spatial coordinate ξ = x/(h̄/�p) (x
in units of the wave function width �x ∼ h̄/�p) and dimen-
sionless time τ = t/(2m�x/p0) = t/(2h̄m/�pp0) (time in
units of the time taken for the particle to traverse its own wave
function), as

i
∂ψ

∂τ
= − 1

κ0

∂2ψ

∂ξ 2
+ κ0v0vψ, (2)

where v = 1/(1 + |ξ/ξb|α ), and ξb is the potential width in
units of the wave-function width. The parameters at work in
the QT dynamics are then v0 = V0/Ec and κ0 = p0/�p. The
situation of interest is that with v0 > 1 (QT) and κ0 > 1 (well-
directed particle).

III. QUANTUM ZENO DYNAMICS OF A TUNNELING
PARTICLE WITH SELECTIVE MEASUREMENTS

OF MOMENTUM DIRECTION

In contrast to previous research, the QZD considered here
is that experienced by the particle subjected to frequent mea-
surements of momentum, i.e., measurements that ascertain
whether the momentum is in a certain interval of momentum
space or not. However, in the context of QT, the QZD turns
out to be qualitatively similar if this interval is �p, any other
interval about p0, or simply positive.

In a first approach, the measurements are operationally
summarized as projections of the state onto the subspace
of positive momenta. These measurements are selective, i.e.,
we only consider the event that the momentum is positive
in all the measurements. This would be the situation with a
measuring device that eliminates the particle upon a negative
outcome. In the standard Zeno scheme, the particle evolves
according to (2) during a certain total time τmax, while the
evolution is N times interrupted to monitor the direction of
movement. The projective measurements are performed at the
equispaced time intervals �τ = τmax/N . Formally, the state of
the particle at the time τmax is given by

|φN 〉 = 1√
PN


e−iH�τ . . .
1√
P2


e−iH�τ 1√
P1


e−iH�τ |ψ0〉,

(3)

where H = (−1/κ0)∂2ψ/∂ξ 2 + κ0v0v(ξ ) is the Hamiltonian,

 = ∫ ∞

0 |κ〉〈κ|dκ is the projector onto the subspace of posi-
tive normalized momenta κ = p/�p, and Pn is the probability
that the momentum is positive at the n intermediate measure-
ment, so that the factors 1/

√
Pn normalize the state after each

projective measurement. After the N measurement at time
τmax, the probability that all outcomes were positive is the
product P(s)

N = P1P2 . . . PN .
To obtain P(s)

N , however, it is simpler and faster computa-
tionally to evaluate

|ψN 〉 = 
e−iH�τ N times
. . . . . . 
e−iH�τ
e−iH�τ |ψ0〉, (4)
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which is obviously related to the normalized state |φN 〉 in
(3) by |ψN 〉 = √

P1P2 . . . PN |φN 〉, and the norm of which,
〈ψN |ψN 〉 = P1P2 . . . PN = P(s)

N , yields directly the probability
that all outcomes were positive. If desired, the normalized
final state can be calculated from |φN 〉 = |ψN 〉/

√
P(s)

N .
On a computer, each 
e−iH�τ step is performed by solv-

ing (2) for the wave function in space representation using
a split-step fast Fourier-transform algorithm, and then elim-
inating negative momenta by multiplying the wave function
in momentum representation by the Heaviside step func-
tion. If 〈κ|ψN 〉 = ψ̂N (κ ) is the momentum wave function at
τmax, the probability that all outcomes were positive can be
evaluated as

P(s)
N = 〈ψN |ψN 〉 =

∫ ∞

−∞
|ψ̂N (κ )|2dκ (5)

(the lower limit can be set to zero due to the last projection at
τmax).

To analyze QT under this QZD, we choose ψ0(x) such that
the barrier does not yet affect the particle, and the time τmax

such that the transmission or reflection process is completed
(with or without measurements). For a particle launched from
the left, the probability of finding the particle to the right of the
barrier at τmax, P(s)

x>0 = ∫ ∞
0 |ψN (ξ )|2dξ , must coincide with

the probability P(s)
N that the momentum is positive, since the

reflected wave function at x < 0 has only negative momenta.
With a single measurement, P(s)

1 yields the standard QT prob-
ability.

In the example of Fig. 1(a), a Gaussian wave packet
(dashed curve) is launched against the potential barrier (dotted
curve). Its shape is neither too sharp (high α) nor too delocal-
ized (low α) to facilitate numerical calculations (less spatial
points and temporal steps are required). Without measure-
ments the QT probability is P1 = 0.162. Figure 1(b) evidences
that monitoring more and more frequently whether the direc-
tion remains positive increases the QT probability by freezing
the momentum direction (see the QT dynamics in more detail
in the videos in the Supplemental Material [24]). To illustrate
how the increasing tunneling probability P(s)

N is furnished
from one to the next measurement, Fig. 1(c) represents the
decreasing probability P1P2 . . . Pn that the momentum remains
positive as the number n of measurements performed in-
creases up to N . The larger N (the more steps down), the
higher P(s)

N (the less you go down). The QT probability P(s)
N is

represented as a function of N in Fig. 1(d) for different values
of κ0. As κ0 → ∞, the QT probability without measurements
tends to zero, which, given the fixed value of the barrier height
v0 > 1, can be regarded as the classical limit. As N → ∞,
the QT probability tends always to unity, but it needs more
measurements as κ0 increases.

The QZD of the tunneling particle, without and with mea-
surements, can be seen unfolded over time in the animations
in the Supplemental Material [24] and in Fig. 2. Without
measurements (left), the spike that emerges when the wave
function reaches the first turning point is mostly reflected
and spreads subsequently. With measurements of momentum
direction (right), the spike is not reflected, but transforms mo-
mentarily into a wide wave packet of low probability density
(τ � 2.36) and high positive current under the barrier, and

FIG. 1. (a) Partially transmitted and reflected probability den-
sity (solid curves) at time τmax = 6.24 for the input wave packet
ψ = (2/π )1/4 exp [−(ξ − ξ0 )2] exp(iκ0ξ ) (κ0 = 4, ξ0 = −4) at τ =
0 (dashed curve) through the barrier of width ξb = 1, α = 6, and
height v0 = 1.5 (red dotted curve) without any measurement. Tun-
neling probability is P(s)

1 = 0.162. (b) The same but with N =
24, 26, 28, and 210 measurements between τ = 0 and τmax yielding
respective tunneling probabilities P(s)

N = 0.31, 0.69, 0.90, and 0.97.
The weak reflected wave is eliminated by the projections. The ver-
tical lines indicate the turning points, the horizontal line the energy,
and the arrows the movement direction. See animations of (a) and
(b) from τ = 0 to τmax in Ref. [24]. (c) Probability that the momen-
tum direction remains positive at the nth measurement, for different
values of N . (d) Tunneling probability as a function of N for several
values of κ0.

quickly revives in a new spike beyond the second turning
point.

The QZD in phase space can be seen in the animations
of the corresponding Wigner distribution functions in the
Supplemental Material [24], and in the selected snapshots
in Fig. 3. In contrast to the unmeasured Wigner distribu-
tion (top), the frequently measured distribution (bottom) is

FIG. 2. For the same example as in Fig. 1, contour plot of the
probability density in space and time (a) without measurements and
(b) with N = 211 measurements. The horizontal white lines are the
classical turning points.
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FIG. 3. For the same example as in Fig. 1, Wigner distribution
function W (ξ, κ ) = (1/π )

∫ ∞
−∞ dηψ(ξ + η)ψ (ξ − η)e2iκη at the in-

dicated instants of time (a, b) without any measurement and (c, d)
with N = 211 measurements. The initial (τ = 0) Wigner distribution
function is in the box in (a) and (c). The white vertical lines localize
the classical turning points. See the evolution in time of the Wigner
distribution function in the animation in Ref. [24].

reflected at zero momentum towards positive momenta with
higher probability as N increases, while the potential barrier
substantially ceases to act as such. At tunneling times (e.g.,
τ � 2.36) the Wigner distribution function of the state of low
probability density under the barrier displays not only small
ripples but large alternate regions of positive and negative val-
ues (blue and red), indicating a highly nonclassical behavior.

IV. QUANTUM ZENO DYNAMICS OF A TUNNELING
PARTICLE WITH NONSELECTIVE INTERACTIONS

MEASURING MOMENTUM DIRECTION

These results motivate us to formulate the same problem
using a more physical model of the measurement process
[25–27], which in turn could shed light on how they could
be implemented in practice. Each measurement is modeled as
a short interaction with an environmental particle, or probe,
to which information on the direction of the particle is trans-
ferred. Upon tracing over the probe states after the interaction,
the positive and negative parts of the wave function decohere.
A possible implementation of these measurements would be
the elastic scattering of photons by a moving atom or ion,
as sketched in Fig. 4. Depending on whether a photon is
backscattered by the forward or backward moving atom, the
photon would be red or blue Doppler shifted, while the atom
remains substantially unaltered in its energy and momentum
[33]. These measurements discriminate between the two di-
rections of movement, but neither direction is selected.

With the same QZD scheme, the initial pure state |ψ0〉
evolves to |ψ1〉 = e−iH�τ |ψ0〉 in a first time interval �τ .
Under the action of the potential barrier and wave-packet

FIG. 4. Nonselective measurement of momentum direction of
an atom by photons. The backscattered photon is redshifted or
blueshifted depending on whether it finds the atom moving forwards
or backwards.

spreading, |ψ1〉 may have acquired positive and negative mo-
menta and hence can always be written as the sum |ψ1〉 =
|ψ1,+〉 + |ψ1,−〉 of the orthogonal vectors

|ψ1,+〉 =
∫ ∞

0
dκψ̂1(κ )|κ〉,

|ψ1,−〉 =
∫ 0

−∞
dκψ̂1(κ )|κ〉 (6)

of only positive or negative momenta. Of course they can be
written in terms of normalized states as |ψ1,±〉 = √

P±|φ1,±〉,
but as above for selective measurements, the probabilities of
positive and negative outcome are stored in |ψ1,±〉 as

〈ψ1,+|ψ1,+〉 = P+, 〈ψ1,−|ψ1,−〉 = P−.

The vectors |ψ1,±〉 are directly accessible in momentum
representation as ψ̂1,±(κ ) = ψ̂1(κ )θ (±κ ), where θ (·) is the
Heaviside step function, without computing any integral,
which saves computational time.

Interaction with the probe, the initial state of which is |χ〉,
leads to the transitions |ψ1,±〉|χ〉 → |ψ1,±〉|χ±〉 of the system.
Discrimination between positive and negative momenta of the
particle requires the states |χ+〉 and |χ−〉 of the probe to
be orthonormal. For the state |ψ1〉 at �τ , the result of the
interaction is the entangled state |ψ1,+〉|χ+〉 + |ψ1,−〉|χ−〉, the
density matrix of which is

ρ1,meas = (|ψ1,+〉|χ+〉 + |ψ1,−〉|χ−〉)

× (〈ψ1,+|〈χ+| + 〈ψ1,−|〈χ−|). (7)

If only the particle is considered after separation of the
probe, its reduced density matrix is obtained by tracing over
the probe:

ρ1,red = 〈χ+|ρmeas|χ+〉 + 〈χ−|ρmeas|χ−〉
= |ψ1,+〉〈ψ1,+| + |ψ1,−〉〈ψ1,−|, (8)

which is an incoherent mixture of a particle traveling forward
or backward with probabilities equal to the respective norms.

The particle is next left to evolve another time �τ to ρ2 =
e−iH�τρ1,redeiH�τ , that is,

ρ2 = e−iH�τ |ψ1,+〉〈ψ1,+|eiH�τ

+ e−iH�τ |ψ1,−〉〈ψ1,−|eiH�τ , (9)

where, as before, e−iH�τ |ψ1,+〉 ≡ |ψ2,+〉 = |ψ2,++〉 +
|ψ2,+−〉 and e−iH�τ |ψ1,−〉 ≡ |ψ2,−〉 = |ψ2,−+〉 + |ψ2,−−〉,
since, again, any of these states may acquire opposite
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momenta. Here, also as above,

|ψ2,++〉 =
∫ ∞

0
dκψ̂2,+(κ )|κ〉,

|ψ2,+−〉 =
∫ 0

−∞
dκψ̂2,+(κ )|κ〉,

|ψ2,−+〉 =
∫ ∞

0
dκψ̂2,−(κ )|κ〉,

|ψ2,−−〉 =
∫ 0

−∞
dκψ̂2,−(κ )|κ〉,

the norms of which,

〈ψ2,++|ψ2,++〉 = P+P++, 〈ψ2,+−|ψ2,+−〉 = P+P+−,

〈ψ2,−+|ψ2,−+〉 = P−P−+, 〈ψ2,−−|ψ2,−−〉 = P−P−−,

provide the probabilities of realization of the four events. The
density matrix is then written as

ρ2 = (|ψ2,++〉 + |ψ2,+−〉)(〈ψ2,++| + 〈ψ2,+−|)
+ (|ψ2,−+〉 + |ψ2,−−〉)(〈ψ2,−+| + 〈ψ2,−−|), (10)

and in a second interaction with a probe (|ψ2,···±〉|χ〉 →
|ψ2,···±〉|χ±〉) the density matrix of the particle-probe system
is

ρ2,meas = (|ψ2,++|χ+〉〉 + |ψ2,+−〉|χ−〉)

× (〈ψ2,++|〈χ+| + 〈ψ2,+−|〈χ−|)
+ (|ψ2,−+〉|χ+〉 + |ψ2,−−〉|χ−〉)

× (〈ψ2,−+|〈χ+| + 〈ψ2,−−|〈χ−|). (11)

Tracing over the probe after the interaction, the reduced den-
sity matrix of the particle is

ρ2,red = |ψ2,++〉〈ψ2,++| + |ψ2,+−〉〈ψ2,+−|
+ |ψ2,−+〉〈ψ2,−+| + |ψ2,−−〉〈ψ2,−−|, (12)

which is an incoherent mixture of four states of four possible
outcomes in the two measurements with norms equal to the
respective probabilities of realization.

This procedure is repeated up to N times, whereby
a mixture of 2N states, e.g., |ψN,++−++···+−〉 (the num-
ber of plus and minus signs is N), corresponding to the
2N possible outcomes in each of the N measurements
is obtained, with probabilities equal to their norms. As
with selective measurements, the 2N normalized states,
|φN,++−++···+−〉, can be obtained by dividing |ψN,++−++···+−〉
by

√〈ψN,++−++···+−|ψN,++−++···+−〉, if desired.
Among these states, there are 2N−1 states yielding positive

direction at the last measurement. Thus, the probability that
the direction of the particle is positive at the N measurement
is the sum of their respective probabilities:

P(ns)
N =

2N−1∑
〈ψN,···+|ψN,···+〉 =

2N−1∑ ∫ ∞

−∞
|ψ̂N,···+(κ )|2dκ (13)

(again the lower limit can be set to zero). Note that the term
with N positive signs is the probability that all outcomes were
positive and therefore coincides with P(s)

N in (5). We then
conclude that these interactions of the particle with probe

FIG. 5. (a) Partially transmitted and reflected probability den-
sity at time τmax = 3.56 for the input wave packet ψ =
(2/π )1/4 exp [−(ξ − ξ0 )2] exp(iκ0ξ ) (κ0 = 4, ξ0 = −2.67) at τ = 0
through the barrier of width ξb = 1, α = 6, and height v0 = 1.5 (red
dotted curve) without any measurement (dashed curve), and the same
with N = 16 measurements (solid curve). To concentrate the mea-
surements, 15 of them are performed between τ1 = 0.88 and τ2 = 3,
and the last one at τmax. QT probability without measurements is
P(ns)

1 = 0.162, and with N = 16 measurements is P(ns)
1 = 0.579. The

vertical lines indicate the turning points, the horizontal line the en-
ergy, and the arrows the movement direction. (b) QT probability as
a function of N when measurements are nonselective (black curve)
and selective (gray curve), for comparison.

particles discriminating the particle direction also result in
freezing the direction, and their efficiency is higher than with
selective measurements.

If, for brevity we call each incoherent state at the N th mea-
surement |ψN,i〉, the probability density of finding the particle

at ξ is 〈ξ |ρN,red|ξ 〉 = ∑2N

i |〈ξ |ψN,i〉|2 = ∑2N

i |ψN,i(ξ )|2, ver-
ifying

∫ ∞
−∞〈ξ |ρN,red|ξ 〉dξ = 1 since temporal evolution and

measurements are unitary transformations. For a particle ini-
tially located well before the barrier, and with a sufficiently
long time τmax, the probability that the particle is to the right
of the barrier,

P(ns)
x>0 =

∫ ∞

0
〈ξ |ρN,red|ξ 〉dξ =

2N∑
i

∫ ∞

0
|ψN,i(ξ )|2dξ, (14)

must coincide with P(ns)
N , implying also an enhanced QT prob-

ability.
We have implemented the above procedure on a computer

and relevant results are depicted in Fig. 5. Note that the num-
ber of times Schrödinger equation (2) is to be solved with N
measurements is 20 up to the first measurement, 21 up to the
second, and so on, i.e.,

∑N
n=0 2n = 2N+1 − 1, which grows ex-

ponentially and limits the maximum number of measurements
to a few tens in our computer facility. Given the difficulty
of simulating a high number of measurements, and that they
have no effect on the freely moving particle before and after
the barrier, the N measurements between τ = 0 and τmax are
concentrated in N − 1 measurements in a shorter time interval
[τ1, τ2] in which the wave function significantly overlaps the
potential, plus the N measurement at τmax for the reflection
or transmission process to be concluded. The interval [τ1, τ2]
is the same for all N , so that increasing N is the same as
increasing the frequency. Under the conditions specified in the
caption, Fig. 5(a) shows the spatial probability densities with
N = 1, with QT probability P(ns)

1 = 0.162, and with N = 16
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measurements, with QT probability P(ns)
16 = 0.579. The plot of

P(ns)
N versus N in Fig. 5(b) evidences the increasing probability

that the momentum direction is frozen, and hence the increas-
ing QT probability. Since P(s)

N (gray curve) approaches unity,
P(ns)

N (black curve) does faster.

V. CONCLUSION

Before concluding, we clarify that both QT inhibition in
QZD with position measurements (well occupation) [5,6] and
the present QT enhancement in QZD dynamics with momen-
tum measurements involve Zeno effects: they slow down or
freeze the magnitude being observed. They tend to generate
superselection rules that prohibit transitions between the re-
spective subspaces and their complementary ones.

On the other hand, anti-Zeno enhancement of QT by po-
sition measurements has also been described [34], usually
associated with less frequent measurements. Analogously, an
anti-Zeno inhibition of QT by measurements of momentum
direction appears to exist as well, as can be appreciated in the
initially decaying gray curve of Fig. 5(b) for a low number

of measurements. A detailed investigation of this anti-Zeno
effect is deferred to future work.

To conclude, we have unveiled the existence of a quantum-
mechanical dynamics of a particle—a QZD involving frequent
measurements of momentum direction—that deeply affects
QT up to the point of ensuring transmission. Given the
enormous advances in attosecond science (see, for example,
Refs. [31,32] and references therein for all-optical imaging
of tunneling electrons), “Zeno-assisted tunneling” could be
implemented in practice, which would impact the diverse
phenomena where QT is a key player.
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