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The characterization of physical systems relies on the observable properties which are measured, and how such
measurements are performed. Here we analyze two ways of assigning a description to a quantum system assum-
ing that we only have access to coarse-grained properties. More specifically, we compare the maximum entropy
principle method, with the Bayesian-inspired recently proposed average assignment map method [Correia et al.,
Phys. Rev. A 103, 052210 (2021)]. Despite the fact that the assigned descriptions by both methods respect the
measured constraints, and that they share the same conceptual foundations, the descriptions differ in scenarios
that go beyond the traditional system-environment structure. The average assignment map is thus shown to be a
more sensible choice for the ever more prevalent scenario of complex quantum systems. We discuss the physics
behind such a difference, and further exploit it in a quantum thermodynamics process.
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I. INTRODUCTION

Whether considering our everyday perception of the sur-
rounding environment or a sophisticated experimental setup,
a characterization of a physical system is given in terms of
measurement results of its observable properties. The char-
acterization of a physical system is thus not unique: aside
from considering which features are being observed, it is also
necessary to take into account how these features are being
observed.

For the first consideration, the “which features” part, given
a set of observed properties, say a set O = {oi} of expected
values oi, the objective of state inference is to assign to the
system a description that abides by the known data. However,
more often than not, the number of constraints is not suffi-
cient to single out a unique state for the system, i.e., there
are many states which are compatible with the known data.
Let �(O) be the set of all descriptions which are consistent
with the knowledge about the system. Back all the way to
Laplace’s principle of indifference, it is only reasonable to
appoint the same probability for each description in �(O),
and to assign the average description �(O) to the system.
The use of the maximum entropy principle (MEP) [1,2], i.e.,
to assign to the system the description in �(O) which has
the maximum Shannon entropy, made this intuitive idea more
mathematically concrete, allowing for the inclusion of con-
straints and symmetries, and extending its reach to continuous
sets. The MEP has found applications in fields as diverse
as biology, computer science, and financial markets [3–11].
Within physics, the MEP received a great deal of attention
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as it recovers the ensembles of statistical physics [12]. The
same success is observed in the quantum realm, where one
now assigns to the system the quantum state that maximizes
the von Neumann entropy, while respecting the known con-
straints [13,14].

Concerning “how” features are measured, most inference
methods, and the MEP in particular, are somewhat reti-
cent. For quantum systems, which are the subject of the
present contribution, the only point which is systematically
taken care of is the locality of the observables. Consider,
for instance, the scenarios described by the theory of open
quantum systems [15,16]. In such a case it is possible to
split the total system into two parts: the system of interest
S, which we assume to have access to, and the environ-
ment E , whose degrees of freedom we have no control of.
Aside from a possible restriction on the full system (like
the total energy), when inferring the total system descrip-
tion, one usually only knows about local properties of the
system.

More concretely, associate to the total system a Hilbert
space HS ⊗ HE , and assume that we know the expected val-
ues for a set O of subsystem S properties. Quantum mechanics
tells us that there exists a set of observables {Oi} and a den-
sity matrix �S , acting on HS , such that oi = tr(Oi�S ) for all
i ∈ {1, . . . , |O|}. As the total system lives in L(HS ⊗ HE ),
with L(H) representing the set of linear operators acting on
H, the reduced density matrix �S is obtained from the total
one �SE by “tracing out” system E degrees of freedom, i.e.,
�S = �trE [�SE ]. Here, the map �trE : L(HS ⊗ HE ) �→ L(HS )
is the partial-trace map. If one wants to assign a description to
the total system, the local constraints can be extended to the
full system as follows:

oi = tr
(
Oi �trE [�SE ]

) = tr
(
�∗

trE
[Oi] �SE

) = tr(Oi ⊗ 1E �SE ).

2469-9926/2022/106(1)/012219(17) 012219-1 ©2022 American Physical Society

https://orcid.org/0000-0002-8760-168X
https://orcid.org/0000-0001-5939-3230
https://orcid.org/0000-0002-8523-1048
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.012219&domain=pdf&date_stamp=2022-07-25
https://doi.org/10.1103/PhysRevA.103.052210
https://doi.org/10.1103/PhysRevA.106.012219


RAÚL O. VALLEJOS et al. PHYSICAL REVIEW A 106, 012219 (2022)

In the above, �∗
trE

: L(HS ) �→ L(HS ⊗ HE ) is the trace-dual
map associated to the partial-trace operation, which only aug-
ments the observable with the identity matrix in the E sector.
One can now use an inference method to assign a description
of the total system, which should abide by the constraints
oi = tr(Oi ⊗ 1E �SE ) for all i ∈ {1, . . . , |O|}.

However, with the control of quantum systems reaching
unprecedented levels, as driven by the development of modern
quantum technologies, a new scenario comes forth. In this
new picture, highly isolated complex quantum systems are
produced whose microscopic description is experimentally
challenging, requiring single-particle addressing, and theo-
retically hopeless, due to the exponential increase of system
dimension with the number of particles. In this new scenario,
not only the observed data are local, but also stems from an
effective description of the system.

In order to deal with this new class of phenomena, quantum
channels with the output dimension smaller than the input
dimension, dubbed coarse-graining channels, were used to
obtain a system’s effective description [17–31]. In this formal-
ism, a coarse-graining map is thus a completely positive map
� : L(HD) �→ L(Hd ) such that dim(HD) > dim(Hd ). Very
much like the partial-trace map, the output description has
fewer degrees of freedom than the total description. Differ-
ently from the partial trace, general coarse-graining maps do
not require a clear-cut split between system and environment,
being thus more appropriate to effectively describe complex
highly interacting isolated quantum systems. See Fig. 1 for an
example of effective description possible to be characterized
by general coarse-graining maps, and how it differs from the
usual partial-trace situation.

In the proposed framework, suppose that to a system’s
effective description we associate a Hilbert space Hd , and
that we know the expected values for a set O of effective
properties. As before, there exists a set of observables Oi and
a density matrix �d , in L(Hd ), such that oi = tr(Oi�d ) for all
i ∈ {1, . . . , |O|}. Since �d is an effective description, we can
assume that it is the result of a coarse-graining map acting on
a microscopic description �D ∈ L(HD), i.e., �d = �[�D]. If
we want to infer the microscopic description, we can extend
the known constraints as previously:

oi = tr(Oi �[�D]) = tr(�∗[Oi] �D).

In the above, �∗ : L(Hd ) �→ L(HD) is the trace-dual map
associated with the coarse-graining channel map �. These
constraints can now be included in an inference method to
obtain a microscopic description that abides by the coarse-
grained data.

While in principle one could use the MEP to assign a de-
scription to the microscopic state, when studying the effective
dynamics that might emerge from a coarse-grained dynam-
ics [32], an assignment map naturally surfaced. Consider the
set of all states which are consistent with the coarse-grained
data, i.e., the set

��(O) = {ψ ∈ L(HD) | tr(Oi�[ψ]) = oi,

∀ i ∈ {1, . . . , |O|}}. (1)

As in the foundations of the MEP, in Ref. [32] it was sug-
gested to assign to the underlying system the description

FIG. 1. Here we represent a quantum system composed of a
set of spins with the interaction among them represented by lines.
In a fully microscopic description we must take into account all
degrees of freedom. (a) In the open quantum system scenario the
effective description of a system is given by splitting the microscopic
degrees of freedom between into those we have access to, the red
spins identified as the system, from those we do not have access
to, the blue spins identified as the environment, which are removed
by the partial-trace map. (b) In this case the effective description of
the underlying microscopic system is given by effective spins, each
one related to a coarse-grained detection of two underlying spins.
Such a scenario models a situation where we do not resolve any
individual microscopic degree of freedom of the system, but we only
have access to the effective description that emerges from a blurry
detection of the whole system.

given by the uniform average of the states, ��(O)
ψ

. The map
A� : O �→ L(HD) that takes the known coarse-grained data
and assigns to the system a uniform average among all the
fine-grained descriptions that agree with the data was named
average assignment map (AAM) (more details below).

Due to the undeniable importance of the maximum entropy
principle in the whole physics, it is the aim of this paper
to compare the assignments inferred by the MEP with those
inferred by the AAM. Furthermore, we explore the difference
between these two assignment maps in a simple thermody-
namical process.

II. STATE INFERENCE FROM COARSE-GRAINED DATA

In this section we give further details about the average
assignment map, and recall the maximum entropy principle.
For both inference methods, we will assume that we have
access to an effective system description, living in L(Hd ),
for which we know the coarse-grained data O = {oi} com-
ing from the expected values of a set {Oi} of corresponding
effective observables. Moreover, we will use that the system
effective description is generated by a coarse-graining map
� : L(HD) → L(Hd ).

In the scenario pictured above, notice that a fine-grained
state ψ satisfying the coarse-grained constraints O is in gen-
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eral not unique. The set of all fine-grained states in L(HD)
that abide by the coarse-grained constraints is then ��(O)
[see Eq. (1)].

A. Average assignment map (AAM)

From an operational perspective, when assembling an
effective preparation �, which is accessed through a coarse-
graining map �, and with properties O, microscopically we
are in fact sampling from the set ��(O). Due to the lin-
earity of the expectation value, this perspective suggests an
averaging map A� : O → L(HD) that assigns the appropriate
description to the microscopic ensemble [32]:

A�[O] ≡ ��(O)
ψ =

∫
dμψPr�(ψ |O) ψ, (2)

where dμψ is a prior uniform measure over states in L(HD),
and Pr�(ψ |O) is a probability density of having the micro-
scopic state ψ given the macroscopic constraints imposed by
O and the coarse-graining map �. Note that Pr�(ψ |O) = 0
for any ψ 	∈ ��(O).

In the particular case where the set O is big enough as to
allow for the full state reconstruction of � in L(Hd ), that is O
is a tomographically complete set of values, then we can see
A� as a map between states, A� : L(Hd ) → L(HD). In this
case, that without loss of generality we hereafter concentrate
on, the AAM map can be more directly written as

A�[�] =
∫

dμψδ(�[ψ] − �) ψ. (3)

The delta distribution makes clear that all states in ��(�) are
taken with the same weight in the convex sum.

It is important to discuss the role of the measure μψ . In a
situation where the microscopic system is very well isolated,
all the ignorance about the system state is classical. In this
case, one can consider that the set ��(�) contains only pure
states, and the measure dμψ will be the Haar measure over
pure states in HD. However, if the coupling to the environment
cannot be neglected, then one needs to include mixed states
in ��(�), and the choice of the measure μψ is no longer
unique. Below we explore different measures, and see how
they change the assigned description. The important point,
nonetheless, is to realize that the measure μψ allows one to
include prior knowledge about the way the system is being
prepared.

We used two different methods for calculating the integral
in (3) above, the choice of method depending on � and μψ .
The first method consists in direct calculation of the integral
using some representation of the δ (to be described later).

An alternative method takes advantage of the symmetries
of �, and we briefly introduce it in what follows.

Definition 1. Channel symmetry. Let U be a unitary opera-
tor in L(HD). We say that U is a symmetry of � if

�[UψU †] = �[ψ] (4)

for all ψ ∈ L(HD).
It is sufficient to require that the identity above holds for all

pure states, for its validity is extended to all linear operators
by linearity. Moreover, it is easy to see that all the symmetries
of � form a group.

Assume that μψ is unitarily invariant, i.e.,

μψ = μV ψV † (5)

for all unitary V in L(HD). Then, let U be a symmetry of �,
and make the change of variables ψ → UψU † in Eq. (3), to
obtain

A�[�] =
∫

dμψδ(�[ψ] − �)UψU †. (6)

As the assigned state does not change by the application of the
symmetry on the fine-grained states, we can average, with an
arbitrary measure, over a subset of symmetries and still have
the same assignment.

Given that averages are linear functions, we can perform
the average over the symmetries before the average over the
microstates. In some special cases (we exhibit two examples
below) it turns out that such an average over some symmetries
presents a remarkable property:

UψU † = f (�[ψ]), (7)

with f some function (possibly nonlinear). That is, the
average over the symmetries is only a function of the coarse-
grained data, as f (�[ψ]) = f (�). If that is the case, inserting
this result into (6), and using the normalization of the measure,
we arrive at

A�[�] = f (�). (8)

B. Maximum entropy principle (MEP) assignment

As mentioned in the Introduction, the MEP allows for the
inclusion of all sorts of constraints. Let S(�) = −tr(� ln �) be
the von Neumann entropy of a state �. The MEP, taken into
account the coarse-grained data O, can be written as

ψMEP = arg max S(ψ )

s.t. tr(Oi�[ψ]) = oi, ∀ i ∈ {1, . . . , |O|}. (9)

The above constraints can be equivalently written as
tr(�∗[Oi]ψ ) = oi, where we employed the trace-dual channel
associated with the coarse-graining map �.

To solve the MEP optimization, it is the standard practice
to use the Lagrangian

L = −tr(ψ ln ψ ) −
∑

i

λi(tr(�∗[Oi]ψ ) − oi ), (10)

where λi is the Lagrange multiplier associated with the ex-
pected value oi. The state that maximizes the entropy, while
satisfying all the constraints, can then be written as

ψMEP = 1

Z
exp

(
−

∑
i

λi�
∗(Oi )

)
, (11)

where Z is the partition function, given by Z =
tr{exp [−∑

i λi�
∗(Oi )]}, as required by the normalization

condition of ψMEP. Finally, the Lagrange multipliers are
related to the constraints via the equations:

oi = − ∂

∂λi
ln Z, (12)

for all i ∈ {1, 2, . . . , |O|}.
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In the case where O is sufficient to tomographically re-
construct the effective state � ∈ L(Hd ), one can simply write
tr(Oi�) instead of oi in the expressions above.

III. AAM VS MEP: THREE PHYSICAL SCENARIOS

In what follows we compare the AAM and the MEP as-
signments for three physical scenarios. The first one is the
traditional case of an open quantum system with local con-
straints; here we want to verify whether the AAM gives the
same results as the MEP, as one would expect. For the other
two instances the coarse-graining channel cannot be written
simply as a partial trace of a subsystem; for these two physical
scenarios we expect to see differences between the AAM and
MEP assignments, and we explore how such differences may
prevail from small to large microscopic systems.

A. Partial trace

In this scenario the total system is described by a density
operator in L(HS ⊗ HE ), and the local constraints are de-
scribed by the system’s state � ∈ L(HS ). The full system’s
description is thus related to the local one via the partial-trace
map �trE : L(HS ⊗ HE ) �→ L(HS ). In such a situation, the
set of fine-grained states that are consistent with the local
constraints is then

��trE
(�) = {

ψ ∈ L(HS ⊗ HE ) | �trE [ψ] = �
}
.

1. AAM assignment

As the trace is basis independent, for any unitary UE acting
on HE we have that �trE [(1 ⊗ UE )ψ (1 ⊗ U †

E )] = �trE [ψ].
The unitary operators of the form U = 1 ⊗ UE thus form
a symmetry group for �trE , and we can readily apply the
symmetry method to obtain the average assignment for the
partial-trace channel. Performing the average over the sym-
metry group employing the Haar measure we obtain

(1 ⊗ UE ) ψ (1 ⊗ U †
E ) = �trE [ψ] ⊗ 1E

dE
, (13)

with dE the dimension of HE . Following the result in Eq. (8),
we conclude that

AtrE [�] = � ⊗ 1E

dE
. (14)

Note that μψ in (6) can be any unitarily invariant measure.
Thus, (14) gives the average assignment for the partial-trace
channel, both for averages over pure or mixed states.

2. MEP assignment

Since we are assuming to completely know the system’s
state � ∈ L(HS ), we can consider to know the expectation
value of a tomographic set of observables {σi}, with i ∈
{x, y, z}. For the partial-trace map, we then have �∗

trE
(σi ) =

σi ⊗ 1E . As such, the state on the total space that maximizes
von Neumann’s entropy is

ψMEP = 1

Z
e− ∑

i λiσi⊗1E = e− ∑
i λiσi

ZS
⊗ 1E

dE
, (15)

with ZS = tr[exp(−∑
i λiσi )]. Nevertheless, as the local sys-

tem state is fixed by the constraints, we have that the λi are

such that

ψMEP = � ⊗ 1E

dE
. (16)

We therefore see that for the partial-trace case, where full
knowledge about the system state is given, both the AAM
and the MEP assign the same global description for the total
system (system+environment).

B. Blurred and saturated detector

Now we introduce our first example of a coarse-graining
map that cannot be reduced to the partial trace of a sub-
system. The scenario described by the blurred and saturated
coarse-graining map �BnS is suggested by optical-lattices
experiments [33–35]. In such experiments cold atoms are
trapped in optical potential wells. Quantum information pro-
cessing is done by encoding qubits in the atomic energy
levels. The readout of information is commonly carried out
by a fluorescence technique [36], which for our illustrative
purposes can be described, in the single-atom case, as follows:
a laser with a well-defined frequency is shone over the atom;
if the atom is in the excited state, represented by |1〉, a rapidly
decaying transition is resonantly stimulated and the atom scat-
ters light in all directions; if the atom is the ground state, state
|0〉, the laser is far from resonance, and no light is scattered.

Now imagine that two neighboring atoms are present in
the optical lattice, but due to experimental issues it is not
possible to distinguish from which atom the light scattered in
the fluorescence measurement comes from. In this situation,
the two atoms are seen as an effective single two-level atom.
The full coarse-graining map modeling this situation is given
below (details can be found in [24,29,32,37]):

�BnS[|00〉〈00|] = |0〉〈0| �BnS[|10〉〈00|] = 1√
3
|1〉〈0|

�BnS[|00〉〈01|] = 1√
3
|0〉〈1| �BnS[|10〉〈01|] = 0

�BnS[|00〉〈10|] = 1√
3
|0〉〈1| �BnS[|10〉〈10|] = |1〉〈1|

�BnS[|00〉〈11|] = 1√
3
|0〉〈1| �BnS[|10〉〈11|] = 0

�BnS[|01〉〈00|] = 1√
3
|1〉〈0| �BnS[|11〉〈00|] = 1√

3
|1〉〈0|

�BnS[|01〉〈01|] = |1〉〈1| �BnS[|11〉〈01|] = 0
�BnS[|01〉〈10|] = 0 �BnS[|11〉〈10|] = 0
�BnS[|01〉〈11|] = 0 �BnS[|11〉〈11|] = |1〉〈1|.

(17)

Although inspired by the resonance fluorescence measure-
ment of cold atoms in optical lattices, the above map has
no intention to fully capture all the experimental nuances.
Nevertheless, it is worth stressing that �BnS cannot be reduced
to a simple partial trace of one of the subsystems. This can be
immediately apprehended by observing the diagonal elements
�BnS[|01〉〈01|] = �BnS[|10〉〈10|] = |1〉〈1|: the equalities here
are not compatible with the partial trace of either subsystem.
For the coherence terms, the 1/

√
3 factor is the largest possi-

ble while keeping �BnS completely positive [24,37].
We then proceed to contrast the AAM and the MEP as-

signments for this, physically inspired, but not traditionally
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described, situation. As for the partial-trace case, we will
assume to have a tomographic description of the effective
system, i.e., we will assume that to know � ∈ L(H2), and we
want to determine an assignment in L(H4) which abides by
the constraints. The set of fine-grained states that are compat-
ible with the effective system is now

��BnS (�) = {ψ ∈ L(H4) | �BnS[ψ] = �}.

1. AAM assignment

In what follows we obtain the AAM assignment consider-
ing both pure and mixed states in the set �BnS(�). We start
by employing the symmetry method for pure states, and then
continue with direct integration for both cases.

a. Symmetry method: pure-state measure. Let ψ = [ψ]i j ,
with i, j ∈ {0, 1, 2, 3}, be the matrix representation in the
computational basis of a generic state in L(H4), where for the
moment we ignore the trace, positivity, and purity constraints
that a pure quantum state must fulfill. For the present coarse-
graining map, we have

�BnS[ψ] =
(

ψ00
ψ01+ψ02+ψ03√

3
ψ10+ψ20+ψ30√

3
ψ11 + ψ22 + ψ33

)
. (18)

Using the above expression in the definition of a channel
symmetry (4), as we show in Appendix A, the symmetries of
�BnS can be written as

U = 1 ⊕ 1 ⊕ V,

where the operators on the right-hand side act on the following
subspaces: the first subspace is given by the span{|0〉}, the
second one by span{(0, 1, 1, 1)T /

√
3}, and the third one is

an arbitrary two-dimensional subspace orthogonal to the first
two. In this way, V is an arbitrary unitary matrix in two dimen-
sions, such that the group of symmetries of �BnS is isomorphic
to U (2). Following the recipe of the symmetry method ex-

plained above, we chose a parametrization of V ∈ U (2), and
average over the symmetry group to obtain

UψU † =

⎛
⎜⎝

© � � �
�∗ ♦ � �
�∗ � ♦ �
�∗ � � ♦

⎞
⎟⎠, (19)

where the symbols are given by

© = ψ00, (20)

� = 1
3 (ψ01 + ψ02 + ψ03), (21)

♦ = 1
3 (ψ11 + ψ22 + ψ33), (22)

� = 1
6 (ψ12 + ψ13 + ψ23 + ψ21 + ψ31 + ψ32). (23)

Looking at Eq. (18), and imposing �BnS[ψ] = �, we note that
for an arbitrary ψ we must have

© = �00, ♦ = �11

3
, � = �01√

3
, (24)

where �mn, with m, n ∈ {0, 1}, are the matrix coefficients of �

in the computational basis.
The �, however, cannot be directly written only in terms of

the components of �. If we now assume that ψ is a pure state,
then we can write

ψi j = cic
∗
j , where |ψ〉 = (c0, c1, c2, c3)T . (25)

In this case we have

� = 3 |�|2
2 © − ♦

2
= |�01|2

2 �00
− �11

6
. (26)

Putting all together, when μψ is the uniform measure over
pure states, then the average assignment map leads to

A�BnS [�] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�00
�01√

3
�01√

3
�01√

3

�∗
01√
3

�11

3
|�01|2
2�00

− �11

6
|�01|2
2�00

− �11

6

�∗
01√
3

|�01|2
2�00

− �11

6
�11

3
|�01|2
2�00

− �11

6

�∗
01√
3

|�01|2
2�00

− �11

6
|�01|2
2�00

− �11

6
�11

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

It is interesting to realize that in this case the AAM depends
in a nonlinear way on the elements of �. This nonlinearity
was discussed in greater detail, and applied in an effective
communication scenario, in Ref. [25].

b. Explicit integration method: pure-state measure. Before
using direct integration to calculate the matrix elements cor-
responding to � in Eq. (19) for the case of a mixed-state
measure, first we reproduce the pure-state measure result.
This will allow us to exhibit the method in simpler setting.
After that, the generalization to a mixed-state measure will be
relatively straightforward.

In what follows, in order to simplify the calculations’ pre-
sentation, we employ a hybrid notation for the effective states

� ∈ L(H2): in part we use its computational basis elements,
and in part its Bloch vector representation. Given a fixed
effective state � we write it as

� =
(

�00 0
0 �11

)
+ 1

2
(x σx + y σy). (28)

In the above expression, σi, with i ∈ {x, y, z}, are the usual
Pauli matrices, x = tr(� σx ) = 2 Re(�01), and y = tr(� σy) =
2 Im(�01).

As we are performing the integration over the pure-state
measure (the uniform Haar measure), we directly make use of
the pure-state structure, as specified in Eq. (25). The action of
the coarse-graining map �BnS in a generic pure state can then
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be explicitly written as

�BnS[ψ] =
(

c∗
0c0 c0(c∗

1 + c∗
2 + c∗

3 )/
√

3

c∗
0(c1 + c2 + c3)/

√
3 c∗

1c1 + c∗
2c2 + c∗

3c3

)
.

(29)
With the above representations, the average assignment map,
Eq. (3), can be expanded as follows for the present case:

A�BnS [�] ∝
∫

dμψδ(c∗
0c0 − �00)

× δ(c∗
1c1 + c∗

2c2 + c∗
3c3 − �11)

× δ(tr(�BnS[ψ] σx ) − x)

× δ(tr(�BnS[ψ] σy) − y) ψ ≡ I, (30)

where ∝ indicates that the average state given by the left-
hand side, expression, named I, may not be normalized. The
normalization constant N is given by

N ≡
∫

dμψδ(c∗
0c0 − �00)

× δ(c∗
1c1 + c∗

2c2 + c∗
3c3 − �11)

× δ(tr(�BnS[ψ] σx ) − x)

× δ(tr(�BnS[ψ] σy) − y). (31)

The average assignment will then be given as a quotient of
two integrals

ABnS[�] = I
N . (32)

Both integrals will be evaluated using the same scheme we
now show. The first step is to write the integration measure as
a function of the coefficients of |ψ〉 = (c0, c1, c2, c3)T ≡ c:

dμψ =
∏

i

d Re(ci )d Im(ci ) ≡ d (c†, c). (33)

To write the measure as d (c†, c) is a reminder of its explicit
dependence on the complex coefficients ci. Note that the nor-
malization of |ψ〉 is implicit in the first two deltas in (30), as
long as �00 + �11 = 1.

For the present scenario, the effective state � is fixed, and
therefore its components in the computational basis �i j are
also fixed. Nevertheless, for the sake of calculation we will
take them as independent variables. As we are going to per-
form integral transformations, more specifically Laplace (L)
and Fourier (F) transformations [38,39], and then take their
inverse transformations, their “temporary” independence will
be just a calculation artifact. Within this perspective, as �00

and �11 are positive valued, we can write

δ(c∗
0c0 − �00) = L−1{L{δ(c∗

0c0 − �00)}(s0)}(�00)

= L−1

{∫ ∞

0
d�00 e−s0�00δ(c∗

0c0 − �00)

}
(�00)

= L−1{e−s0 c∗
0c0}(�00). (34)

Similarly, for �11,

δ(c∗
1c1 + c∗

2c2 + c∗
3c3 − �11) = L−1

{
e−s1 (c∗

1c1+c∗
2c2+c∗

3c3 )
}
(�11).

(35)

For the remaining components, x and y, as they might
assume negative values, we perform Fourier transformations:

δ(tr(�BnS[ψ] σx ) − x)

= F−1{F{δ(tr(�BnS[ψ] σx ) − x)}(kx )}(x)

= F−1

{∫ ∞

−∞
dx e−ikx xδ(tr(�BnS[ψ] σx ) − x)

}
(x)

= F−1{e−ikx tr(�BnS[ψ] σx )}(x)

= F−1{e−ikx c �∗
BnS[σx] c† )}(x). (36)

In the last line we employed the dual channel �∗
BnS, the

definition of ψ = cc†, and the cyclic property of the trace.
Proceeding exactly in the same fashion for the y component,
we get

δ(tr(�BnS[ψ] σy) − y) = F−1{e−iky c �∗
BnS[σy] c† )}(y). (37)

After transforming all the deltas as shown above, and
interchanging the order of integration between the inverse
transformations and the integral over states, we can define the
Laplace- and Fourier-transformed versions of both I and N :

Ĩ[s0, s1, kx, ky] =
∫

d (c†, c) e−c†Ac c c†, (38)

Ñ [s0, s1, kx, ky] =
∫

d (c†, c) e−c†Ac, (39)

where the matrix A is given by

A = diag (s0, s1, s1, s1) + i�∗[kxσx + kyσy] (40)

=

⎛
⎜⎜⎜⎜⎜⎝

s0
ikx+ky√

3

ikx+ky√
3

ikx+ky√
3

ikx−ky√
3

s1 0 0
ikx−ky√

3
0 s1 0

ikx−ky√
3

0 0 s1

⎞
⎟⎟⎟⎟⎟⎠. (41)

In this way, the integrals for Ĩ and Ñ are well-defined Gaus-
sian integrals (as s0 and s1 are positive, A + A† is positive
definite), which can be readily performed [40]:

Ñ [s0, s1, kx, ky] = π4

det A
, (42)

Ĩi j =
∫

d (c†, c) e−c†Acc∗
i c j = π4

det A
A−1

ji , (43)

where A−1
ji stands for the ji element of A−1.

The next step is to perform the inverse transforms. Al-
though tedious, this step can be directly performed with the
aid of a mathematical software like Mathematica [41]. Further
details are to be found in Appendix B.

With this final step, all the elements of A�BnS (�), and in
particular the one denoted by the �, can be obtained. The
result, as expected, is exactly the same as the one shown in
Eq. (27).

c. Explicit integration method: mixed-state measure. Up to
now, when dealing with the �BnS coarse-graining map, we
assumed that the set ��BnS (�) contained only pure states. Now
we deal with the situation where the fine-grained system might
be coupled to some other system that we do not have control
of, some environment E , and thus all the preparations of our
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system of interest in L(HD) are already intrinsically described
by a mixed state. In such a situation, there exists no unique
uniform measure over mixed states. One way to circumvent
this is by employing the unique measure of pure states over
the whole space, system, and environment, and trace out the
environmental degrees of freedom [42].

Within this mindset, we write

��BnS (�) = {trE (�) | � ∈ L(HD ⊗ HE ),

�BnS ◦ trE [�] = �},
with � a pure state in L(HD ⊗ HE ). The average assignment
map is then expressed as

A�BnS [�] =
∫

dμ�δ(� ◦ trE [�] − �) trE [�], (44)

with dμ� the Haar measure over HD ⊗ HE . It is important
to notice that different environment dimensions will lead to
different induced measures of mixed states in L(HD) [42].
This is physically related to “how” open our system of interest
is, and its implication will be explored below.

Let {|m〉}, with m ∈ {0, 1, 2, 3}, be the computational basis
in HD, and let {|φk〉}, with k ∈ {1, 2, . . . , dE }, be an orthonor-
mal basis for HE , whose dimension is dE . Then, in order to

follow the steps for the pure-measure case, we write

|�〉 =
dE∑

k=1

3∑
m=0

ck
m|m〉S ⊗ |φk〉E (45)

and evaluate

trE |�〉〈�| =
dE∑

k=1

(
3∑

m=0

ck
m|m〉

)(
3∑

m′=0

ck∗
m′ 〈m′|

)

≡
dE∑

k=1

|ψk〉〈ψk|. (46)

In the above,

|ψk〉 =
3∑

m=0

ck
m|m〉 (47)

are subnormalized pure states in HD. Associating to each
pure state |ψk〉 a coordinate vector, i.e., |ψk〉 → ck =
(ck

0, ck
1, ck

2, ck
3)T we can write trE |�〉〈�| = ckck†, where the

summation over repeated indices is assumed whenever it is
not explicitly written.

Like in the pure-state measure, we can split the deltas and
define

A�BnS [�] ∝
∫

dμ�δ
(
ck∗

0 ck
0 − �00

)
δ
(
ck∗

1 ck
1 + ck∗

2 ck
2 + ck∗

3 ck
3 − �11

)
δ(ck† �∗

BnS[σx]ck − x)δ(ck† �∗
BnS[σy]ck − y) ck′

ck′† ≡ Imixed,

(48)

Nmixed ≡
∫

dμ�δ
(
ck∗

0 ck
0 − �00

)
δ
(
ck∗

1 ck
1 + ck∗

2 ck
2 + ck∗

3 ck
3 − �11

)
δ(ck† �∗

BnS[σx]ck − x)δ(ck† �∗
BnS[σy]ck − y), (49)

where the integration measure now reads as

dμ� =
dE∏

k=1

d (ck†, ck ). (50)

Following the pure-state measure recipe, we now perform the
integral transformations to obtain

Ĩmixed =
dE∑

k′=1

(
dE∏

k=1

∫
d (ck†, ck ) e−ck†Ack

)
ck′

ck′†

= dE Ñ dE −1 Ĩ[s0, s1, kx, ky] (51)

and

Ñmixed =
(

dE∏
k=1

∫
d (ck†, ck ) e−ck†Ack

)
(52)

= Ñ dE [s0, s1, kx, ky], (53)

with A, Ñ , and Ĩ as in the previous section (pure case).
After doing the inverse transforms (see Appendix B), we

arrive at the following result:

� =
{

dE
3dE −1

|�01|2
�00

− �11

3(3dE −1) mixed states,
|�01|2
2�00

− �11

6 pure states.
(54)

We included the expression for pure states for the sake of
comparison. The pure case corresponds to dE = 1.

In Fig. 2 we show a comparison between pure- and mixed-
prior assignments using the trace distance (
) as a measure of
similarity. We plot the probability density Pr(
|dE ) of obtain-
ing a distance 
 between the assignments using the pure-state
measure and the mixed-state measure, given a fixed environ-
ment dimension dE . An analytical expression for Pr(
|dE ) is
derived in Appendix C, and reads as

Pr(
|dE ) = 3(
 − 2a)2

8a3
, 0 � 
 � 2a, (55)

where

a = dE − 1

2(3dE − 1)
. (56)

As expected, and clearly shown in Fig. 2, the probability of
large differences between the pure and mixed measures is
greater for big environments. In other words, the error that
one makes in assuming a closed system, and thus employing
a pure-sate measure as prior, is smaller when the environment
is small.

2. MEP assignment

To obtain the traditional MEP assignment for the sit-
uation described by the blurred and saturated detector
coarse-graining map �BnS, we start from the general MEP
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0
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FIG. 2. Comparison between pure and mixed priors. The curves
represent the probability density Pr(
|dE ) of obtaining a distance

 between the pure and mixed assignments, given a fixed envi-
ronment dimension dE , when sampling effective states uniformly
from the Bloch sphere. According to their probabilities at the origin,
the curves correspond to dE ∈ {2, 3, 4, 8, ∞} ordered from top to
bottom.

assignment prescription:

ψ
�

MEP = 1

Z
exp

(
−

∑
i∈{x,y,z}

λi�
∗
BnS[σi]

)
, (57)

with �∗
BnS : L(H2) → L(H4) the trace-dual map related to

�BnS. The matrix in the exponent of Eq. (57) can be exactly
diagonalized, and then exponentiated.

The ψMEP for the present scenario has the same structure
shown in Eq. (19), but now its elements read as

© = 1

Z

(
cosh λ − λz sinh λ

λ

)
, (58)

� = − 1

Z

(
(λx − iλy) sinh λ√

3 λ

)
, (59)

� = 1

3Z

(
λz sinh λ

λ
− eλz + cosh λ

)
, (60)

♦ = 1 − ©
3

, (61)

with the partition function given by

Z = 2(cosh λ + eλz ). (62)

By imposing the constraint

�
[
ψ

�

MEP

] = �, (63)

we find that the elements denoted by ©, ♦, and � have the
same expression as in the case of the average assignment
[see Eq. (24)]. However, the elements expressed by a � are
different:

�MEP = �pure − 1

2Z2�00
. (64)

Despite the fact that Z is a function of only the effective
properties, the effective state � in the present case, we were
not able to obtain an analytical expression Z = Z (�), the im-
position in Eq. (63), or the equivalent set of equations in (12),

0.00 0.05 0.10 0.15 0.20 0.25
0

10

20

30

40

FIG. 3. Comparison between the MEP and AAM assignments:
�BnS. The curves represent the probability density Pr(
′|dE ) of
obtaining a distance 
′ between the MEP and AAM assignments,
given a fixed environment dimension dE , when sampling effective
states uniformly from the Bloch sphere. The distance between the
MEP and the pure-prior AAM assignment corresponds to dE = 1
(red circles). The distance between the MEP and the mixed-prior
AAM assignments are labeled according to the corresponding en-
vironmental dimension: dE = 4, 8, 16, and ∞.

lead to transcendental equations. We then resort to numeri-
cal evaluations in order to obtain the assigned state by the
maximum entropy principle for the situation described by the
blurred and saturated detector.

Comparisons between MEP and AAM states, for both pure
and mixed priors, are shown in Fig. 3. It is interesting to
observe that the probability of small distances (
′ � 0.02)
between the assigned state by the MEP and the AAM is
larger for smaller environment dimension. Further numerical
analyses are shown in Appendix E.

C. SU(2)-preserving coarse-graining map

In the previous section we saw that the MEP and the AAM,
despite similar guiding principles, may lead to different as-
signed states. However, the size of the underlying system in
the blurred and saturated detector scenario was small, a two
spin- 1

2 system. One may wonder whether such differences still
prevail when the dimension of the fine-grained system is much
larger than the coarse-grained description.

To address such issue, in this section we exploit the coarse-
graining map �J : L(HD) → L(H2) introduced in Ref. [43].
The scenario described by �J is that of a system (that can
be a single system, or a collection of subsystems) with total
angular momentum J , which is then perceived as an effective
single spin- 1

2 system. The coarse-graining map �J is defined
as

�J [ψ] = 1

2

(
1 + 1

j

∑
i∈{x,y,z}

tr(ψJi ) σi

)
, (65)

where Ji are the angular momentum components, i.e., the
generators of SU(2) rotations around the x, y, z axes in the
D-dimensional Hilbert space HD, and σi are the usual Pauli
matrices. In the above expression, j is the largest eigenvalue
of Ji, thus fixing D = 2 j + 1.
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An important property of this coarse-graining channel is
that it maps a rotated microscopic state in L(HD) to a rotated
qubit in L(H2) around the same axis and by the same angle,
i.e., �J preserves the SU(2) structure. Mathematically, this
invariance is expressed by

�J [Rn̂(θ )ψRn̂(θ )†] = R′
n̂(θ )�J [ψ]R′

n̂(θ )†, (66)

where Rn̂(θ ) ∈ L(HD) and R′
n̂(θ ) ∈ L(H2) are rotations by an

angle θ around a given axis n̂:

Rn̂(θ ) = exp(−iθJn̂), (67)

R′
n̂(θ ) = exp(−iθσn̂/2), (68)

with Jn̂ = �J · n̂, σn̂ = �σ · n̂, and we are setting h̄ = 1.
As before, we assume that an effective state � is prepared,

and we want to determine which state we should assign to
the underlying system. Microscopically, the set of fine-grained
states that abide by the constraints is written as

��J (�) = {ψ ∈ L(HD ) | �J (ψ ) = �}.

1. AAM assignment

Before we dive into the evaluation of the AAM assign-
ments (pure and mixed priors), two general observations are
in place. First, note that writing � in its Bloch representation,

� = 1
2 (1 + �r · �σ ),

with �r · �σ ≡ rxσx + ryσy + rzσz, the coarse-graining con-
straint �J [ψ] = � can be expressed as

1

j
tr(ψ �J ) = �r. (69)

Second, notice that if ψ ∈ ��J (�), then Rr̂ (θ )ψRr̂ (θ )† also
belongs to ��J (�). This follows from the rotational invari-
ance, Eq. (66), when applied to a rotation around the axis
defined by the effective state Bloch vector:

�J [Rr̂ (θ )ψRr̂ (θ )†] = R′
r̂ (θ )�R′

r̂ (θ )† = �. (70)

Even though Rr̂ is not a symmetry of �J , as defined in (4)
(because it is ψ dependent), the above property simplifies the
calculation of average assignments.

This property can be applied in the general form of the
AAM assignment, Eq. (3), by making the change of variables
ψ → Rr̂ (θ )ψRr̂ (θ )†, to arrive at

A�J [�] =
∫

dμψδ(�J [ψ] − �) Rr̂ (θ )ψRr̂ (θ )†. (71)

As the assignment in this case, A�J [�], does not depend on
θ , we can average over the uniform distribution of rotations

around the �r axis, i.e., we can evaluate Rr̂ (θ )ψR r̂ (θ )† by
integrating over θ ∈ [0, 2π ]. Although we will not explicitly
evaluate such an average, by expressing ψ in the common
eigenbasis of Jr̂ and J2, which we denote simply by {|mr̂〉},
with − j � m � j and where the subindex r̂ reminds the basis
dependence on the Bloch vector of the effective state, it is

immediate to see that

Rr̂ (θ )ψRr̂ (θ )† =
∑
m,n

〈mr̂ |ψ |nr̂〉e−iθ (m−n)
μθ |mr̂〉〈nr̂ |

=
∑

m

〈mr̂ |ψ |mr̂〉|mr̂〉〈mr̂ |.

In plain text, just using the invariance property, we determined
that the AAM will assign to the fine-grained system a state
which is diagonal in the basis {|mr̂〉}. We thus only need to
calculate D = 2 j + 1 averages.

Putting these two observations together, we arrive to the
conclusion that the AAM for the coarse-graining map �J can
be seen as a function of the effective state � Bloch’s vector
(due to the rotational symmetry), and that it can be written as

A�J [�r] =
∑

m

pm(r)|mr̂〉〈mr̂ |,

with pm(r) � 0 and
∑

m pm(r) = 1 depending only on the
modulus r = |�r| of the Bloch vector due to the rotational
symmetry. In what follows, we obtain the pm coefficients as
a function of r.

a. Explicit integration method: pure-state measure. The
evaluation of the AAM assigned state now proceeds very
closely to the previous calculations. For the present coarse-
graining map �J , using the observations above, we write

A�J [�r] ∝
∫

dμψδ

(
1

j
tr[ψ �J] − �r

)
ψ, (72)

where, for the moment, dμψ is taken as the uniform measure
over pure states acting in L(HD).

As the AAM assigned state is diagonal in the common
basis of Jr̂ and J2, i.e., the basis {|mr̂〉} defined above, we
employ this basis to make the correspondence |ψ〉 → c =
(c1, c2, . . . , cD)T , and to write the angular-momentum matri-
ces �J. The integral above then becomes

A�J [�r] ∝
∫

d (c†, c) δ(c†c − E ) δ

(
1

j
c†�Jc − �r

)
c c† ≡ I.

(73)
Given that the condition tr[ψ �J] = j�r does not directly impose
the normalization of ψ , we explicitly included it with the
first δ. In the above, we introduced the variable E > 0 for
mathematical convenience; at the end of calculations it will
be set E = 1 [39].

As before, we momentarily take E and �r as variables.
We then perform a Laplace transform, and its inverse, in the
normalization condition

δ(c†c − E ) = L−1{e−s c†c}(E ),

and a Fourier transformation, and its inverse, in the angular
momentum constraints

δ

(
1

j
c†�Jc − �r

)
= F−1{e−i c† �k.�J c/ j}(�r).

In the above, s and �k = (kx, ky, kz ) are the transformation
variables.

Exchanging the order of integration between the inverse
transforms and the d (c†, c), we obtain equations analogous to
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FIG. 4. Angular momentum distribution for the pure-prior av-
erage assignment. Diagonal elements pm of A�J [�] are plotted as
a function of the parameter r. Each panel refers to a specific value
of j: j = 3

2 , 5
2 , 9

2 , 7
2 in clockwise direction. In all panels, the curves

pm(r) are ordered in decreasing order of m, i.e., the topmost curve
corresponds to m = j, and the lowest to m = − j.

Eqs. (42) and (43):

Ĩi j[s, �k] =
∫

d (c†, c) e−c†Ac c∗
i c j = πD

det A
A−1

ji , (74)

with the corresponding normalization

Ñ [s, �k] =
∫

d (c†, c†) e−c†Ac = πD

det A
. (75)

For the present case, the matrix A is given by

A(s, �k) = s1 + i
k

j
Jk̂, (76)

with Jk̂ = �J · k̂.
The next step is to calculate the inverse transforms. We

were able to obtain analytical results, but the corresponding
expressions are too lengthy to be shown here. Some details
are presented in Appendix D. Additionally, Fig. 4 shows the
diagonal elements pm of the pure-prior average assignment
A�[�r] for several values of j.

b. Explicit integration method: mixed-state measure. The
evaluation of the AAM for the �J coarse-graining averaging
over mixed states proceeds in complete analogy to the case of
the blurred and saturated detector (Sec. III B). As in that case,
here we express the results for mixed-states average, in terms
of the pure-state case. The results are as follows:

Ĩmixed = dE Ñ dE −1 Ĩ[s, �k] (77)

and

Ñmixed = Ñ dE [s, �k], (78)

with A, Ñ , and Ĩ as in the previous section (pure case).

FIG. 5. Angular momentum distribution for a mixed-prior aver-
age assignment. Diagonal elements pm of A�J [�] are plotted as a
function of the parameter r. The curves in each panel are ordered in
decreasing order of m, i.e., the topmost curve corresponds to m = j,
and the lowest to m = − j. For each j value we chose the dimension
of the environment dE to be equal to the system’s D = 2 j + 1.

We present some details about the inverse transformations
and final results in Appendix D. Diagonal elements pm of
this assignment as a function of r are plotted in Fig. 5. We
chose to show the special case dE = D because that is the
minimal dimension for which any mixed state that satisfies
the constraints can be purified.

Some general features of the plots in Figs. 4 and 5 can be
readily understood. When r = 0, i.e., the effective state is the
maximally mixed state, no preferred direction is established.
As such, the fine-grained state, for both priors, is the maxi-
mally mixed state in L(HD), and thus pm(0) = 1/D for all m.
On the other extreme, when the effective state is a pure state,
r = 1, then the set ��J (�) contains a single state, which is the
state with maximum angular momentum in the same direction
as the Bloch vector of �, namely, |mr̂〉〈mr̂ |.

2. MEP assignment

Now we turn our attention to the determination of the
state assigned by the maximum entropy principle for the sit-
uation described by the coarse-graining map �J . As for the
AAM assignment, we assume knowledge of the effective state
� ∈ L(H2). The MEP assignment for this case can then be
expressed as the following optimization:

ψ
�

MEP = arg max S(ψ )

s.t. tr(σi�J [ψ]) = tr(σi�) = ri, ∀ i ∈ {x, y, z}. (79)
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FIG. 6. Angular momentum distribution for the MEP assignment.
Diagonal elements pm of ψ

�

MEP are plotted as a function of the
parameter r. Each one of the subfigures corresponds to a different
j value or system’s dimension D = 2 j + 1. All curves pm(r) are
ordered in decreasing order of m, i.e., the upper one corresponds to
m = j, followed by the curves m = j − 1, . . . , m = − j.

As explained in Sec. II B, under the above constraints, the
MEP assignment is given by

ψ
�

MEP = 1

Z
exp

(
−

∑
i

λi�
∗
J [σi]

)
, (80)

with the λi related to the accessible values via

− ∂

∂�λ ln Z = �r. (81)

To determine the action of the dual coarse-graining channel
on the Pauli matrices, it is sufficient to notice that for any ψ ∈
L(HD), we have

tr(�J [ψ] σi ) = 1

j
tr(ψ Ji ). (82)

It then follows that

�∗[σi] = Ji

j
. (83)

That, in fact, is an alternative way of stating the rotational
symmetry of �J . Hence, the microscopic state that maximizes
the entropy is given by

ψ
�

MEP = 1

Z
exp

(
−1

j

∑
i

λiJi

)
= 1

Z
exp

(
−1

j
λJλ̂

)
, (84)

where Jλ̂ = �J · λ̂, and λ is the modulus of �λ.
Imposing the constraint (81) we obtain

− ∂

∂�λ ln Z = − ∂

∂λ
(ln Z ) λ̂ = �r. (85)

From the above expression, we see that �λ and �r are parallel.
Without loss of generality, we choose λ̂ = −r̂ and arrive at

ψ
�

MEP = 1

Z
exp

(
1

j
λJr̂

)
. (86)

At the formal level this state is identical to the canonical
ensemble of the Brillouin paramagnet [12], with �λ playing the
role of the magnetic field �B = Br̂ (modulo some constant).
Using this equivalence we can readily write the relation be-
tween λ and r:

r = 1

j

{(
j + 1

2

)
coth

[(
j + 1

2

)
λ

j

]
− 1

2
coth

λ

2 j

}
= B j (λ),

(87)
where B j is the so-called Brillouin function of jth order.

With the above we have all the elements to construct ψMEP

for the present case. Like for the AAM assignment, the state
ψMEP is diagonal in the eigenbasis of Jr̂ (and J2), with matrix
elements

pm(r) = 1

Z
exp

(
λ

m

j

)
, (88)

with m = − j,− j + 1, . . . , j − 1, j, and

Z =
sinh

[
( j + 1/2) λ

j

]
sinh

[
λ
2 j

] . (89)

Here we did not explicitly show the r dependence of λ to avoid
cluttering notation. Thus, the diagonal elements pm of the
MEP assignment can be calculated from Eqs. (87) and (88).
The results, for several values of j, are shown in Fig. 6.

Overall, the MEP assignments are similar to the AAM
assignments, with the same asymptotic behaviors at r = 0 and
1. A quantitative comparison is presented in Fig. 7, where we
show the trace distance 
′ between MEP and AAM assigned
states as a function of r.

Both cases, pure or mixed prior, are similar, the trace dis-
tance being somewhat smaller for the mixed case. However, as
the dimension of microscopic system j is increased, 
′ keeps
growing, with no sign of slowing down.

In Fig. 7 the environmental dimension was chosen to be
dE = 2 j + 1, i.e., the same as the system dimension. In Fig. 8
we show that the environment dimension plays no significant
role in the distance between the MEP and AAM assignments:
a small decrease is observed, but the distance between the as-
signments is still appreciable, and it seems to saturate for large
dE . Further numerical analyses are shown in Appendix E.

IV. APPLICATION: QUANTUM WORK

In the previous sections we have analyzed different
schemes of quantum-state inference from coarse-grained in-
formation. This lead to different fine-grained states: the
average assignment map (AAM), both pure and mixed priors,
and the maximum entropy principle (MEP) assigned states.
The aim of this section is to evaluate the observational con-
sequences of these alternative assignments. In what follows,
we exploit a thermodynamical process for which we as-
sume that the effective state is given by the SU(2)-preserving
coarse-graining map, and inspect the impact of the different
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FIG. 7. Comparison between the MEP and AAM assignments:
�J . (a) Trace distance (
′) between the MEP and pure-prior AAM
assignments is plotted as a function of r. (b) The same as in (a) but
for mixed-prior AAM assignment. We consider environmental di-
mension to be equal to the system’s dimension, i.e., dE = 2 j + 1.
Several values of j are illustrated, j ∈ { 3

2 , 5
2 , 7

2 , 9
2 }, which close to

r = 1 are ordered from bottom to top.

assignments in the amount of quantum work that can be ex-
tracted from the system.

Let us consider a microscopic quantum system composed
of a particle, or system of particles, with total angular mo-
mentum j, which is thermally isolated. Furthermore, suppose
that the underlying dynamics is given by the time-dependent
Hamiltonian

H (t ) = γ cos(ωt )J2
z , (90)

with γ > 0, and ω an external driving frequency.
Now assume that we have access to this system only via the

coarse-graining map �J , defined in (65), with effective initial
state given by

�o = 1
2 (1 + 0.7σz ). (91)

This initial state is chosen for two reasons. First, as we can
see from Fig. 7, the difference between the AAM and MEP
assignments is considerable for all values of j. Second, the
AAM and MEP procedures will lead to assigned states which
are diagonal in the Jz basis, and as such the assigned states will
commute with the Hamiltonian. In this situation the quantum
work is uncontroversially defined by [44–47]

W = tr[ψ0 (HF − HI )], (92)

0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

FIG. 8. Comparison between the MEP and AAM assignments.
Trace distance (
′) between the MEP and AAM assignments for j =
7
2 as a function of r. Several environmental dimensions are plotted.
The inset shows the saturation of 
′ as the environment’s dimension
grows.

with ψ0 an initial assigned state (AAM pure, AAM mixed, or
MEP) and

HI ≡ H (0), HF = U †
τ H (τ )Uτ , (93)

with Uτ the usual time-ordered evolution operator.
In such a scenario, the average quantum work reads as

W = γ (cos ωτ − 1) tr
(
ψ0J2

z

)
. (94)

From the expression above, it is clear that the difference
between the assignments will translate into different values
of average work. The results for the quantum work are shown
in Fig. 9.

It is clear from Fig. 9 that using the MEP assignment
always leads to the least amount of work that can be extracted

0 π 2 π

−15

−10

−5

0

FIG. 9. Average quantum work for different assignments. The
curves above shown the amount of work that can be extracted from
the quantum system when only the effective state is known, for
different choices of assignments and different system sizes. For each
value of j ( 3

2 , 5
2 , 7

2 ) three assignments are considered: the MEP state
(dashed line), the AAM state for a mixed prior (dE = 2 j + 1; solid
line), and the AAM state for a pure prior (dotted-dashed line). In all
the cases, the AAM state over pure states is the one that allows for
more work extraction.
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from the system. Moreover, among the AAM assignments, to
use the average over pure states is always more beneficial, in
terms of extracted work, than using the average over mixed
states. This ordering can be understood by the knowledge
of the physical scenario that each choice entails. While the
MEP assignment is fixed given the constraints and the coarse-
graining map, for the AAM assignments we still need to
specify the measure (the prior) over the microscopic states that
abide by the constraints. Choosing a pure state prior is consis-
tent with an experimental setup where the microscopic system
is fully isolated. A mixed-state prior with a given environment
dimension, on the other hand, assumes some lack of control
about the microscopic system and some information about
the environment. It is then reasonable to expect that from
a situation where a pure-state prior applies, one can extract
more work from the quantum system, as it is the situation
where more control about the system is present. Of course,
using a prior which is not consistent with the experimental
situation will lead to a mismatch between the amount of work
predicted, and the one in fact extracted or produced.

V. CONCLUSIONS

The maximum entropy principle (MEP) is ubiquitous, and
rightly so as it is a cornerstone of thermodynamics and,
more generally, of quantum statistical mechanics. Neverthe-
less, with the rise of complex quantum systems, new scenarios
come into play.

Here we analyzed how an assignment map, which shares
some foundational ingredients with the MEP, namely, the av-
erage assignment map (AAM), behaves in various situations.
As expected, in the scenario where only local access to a
physical system is granted, the so-called open quantum system
picture, both assignments coincide.

However, in situations that go beyond the system-
environment split, the two assignment strategies may differ.
As we explicitly showed, in the case where two spin- 1

2 parti-
cles, due to experimental constraints, are seen as an effective
single spin 1

2 , the two assignments differ [see Eq. (64) and
Fig. 3].

As the underlying system is small, two spin- 1
2 particles,

one may expect that such a difference would disappear for
larger systems. With the coarse-graining map introduced in
Sec. III C, we discredited this possibility. Even for increasing
microscopic system dimensions, the difference between the
MEP and the AAM assignments remains (see Fig. 7). As it can
be seen, the difference in fact increases with the underlying
system dimension in this situation.

Where does the difference come from? Both assignments
originate from the same idea: there are many microscopic
states that abide by some few coarse-grained constraints. If
no further constraints are present, the way we evaluate the
expectation value of observable quantities in quantum me-
chanics suggests that a uniform average among all the states
that satisfy the constraints is a sensible assignment. The MEP
employs an entropic function to obtain such an assignment,
with the idea that uniform mixtures maximize the entropy.

The AAM, on the other hand, makes this averaging process
explicit. In doing so it becomes evident that a uniform mea-
sure over the microscopic states must be chosen. As there is

no unique uniform measure among mixed states, the AAM
allows for the introduction of some prior knowledge about
the experimental condition: how isolated is the underlying
system. If the microscopic system is very well isolated, one
can take the average over pure states. If the environmental
influence cannot be disregarded, an averaging over mixed
states is more judicious. At this point the AAM connects to
Bayesian inference methods [48,49], and we show (see, for
instance, Figs. 2 and 8) how the assignments differ for each
prior knowledge situation. In the above, the only information
about the environment employed in the prior was its dimen-
sion, but other types of information could be used in a specific
scenario.

Finally, when should one use the MEP or the AAM? We
showed that depending on the access one has of the system,
the assigned states may differ. Using the knowledge about
how one accesses the system, and how the system interacts
with its environment, if known, can only be beneficial. As dif-
ferent levels of knowledge about an experimental situation are
often tied together with more efficient processes, we showed
a thermodynamical process where the benefit of employing
the AAM assignment is unmistakable (see Fig. 9). The gain
of using the AAM assignment, instead of the MEP one, is
especially clear in the case where one knows that the system is
highly isolated. It should be remarked that choosing an assign-
ment which theoretically would allow for a greater extraction
of work, in an experiment scenario which is not befitting with
such a choice, will only lead to a poor description and no gain.
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APPENDIX A: SYMMETRIES OF �BnS

Let us rewrite the definition of symmetry (4) as

D ≡ �[UχU †] − �[χ ] = 0 (A1)

with matrix elements Di j , where i, j ∈ {0, 1}. As this identity
must hold for all Hermitian matrices χ ∈ L(H4), the U -
dependent coefficients of Di j must all vanish. From D00 = 0,
and assuming tr(χ ) = 1, we obtain |U00| = 1. Unitary then
implies that the remaining elements of first column and row
are null. Without loss of generality we can set U00 = 1. Thus,
up to now, we have

U =

1 0 0 0
0

W0
0

, (A2)
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where W ∈ U (3), with its unitarity guaranteed by the con-
dition D11 = 0. From requesting D12 = 0 we obtain the
following equations:

W11 + W21 + W31 = 1, (A3)

W12 + W22 + W32 = 1, (A4)

W13 + W23 + W33 = 1. (A5)

This means that W possesses the normalized eigenvector
v1 = (1, 1, 1)/

√
3 with unity eigenvalue, but it is otherwise

arbitrary. Then, in a orthonormal basis {v1, v2, v3}, the matrix
W has the structure

W =
1 0 0
0

V0
, (A6)

with V an arbitrary unitary in U (2): the arbitrariness of V
comes from the freedom in the choice of v2 and v3.

The simplest way of calculating the average UχU † of
Eq. (19) consists in choosing a parametrization of U (2) [50]
and then integrating over the parameters.

APPENDIX B: �BnS AAM ASSIGNMENT: DETAILS

Our starting point is the quantities Ñ and Ĩ, defined in
Eqs. (42) and (43), respectively. These quantities, related to
the average over pure states, are the basis also for the mixed
case calculations [see Eqs. (51) and (53)].

We begin by doing the inverse transforms in the normaliza-
tion factor Ñ . The determinant of the matrix A reads as

det A = s2
1

(
k2

x + k2
y + s0s1

) ≡ s2
1(κ2 + s0s1), (B1)

the last equality defining κ . We first do the Laplace inverse-
transform of Ñmixed in the variable s0:

L−1
s0

{
π4dE

(det A)dE

}
(�00) = π4dE �

dE −1
00 exp (−κ2�00/s1)

s3dE
1 �(dE )

. (B2)

Then, we Laplace inverse-transform the right-hand side above
in s1:

L−1
s1

{. . .}(�11) = π4dE �
(3dE −1)/2
11 J3dE −1(2κ

√
�00�11)

κ3dE −1�
(dE +1)/2
00 �(dE )

, (B3)

where J3dE −1 is a Bessel function. Now we must do the in-
verse Fourier transforms on the last expression. Note that such
expression only depends on the polar radius κ in the plane
(kx, ky). Using r⊥ =

√
x2 + y2, we have

Nmixed(�) =
∫

dkx dkyei(kxx+kyy)(. . .) (B4)

= 2π

∫ ∞

0
dκ κ J0(κr⊥)(. . .) (B5)

= 24(1−dE )π4dE +1(1 − r2)3dE −2

�(dE )�(3dE − 1)(1 + z)2dE
, (B6)

where we have made the substitutions �00/11 → (1 ± z)/2,
used x2 + y2 + z2 = r2, and (. . .) stands for the right-hand
side of Eq. (B3).

In the following we apply the same succession of inverse
transforms as above (in the same order) to Ĩmixed. We focus on
the six elements denoted with a square in Eq. (19), as those,
for the mixed prior, cannot be calculated using the symmetry
method. If we choose, say, A�,23 as a representative, we
must inverse-transform Ĩmixed,23. Combining Eqs. (42), (43),
and (51), we obtain

Ĩmixed,23 = dE

(
π4

det A

)dE

A−1
32 (B7)

= dE π4dE

(det A)dE +1
C23, (B8)

where C23 is the appropriate cofactor of A, which reads as

C23 = −κ2s1

3
. (B9)

The first Laplace inverse-transform, in the variable s0, gives

L−1
s0

{Ĩmixed,23}(�00) = −π4dE κ2�
dE
00 exp (−κ2�00/s1)

3 �(dE )s2(dE +1)
1

.

(B10)
Transforming the expression above, now in s1, produces

L−1
s1

{. . .}(�11) = −π4dE �
(3dE +1)/2
11 J3dE +1(2κ

√
�00�11)

3 κ3dE −1�
(dE +1)/2
00 �(dE )

.

(B11)
Now we calculate the inverse Fourier transform of the last
expression:

Imixed,23(�)

= dE 23−4dE π4dE −1(1 − r2)3dE −2[3dE (x2 + y2) + z2 − 1]

3 �(dE + 1)�(3dE )(1 + z)2dE +1
.

(B12)

Finally, forming the quotient I/N , we recover the result of
Eq. (54):

A�,23(�) = 3dE (x2 + y2) + z2 − 1

6(3dE − 1)(z + 1)
(B13)

= dE

3dE − 1

|�01|2
�00

− �11

3(3dE − 1)
. (B14)

APPENDIX C: DISTANCE BETWEEN Amixed
�BnS

AND Apure
�BnS

The trace distance is just half of the trace norm of the
difference of the matrices:


(�, σ ) = 1
2 ||� − σ ||1 = 1

2 tr[
√

(� − σ )†(� − σ )]. (C1)

The purpose of the factor of 2 is to restrict the trace distance
between two normalized density matrices to the range [0, 1].
Since density matrices are Hermitian,


(�, σ ) = 1

2

∑
i

|λi|, (C2)

where the λi are eigenvalues of the Hermitian, but not neces-
sarily positive, matrix (� − σ ).

The trace distance between average (over pure or mixed
states) assignments can be calculated from Eq. (54). The dif-
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ference between assignments has the following structure:

Amixed
�BnS

[�] − Apure
�BnS

[�] =

⎛
⎜⎝

0 0 0 0
0 0 μ μ

0 μ 0 μ

0 μ μ 0

⎞
⎟⎠. (C3)

From Eq. (54) we obtain

μ = (dE − 1)(1 − r2)

4(3dE − 1)(1 + z)
. (C4)

The eigenvalues of the difference matrix (C3) are
{2 μ,−μ,−μ, 0}. Then, the trace distance 
 is


 = 2 μ = (dE − 1)(1 − r2)

2(3dE − 1)(1 + z)
. (C5)

In order calculate the probability distribution of 
 we must
compute the following integral over the Bloch ball:

Pr(
|dE ) = 3

4 π

∫
dx dy dz δ(
 − 2μ(x, y, z; dE )), (C6)

which leads to Eq. (55).

APPENDIX D: �J AAM ASSIGNMENTS: DETAILS

In the case of the present coarse graining it is not possible
to obtain general formulas of the average assignments for
arbitrary j and dE . Each case must be handled separately.
In the following we show some details of the calculation of
the inverse Fourier and Laplace transforms of the quantities
Ĩ and Ñ , whose quotient I (�r)/N (�r) determines the average
assignment.

We start by calculating the norm N (�r). The determi-
nant (76) reads as

det A =
j∏

m=− j

(
s + ikm

j

)
. (D1)

Note that det A is even function of k. We do first the inverse
Fourier transform of Ñ (s, �k). As det A only depends on k =
|�k|, it is convenient to use spherical coordinates in �k space;
without loss of generality, we choose ẑ = r̂. Then, the Fourier
transform is given by

Nmixed(s, �r) = 4 πDdE +1

r

∫ ∞

0
dk

k sin(k r)

(det A)dE
. (D2)

Next, we Laplace transform:

Nmixed(�r) = L−1
s {Nmixed(s, �r)}(E )|E=1. (D3)

By virtue of the SU(2) symmetry, the norm only depends on
the modulus of �r, for all j and dE . We show one example, for
j = 3

2 and dE = 2:

Nmixed(s, r) = 27π10e−3rs

128 rs6
[2rs + e2rs(6rs − 3) + 3], (D4)

Nmixed(r) = 9π10

5120r
[3(1 − 3r)5θ (1 − 3r)

+ 10r(1 − 3r)4θ (1 − 3r) + 3(r − 1)5

+ 30(r − 1)4r]. (D5)

FIG. 10. Rejection sampling analyses of preparation errors:
�BnS. The blue bars above (left bars for each state) denote the total
error ||Aε,pure

� [�] − Apure
� [�]||1 + ||Aε,mixed

� [�] − Amixed
� [�]||1, while

the orange bars quantify the distance between the error-free analyt-
ical results ||Apure

� [�] − Amixed
� [�]||1. The horizontal axis represents

the index of the effective state (see Table I).

As j and/or dE are increased, the expressions above grow
rapidly, though preserving the structure: Nmixed(r) is a sum
of Heaviside theta functions multiplied by polynomials of r;
the theta functions increase in number with j, the polynomials
increase in degree with j and dE .

Now, let us turn to Ĩmixed. Using Eqs. (75) and (74)
into (77), we arrive at

Ĩmixed,mm(s, �k) = dE πdE D Cmm

(det A)dE +1
. (D6)

We have observed that Cmm, the diagonal cofactors of A, do
not depend on the azimuthal angle φ; then, the inverse Fourier
transform reads as

Ĩmixed,mm(s, r) = 2dE πdE D+1
∫ ∞

0
dk

k2

(det A)dE +1

×
∫ π

0
dθ sin θ exp (ikr cos θ )Cmm. (D7)

The last step consists in inverse-transforming Laplace (s →
E ) the expression above, and setting E = 1. The result
Imixed,mm(r) has the same structure as the norm Nmixed(r),
but appreciably more complex. Finally, dividing Imixed,mm(r)
by Nmixed(r) we obtain the probabilities pm(r) plotted in the
Figs. 4 and 5.

APPENDIX E: FURTHER NUMERICAL ANALYSIS:
�BnS AND �J

In the main text we showed that, for a fixed coarse-graining
map � and fixed effective state �, the assignments when
employing pure or mixed priors are in general different, with
the exception of the partial-trace map. This conclusion can be
visually apprehended, for instance, from Figs. 2 and 7. For
�BnS the analytical evaluation of the trace distance between
Apure

�BnS
(�) and Amixed

�BnS
(�) is presented in Appendix C.

In the above discussion it was, nevertheless, assumed that
the effective state � could be perfectly prepared, which of
course is not the case in a realistic scenario. Two points
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FIG. 11. Rejection sampling analyses of preparation errors:
�BnS. The blue bars above (left bars for each state) denote the total
error ||Aε,pure

� [�] − Apure
� [�]||1 + ||Aε,mixed

� [�] − Amixed
� [�]||1, while

the orange bars quantify the distance between the error-free analyt-
ical results ||Apure

� [�] − Amixed
� [�]||1. The horizontal axis represents

the Bloch vector length r of the effective state.

could then be raised: (i) How close is the error-free analytical
assignment A� from the one obtained when preparation errors
are allowed? (ii) Does the difference between the assigned
states for pure and mixed priors prevail when errors in the
preparation of � are allowed?

To address these points, we extended the definition of the
set of states that abide by the constraints, as to allow for a
preparation error ε:

�ε
�(�) = {ψ ∈ L(HD) | ||�(ψ ) − �||1 � ε}. (E1)

We then proceed by the way of a simple rejection sampling
algorithm: for fixed �, �, and ε, we uniformly sampled a large
number (to be specified later) of states in L(HD) and checked
which ones belong to �ε

�(�). With the ones that are selected,
we estimate the assigned state with preparation error ε as the
average state Aε

�[�] = �ε
�(�).

Numerically, we generated a database of 106 pure 2-qubit
states, and 106 pure 3-qubit states, sampled from their re-
spective Haar measure. These databases were used both for
�BnS and �J=3/2. With the 2-qubit sample we obtained Aε,pure

�BnS

and Aε,pure
�J=3/2

for selected effective states (see below). With the
database of 3 qubits, after performing the partial trace on the
third qubit, we estimated Aε,mixed

�BnS
and Aε,mixed

�J=3/2
. In all cases we

set the preparation error as ε = 0.025.
Figures 10 and 11 summarize the obtained results. In

both plots, the blue bars (left bar for each point in the

TABLE I. Effective states used in the rejection sampling algo-
rithm to obtain the assigned states in the �BnS case when preparation
error is allowed.

Index tr(�σx ) tr(�σy ) tr(�σz )

0 −0.3061 0.1269 −0.6142
1 0.0923 0.1550 0.0119
2 −0.0776 0.1248 0.03211
3 −0.2439 0.0130 −0.1526
4 0.0749 0.0032 −0.0502
5 −0.1384 0.1779 −0.1613
6 −0.1082 −0.1748 −0.0468
7 −0.1021 0.0914 −0.5838
8 −0.1434 −0.1630 −0.1391
9 0.3696 −0.0652 −0.1729

horizontal axis) quantify the total difference between the ana-
lytical expression and the ones obtained numerically, i.e., for
each � it equals ||Aε,pure

� [�] − Apure
� [�]||1 + ||Aε,mixed

� [�] −
Amixed

� [�]||1. The orange bars (right bar for each point in
the horizontal axis) quantify the difference between the pure
and mixed prior analytical states for each �, i.e., ||Apure

� [�] −
Amixed

� [�]||1.
This choice of presentation allows us to address both raised

points. From the small values obtained for the blue bars we
observe that the analytical error-free results are close to the
ones when preparation errors are allowed. By comparing the
height of the orange bars with the blue ones, we appreciate
that the estimated average states with error are closer to their
respective analytical result than the distance between the an-
alytical results for pure and mixed priors. In other words, the
pure- and mixed-prior assigned states could be distinguished
even if preparation errors are allowed.

As can be seen from the plot for �BnS ( Fig. 10), for all
randomly selected states (see Table I) the total error is always
much smaller than the difference between the error-free ana-
lytical results. That confirms that when preparation errors are
allowed, the assigned state does not change appreciably, and
that pure- and mixed-prior assignments can be distinguished.

For �J, Fig. 11, as expected, the difference between the
error-free pure and mixed priors is small for almost pure
effective states (r � 1) and highly mixed effective states (r �
0). For such cases, the preparation error might not permit
the distinction between pure- and mixed-prior assignments.
This distinction is, however, possible for intermediate purity
effective states. In all the cases, given the small size of the
blue bars, the assigned states when ε = 0.025 are close to the
ones when ε = 0.
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