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Testing gravitational self-interaction via matter-wave interferometry
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The Schrödinger-Newton equation has frequently been studied as a nonlinear modification of the Schrödinger
equation incorporating gravitational self-interaction. However, there is no evidence yet as to whether nature
actually behaves this way. This work investigates a possible way to experimentally test gravitational self-
interaction. The effect of self-gravity on the interference of massive particles is studied by numerically solving
the Schrödinger-Newton equation for a particle passing through a double-slit. The results show that the presence
of gravitational self-interaction has an effect on the fringe width of the interference that can be tested in matter-
wave interferometry experiments. Notably, this approach can distinguish between gravitational self-interaction
and environment-induced decoherence, as the latter does not affect the fringe width. This result will also provide
a way to test if gravity requires to be quantized on the scale of ordinary quantum mechanics.
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I. INTRODUCTION

The emergence of classicality from quantum theory is an
issue which has plagued quantum mechanics right from its
inception. Quantum mechanics is linear and the Schrödinger
equation allows superposition of any two distinct solutions.
However, in our familiar classical world, a superposition of
macroscopically distinct states, such as the state correspond-
ing to two well-separated distinct positions of a particle, is
never observed [1]. Taking into account environment-induced
decoherence [2–4], one may argue that pure superposition
states do not survive for long, and the interaction with the
environment causes the off-diagonal elements of the reduced
density matrix of the system to vanish. The remaining di-
agonal terms are then interpreted as classical probabilities.
However, decoherence is based on unitary quantum evolution
and if one tried to explain how a single outcome resulted for
a particular measurement, one will eventually be forced to
resort to some kind of many worlds interpretation [5]. Another
class of approaches to address this issue invokes some kind of
nonlinearity in quantum evolution, which may cause macro-
scopic superposition states to dynamically evolve into one
macroscopic distinct state [6–9]. Different theories attribute
the origin of the nonlinearity to different sources, for instance,
an inherent nonlinearity in the evolution equation [10], or
gravitational self-interaction [11–13]. Considerable effort has
been put into finding ways to test any nonlinearity which
may lead to the destruction of superpositions. For exam-
ple, an experiment in space was proposed which would
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involve preparing a macroscopic mirror in a superposition
state [14,15]. The problem with such experiments, even if they
are successfully realized, is that it is difficult to distinguish
between the role of decoherence and that of nonlinearity in
destroying the superposition. An effect that can distinguish
between these two possible causes of loss of superposition is
sorely needed. This is the issue we wish to address in this
work.

In 1984 Diosi [11] introduced a gravitational self-
interaction term in the Schrödinger equation to constrain
the spreading of the wave packet with time. The resulting
integrodifferential equation, the Schrödinger-Newton (S-N)
equation, compromised the linearity of quantum mechanics
but provided localized stationary solutions. It was Penrose
[12,16] who used the S-N equation to explore the quantum-
state reduction phenomenon. He proposed that macroscopic
gravity could be the reason for the collapse of the wave func-
tion as the wave packet responds to its own gravity. The effect
of gravity and self-gravity on quantum systems was studied
by several authors [17–22].

The coupling of classical gravity to a quantum system also
addresses the question of whether gravity is fundamentally
quantum or classical [23–25]. This “semiclassical” approach,
where gravity is treated in the nonrelativistic (Newtonian)
limit, provided simplifications to the calculations, but faced
several theoretical objections [26]. However, the ultimate test
would be experimental. In such a context, providing an exper-
imental route to test the effect of S-N nonlinearity in a simple
quantum mechanical context is valuable.

In the present work, we focus on the evolution of a sin-
gle isolated massive quantum particle through the nonlinear
Schrödinger-Newton equation. The particle is in a superposi-
tion state undergoing a double-slit interference. Any signature
of nonlinearity due to gravitational self-interaction in the vari-
ation of fringe width with mass should give us an experimental
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handle on separating the effect of decoherence from gravita-
tional state reduction.

II. TWO-SLIT EXPERIMENT WITH SELF-GRAVITY

A. Schrödinger-Newton equation

The S-N equation originated from the context of semi-
classical gravity, first introduced by Möller [27] and Rosen-
feld [28] independently. The fundamental interaction consid-
ered in this approach is the coupling of quantized matter with
the classical gravitational field [26,29,30]. In this approach,
the Einstein field equations get modified as

Rμν + 1

2
gμνR = 8πG

c4
〈�|T̂μν |�〉, (1)

where the term on the right-hand side is the expectation value
of the energy-momentum tensor with respect to the quan-
tum state |�〉 of matter. This semi-classical modification was
studied with reference to the necessity of quantizing grav-
ity [31,32]. The prescribed modification to the Einstein field
equation leads to the Schrödinger-Newton equation [26,33–
35][

− h̄2

2m
∇2 − Gm2

∫ |�(r′, t )|2
|r − r′| d3r′

]
�(r, t ) = ih̄

∂�(r, t )

∂t
.

(2)
The above equation can be seen as a nonlinear modification
of the Schrödinger equation. The nonlinearity breaks the uni-
tarity of the quantum dynamical evolution and opens up the
possibility of a dynamical reduction of the wave function,
generally referred to as collapse. It is then not surprising that
such modification to linear quantum mechanics and classical
gravity invites criticism [36]. Apart from this, there were
several other collapse models that were investigated in the
literature [6,37,38]. However, this approach has to be tested
both theoretically and experimentally if one wants to rule it
out. Our approach is to check whether it has any significance
in the emergence of classicality at all, more so if there is
an effect that can be experimentally tested. In future, if the
S-N equation gets ruled out by experiments then the particular
coupling considered in Eq. (1) will also get ruled out and other
types of coupling between gravity and matter fields could be
considered [39].

We start by making the S-N equation dimensionless, using
scaling parameters r̃ = r/σr, m̃ = m/mr, t̃ = t/tr . The factor
σr is determined by the natural lengthscale of the problem.
Once the lengthscale factor σr is fixed, for instance, by exper-
imental considerations (which we discuss in the subsequent
section), the other scale factors are determined in terms of σr

and natural constants

tr =
(

σ 5
r

Gh̄

) 1
3

, mr =
(

h̄2

G σr

) 1
3

. (3)

The rescaled, dimensionless equation is[
−∇̃2

2m̃
− m̃2

∫∫∫ |�̃(r̃′, t̃ )|2
|r̃ − r̃′| d3r̃′

]
�̃(r̃, t̃ ) = i

∂�̃(r̃′, t̃ )

∂ t̃
,

(4)

FIG. 1. Schematic diagram of two-slit interferometer for a mas-
sive particle.

where �̃(r̃, t̃ ) = σ
3
2

r �(r, t ). The problem now has only one
scaling parameter m̃ which is dependent on mr .

B. Formulation of the problem

We analyze the effect of self-gravity on the interference
produced by a particle of mass m passing through a two-
slit interferometer (Fig. 1). The two slits are separated by
a distance 2d along the x axis. The particle is assumed to
travel along the z axis towards the screen with a constant
velocity v.

As the particle emerges from the two-slit, we assume that
the initial state is a superposition of two Gaussian wave pack-
ets. For the purpose of interference, the dynamics along the
z axis is unimportant. It only serves to transport the particle
from the slits to the screen by a distance L = vt in a fixed time
t . The interference results only from the spread and overlap
of the wave packets in the x direction. Hence we assume the
initial wave function to be spread along the x direction alone.
For calculational simplicity, we assume no spread along the
other two directions:

�̃(x̃, 0) = A
[
e

−(x−d )2

2 σ2 + e
−(x+d )2

2 σ2
]
, (5)

where σ is the width of each Gaussian. We completely ignore
the time evolution in the y or z directions.

Since we start with a wave function restricted to the x axis,
the potential due to self-gravity in Eq. (4) becomes

VG = −m̃2
∫∫∫ |�̃(x̃′, t̃ )|2 δ(ỹ−ỹ′) δ(z̃−z̃′)√

(x̃ − x̃′)2 + (ỹ−ỹ′)2+(z̃ − z̃′)2
dx̃′ dỹ′ dz̃′.

(6)
Performing the delta-function integral, Eq. (4) reduces to an
effective one-dimensional (1-D) equation[

− 1

2m̃

∂2

∂ x̃2
− m̃2

∫ |�̃(x̃′, t̃ )|2
|x̃ − x̃′| dx̃′

]
�̃(x̃, t̃ ) = i

∂�̃(x̃, t̃ )

∂ t̃
.

(7)
The Schrödinger-Newton equation (2) is a nonlinear inte-
grodifferential equation and is hard to solve analytically. We
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could use perturbative approximations, but to understand the
effect of self-gravity on interference phenomena, approxima-
tion methods will not be helpful. We therefore resort to a
numerical solution.

Now a massive particle is expected to lose coherence dur-
ing the time evolution and it is obvious that there will also be
decoherence effect due to gravitational and other kinds of in-
teraction with the environment. This may lead to suppression
of interference in a matter-wave interferometry experiment.
For large mass values, one cannot confidently attribute this
loss of interference to self-gravity since environment-induced
decoherence also leads to exactly the same effect [40,41].
The purpose of this work is to separate out the effects of
self-gravitational interaction from those of decoherence.

III. NUMERICAL RESULTS AND DISCUSSION

A. Numerics

We solve Eq. (7) numerically to obtain the solution �̃(x̃, t̃ )
for all rescaled time t̃ . We used the Crank-Nicolson method
[42–44], as it preserves unitarity at each time step.

We used d = 6 σr and σ = 2 σr . The spatial extent is
[−70, 70], which is divided into 2000 spatial grid points and
the temporal grid length is taken from 0 to 10 and is di-
vided into 1000 time steps. Hence, δ x̃ = 0.07 and δ t̃ = 0.01.
For the Crank-Nicolson method, the Courant-Friedrichs-Lewi
(CFL) condition necessary for convergence, is satisfied since
δ t̃
δ x̃ ∼ 0.01 < 1.

The boundary points −70, 70 actually represent numerical
infinity. However, as the wave function evolves in time, the
quantum mechanical spread could cause the solution to reach
the numerical boundary. Once it reaches the boundary, the
evolution in the next time step causes � to reflect back and
affects the entire solution. To avoid this undesirable effect, we
made the boundary large enough such that the evolved wave-
packets do not reach the boundary within the time of evolution
considered.

To avoid the singularity in the 1-D form of the self-gravity
potential [Eq. (6)], we use a regularized form of the potential
VG(x̃) = −m̃2

∫ |�̃(x̃′,t̃ )|2√
(x̃−x̃′ )2+ε2

dx̃′, where ε is a small dimension-

less parameter. In the limit ε → 0 one recovers the original
potential. The value of ε is fixed at 0.01.

B. Interference

The interference patterns for different values of m̃ are
plotted in Fig. 2. The x axis is position in units of σr

and the y axis is the (dimensionless) probability density
|�̃(x̃, t̃ )|2. As one moves from mass m̃ = 0.20 to m̃ = 0.60,
the crossover from temporal emergence of interference to
complete suppression of it, due to the effect of self-gravity,
is beautifully brought out. At intermediate values of mass the
interference is seen with lower visibility. In contrast, in the
absence of self-gravity, interference is seen even at large mass
values.

In the usual two-slit interference scenario, the fringe width
is equal to λL/2d , where λ is the de Broglie wavelength of the
particle, 2d the slit separation, and L the distance between the
double-slit and the screen. For a particle of mass m traveling

FIG. 2. Comparison of onset of quantum interference as the su-
perposition evolves with time for different m̃ values for (a) free
Schrödinger evoution and (b) with self-gravity.

with a velocity v, the de Broglie wavelength is λ = h/mv.
Taking the distance traveled by the particle as L = vt , the
fringe width turns out to be w = ht/2md . Thus, for a fixed
t the fringe width varies inversely with the mass of the par-
ticle. Even if the particle experiences environment induced

FIG. 3. Interference pattern at time t̃ = 8.9 for different values
of m̃. The interference gets progressively less sharp as the mass
increases, until it is completely suppressed.
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FIG. 4. Fringe width w (in units of σr) from simulated evolution as a function of 1/m̃ at time t̃ = 8.9 (a) for the full mass range considered
and (b) zoomed in to high mass values. The + symbols represent w without self-gravity, the straight line through them being the trend line;
the red stars represent w in the presence of self-gravity. For larger mass, in the presence of self-gravity, the deviation of w from 1/m̃ behavior
is more evident.

decoherence, although the interference visibility goes down,
the fringe width remains unaffected [40]. Therefore, any de-
viation of the fringe width from 1/m dependence should be a
signature of the effect of self-gravity.

The fringe width w is calculated from the simulated results
as follows. It is assumed that a central peak in the prob-
ability distribution is a necessary signature of interference.
We calculate w as the distance between the central peak and
its nearest interference maximum. One can see from Fig. 3
that the interference peaks are well defined at t̃ = 8.9, for
various values of m̃. Thus, without ambiguity, we calculate
the fringe width from the probability distribution for varying
m̃, both with and without the self-gravity potential term. We
plot w versus 1/m̃ with and without self-gravity in Fig. 4. The
results clearly show that in the presence of the self-gravity
potential, w deviates from 1/m̃ dependence as the mass of the
particle increases. We believe this should form a clear test of
gravitational self-interaction.

We also notice that, as the mass increases, the spread in the
wave function is suppressed by the self-gravity effect. This is
clearly seen in Fig. 3, where we plot the probability density

at t̃ = 8.9 for different mass values. For smaller masses, the
wave function spreads enough so that the two wave pack-
ets overlap to result in interference. For much larger masses
the gravitational self-interaction suppresses the spread of the
wave packets so that they are not able to overlap and do not
lead to any interference. This behavior is consistent with the
original aim of introducing the S-N equation.

C. “Attraction” between peaks

It is generally expected that if the wave-function has two
lobes, the self-gravitational interaction will lead to an “attrac-
tion” between the two, in the sense that dynamical evolution
will bring them closer together. In Fig. 3, there is apparently
no noticeable attraction within the time range considered
here.

We take a closer look at the form of self-gravity potential as
time evolves, for a much longer time range (Fig. 5). The initial
wave function consists of two disjointed lobes and hence the
potential peaks near the centers of the two wave packets.
The effect of this is seen as a narrowing of the two wave

FIG. 5. The self-gravity potential VG(x̃) for higher masses, plotted at various times to show its time evolution. (a) m̃ = 0.60, (b) m̃ = 0.70.
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FIG. 6. Probability distribution for relatively large mass values, showing attraction due to self-gravitational effects, and finally merge into
a single peak. (a) m̃ = 0.60, (b) m̃ = 0.70.

packets about their centers. As time evolves, there is a compe-
tition between two effects: the narrowing of each wave packet
due to self-gravity, and the broadening effect of Schrödinger
evolution.

For low-enough masses, the broadening effect of quan-
tum evolution seems to dominate, the wave packets’ overlap
and interference is observed. For higher masses, apart from
the narrowing effect due to the dominance of self-gravity,
there is also overlap of the wave packets at long times. This
contributes to the potential in the region between the two
peaks and results in the peaks in the potential drawing closer
together until eventually there is a single central peak. The
effect of this is that the two wave packets appear to “attract”
each other, until eventually there is a single central peak (see
Fig. 6).

One may have expected that the attraction between the
peaks would be stronger as the mass increased. However, for
the reasons described above, the higher the mass, the slower
is the attraction between the peaks.

D. Experimental feasibility

Lastly, we would like to discuss what kind of challenges
our proposal poses for the experiments, if one were to try
observing this effect in some experiment. As seen from Figs. 2
and 3, the effect of self-gravity on the fringe width is visible
for m̃ ∼ 0.5 for t̃ ∼ 8. From Eq. (3) one can see that mr

has a σ−1/3
r dependence whereas tr has a σ 5/3

r dependence.
This implies that if one chooses a large σr , one would see
a noticeable self-gravity effect for small mass, but after a
long time evolution. Thus σr has to be chosen such that it
gives an experimentally feasible mass of the particle which
can remain in a superposition of two wave packets for a time
of the order of tr . If we consider σr = 1.112 nm, it leads us
to mr = 31.94 × 109 u and tr = 0.623 s, which means that
for particles of mass about 16 × 109 u, the self-gravity effect
should be observable after about 5 seconds of time evolution.
The slit separation required will be about 13 nm.

Now interferometry with large molecules has shown
a steady progress, with the interference of C70 fullerene
molecules through Talbot-Lau interferometer being a promi-
nent example [45]. Probably the best technology at present
is the optical time-domain ionizing matter-wave (OTIMA)
interferometer [46]. The Vienna Kapitza-Dirac-Talbot-Lau in-
terferometer is another one that is capable of using such high
mass range, approximately 6509 u [47,48]. The latest example
is using the Long-Baseline Universal Matter-Wave Interfer-
ometer (LUMI) [49], which has achieved superpositions of
particles of masses as high as 25 × 103 u. It is hoped that in
the future, particles of mass 108 u, like gold clusters, might
be diffracted with the OTIMA scheme [1]. However, even
this mass range is too small for observing the effect due to
self-gravity. This is exemplified by the fact that if one insists
on looking for self-gravity effects for particles of mass 108 u,
one would need times of ridiculous magnitude, of the order of
1010 s, to see the self-gravity effects.

So, the message is that one would need to study the
interference of particles of mass of the order of 1010 u if
one hopes to see any signature of self-gravitational interac-
tion. This looks challenging with the current state-of-the-art
technology.

IV. CONCLUSION

In conclusion, we find that the analysis of the Schrödinger-
Newton equation for the time evolution of a superposition
of two Gaussian wave packets, as in a two-slit experiment,
demonstrates the self-gravity interaction has a distinct effect
on quantum interference. Interference for small mass parti-
cles is virtually indistinguishable from that governed by the
pure Schrödinger evolution. For larger mass particles, quan-
tum interference is suppressed. For intermediate mass values,
interference with a reduced visibility is seen. Now in an ac-
tual experiment, the observation of interference with reduced
visibility can also be attributed to environmental effects.
However, the fringe width w emerges as a key element in
distinguishing self-gravity effects from those of decoherence.
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It yields a definite signature of the effect of self-gravity as
mass increases, and should be verifiable experimentally, if
matter wave interferometry experiments can be carried out at
the appropriate length and mass scales.

The deviation of w versus 1/m from a straight line for
large mass is expected, as there is a mass-dependent self-
interaction potential affecting the dynamics of the particle. If
this phenomenon is experimentally corroborated, then there
would be reason for further analysis of the origin and effects
of the S-N potential in the Schrödinger equation. We believe
our work provides sufficient reason for renewed experimental
work in matter-wave interferometry for larger mass particles.
Apart from providing clues to the emergence of classicality
from quantum mechanics, such experiments may also throw

some light on the question as to whether a full quantum theory
of gravity is needed, or semi-classical gravity is sufficient in
several quantum mechanical contexts.
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