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Bohr’s complementarity principle is quantitatively formulated in terms of the distinguishability of various
paths a quanton can take and the measure of the interference it produces. This phenomenon results from
the interference of single-quanton amplitudes for various paths. The distinguishability of paths puts a bound
on the sharpness of the interference the quanton can produce. However, there exist other kinds of quantum
phenomena where interference of two-particle amplitudes results in a two-particle interference, if the particles
are indistinguishable. The Hong-Ou-Mandel (HOM) effect and the Hanbury-Brown-Twiss (HBT) effect are
two well-known examples. However, two-particle interference is not as easy to define as its single-particle
counterpart, and the realization that it involves interference of two-particle amplitudes came much later. In this
work, a duality relation, between the particle distinguishability and the visibility of two-particle interference, is
derived. The distinguishability of the two particles, arising from some internal degree of freedom, puts a bound
on the sharpness of the two-particle interference they can produce, in a HOM or HBT kind of experiment. It is
argued that the existence of this kind of complementarity can be used to characterize two-particle interference,
which in turn leads one to the conclusion that the HOM and the HBT effects are equivalent in essence and may
be treated as a single two-particle-interference phenonmenon.
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I. INTRODUCTION

It is well known that a single particle, better referred to as
a quanton, passing through multiple paths, can interfere with
itself, producing an interference pattern. Bohr’s complemen-
tarity principle [1] can then be quantitatively formulated as
the duality relation [2] DQ + C � 1, where DQ is the path
distinguishability and C is the quantum coherence [3] of the
quanton. The path distinguishability is defined in terms of
unambiguous quantum state discrimination (UQSD) [4,5].
Coherence of the quanton can be measured in a multipath
interference experiment in various ways [6–8]. If the path
distinguishability is defined in a different way, one gets a
different form of the duality relation [9], D2 + C2 � 1, where
D2 = DQ(2 − DQ). However, the two duality relations are
the same in essence. For the special case of only two paths,
this relation reduces to the well-known duality relation [10]
D2 + V2 � 1, where V is the conventional visibility of in-
terference, defined as V = Imax−Imin

Imax+Imin
, with Imax and Imin being

the maximum and the minimum intensity of interference in a
particular region of the interference pattern, respectively.

Apart from this phenomenon which results from interfer-
ence of single-particle amplitudes, later experiments showed
that interference of two-particle amplitudes is also possi-
ble. Such effects have been generically called two-particle
interference. However, it is not always easy to character-
ize two-particle interference, and the understanding that it
came from interference of two-particle amplitudes came much
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later. Two well-known effects that capture the phenomenon
well are the Hong-Ou-Mandel (HOM) effect [11–13] and the
Hanbury-Brown-Twiss (HBT) effect [14–18]. Two-particle
interference has been much studied as well as much debated.
Although for identical particles, the two-particle symmet-
ric and antisymmetric states are entangled, and it is not
straightforward to identify two-particle interference with this
entanglement [19]. Different from other two-particle quantum
effects, it does not seem to originate from the entanglement
between the two particles and rather appears to have its roots
in the fundamental indistinguishability of identical quantum
particles. The HBT effect has also been demonstrated with
massive particles, both of a bosonic nature [20–22] and a
fermionic nature [23]. In an interesting development, it was
demonstrated that, in a HOM experiment, if the two par-
ticles coming from two different paths are made partially
distinguishable, it results in the loss of visibility of the HOM
interference dip [24]. If the two particles are fully distin-
guishable, the HOM dip completely disappears. Not only that,
one can also set up a “quantum eraser” in a HOM exper-
iment and recover the HOM dip with maximum visibility
[24,25]. In another interesting experiment, a delayed-choice
quantum eraser was demonstrated using thermal light [26].
In this experiment too, the interference was a two-photon
interference. Although such an effect has not been explored
in the HBT experiment, to our knowledge, we show that it
should exist in the HBT experiment too. These experiments
point towards a complementarity involving particle distin-
guishability and the visibility of two-particle interference.
We show here that this complementarity can be quantified
in the same way as Bohr’s complementarity was quantified
by the wave-particle duality relations. This complementarity
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FIG. 1. A schematic diagram for the Hong-Ou-Mandel exper-
iment. Independent particles from sources A and B meet at the
beamsplitter (BS) and then arrive at the detectors D1 and D2.

will then characterize the two effects as a unified two-particle
interference phenomenon. Quantifying complementarity in
two-particle interference, and using it to characterize the two-
particle interference, is the subject of this investigation.

II. THE HONG-OU-MANDEL EFFECT

We briefly introduce the HOM experiment. Two identical
particles emerge from two spatially separated sources A and
B, in the states |ψA〉 and |ψB〉 (see Fig. 1). Assuming that
the particles are bosons, the two-particle state is the following
symmetrized state:

|�0〉 = 1√
2

(|ψA〉1|ψA〉2 + |ψA〉2|ψA〉1), (1)

where the labels 1 and 2 are particle labels. The two particles
are split by the 50-50 beamsplitter (BS) and reach the fixed
detectors D1 and D2. Now let us assume that there exists
another degree of freedom by which the particles from the two
sources can be distinguished. This degree of freedom belongs
to the particles, e.g., polarization in the case of photons, and
spin in the case of neutrons. The combined state of the two
particles, and the additional degree of freedom, can be written
as

|�〉 = 1√
2

(|ψA〉1|ψB〉2|dA〉1|dB〉2 + |ψA〉2|ψB〉1|dA〉2|dB〉1),

(2)

where |dA〉 and |dB〉 are two states of the additional degree
of freedom, which are assumed to be normalized, but not
necessarily orthogonal. If one could distinguish between the
states |dA〉 and |dB〉, finding a state, say, |dA〉, would tell one
that the particular particle came from source A. Since there
are two identical particles involved, the additional degree of
freedom has to be attached to the particle itself. It should
be emphasized here that one cannot have an external path-
marking device, like that used in single-particle which-way
experiments, because when the particles move away from
the path marker, there is no way to tell which of the two
identical particles is correlated to the path marker. That is
the reason why, for two-particle interference, it does not
make sense to talk of path distinguishability. One can only
distinguish between the two particles based on some degree
of freedom of the particle. The connection between particle
distinguishability and coherence of the two-particle system
has been explored before [27].

The effects of the beamsplitter on the two states are as
follows: U |ψA〉 = 1√

2
(|D1〉 − |D2〉) and U |ψB〉 = 1√

2
(|D1〉 +

|D2〉), where |D1〉 and |D2〉 are the states of a particle at the
detectors D1 and D2, respectively. Using this, the two-particle
state, after the particles pass through the beamsplitter, can be
written as

U |�〉 = 1

2
√

2
(|D1〉1 − |D2〉1)(|D1〉2 + |D2〉2)|dA〉1|dB〉2

+ 1

2
√

2
(|D1〉2 − |D2〉2)(|D1〉1 + |D2〉1)|dA〉2|dB〉1. (3)

The probability of a coincident count is given by

PC = |1〈D1|2〈D2|U |�〉|2 + |2〈D1|1〈D2|U |�〉|2
= 1

4 |(|dA〉1|dB〉2 − |dA〉2|dB〉1|2

= 1
2 (1 − |〈dA|dB〉1||〈dA|dB〉2|)

= 1
2 (1 − |〈dA|dB〉|2). (4)

This is the minimum intensity of the two-particle interference,
as we have already assumed that the two particles arrive at
the beamsplitter at the same time. If the two particles do not
arrive at the beamsplitter together, each particle acts indepen-
dently and is equally likely to land at D1 or D2. Consequently,
the probability of the coincident count is 1/2. That is the
maximum intensity of the coincident count, and one can say
Cmax = 1/2. The minimum coincident count intensity is given
by Cmin = 1

2 (1 − |〈dA|dB〉|2). The conventional definition of
HOM interference visibility [12] yields

V = Cmax − Cmin

Cmax
= |〈dA|dB〉|2. (5)

At any of the two detectors, suppose one wants to find out
whether a particle came from source A or source B, the way
to do it is to look at the other degree of freedom of the
particle. If one can tell if the state of the particle is |dA〉,
it means the particle came from source A, if the state turns
out to be |dB〉, it means the particle came from source B. So
the problem of distinguishing the two particles boils down
to distinguishing between the quantum states |dA〉 and |dB〉.
Since the two states may not be orthogonal, one can use
UQSD to unambiguously distinguish between them. The op-
timal probability of successfully distinguishing between them
is given by DQ = 1 − |〈dA|dB〉| [2]. Here it is more convenient
to define the particle distinguishability as D = DQ(2 − DQ),
which leads to

D = 1 − |〈dA|dB〉|2, (6)

which also happens to be the square of the distinguishability
coming from minimum error discrimination of the two states
[10]. Combining Eqs. (5) and (6), one arrives at

D + V = 1. (7)

This is a duality relation involving the particle distinguisha-
bility D and the visibility V of HOM interference. If the states
|dA〉 and |dB〉 are orthogonal, the two particles, coming from
different sources, become distinguishable. Consequently they
should not show any HOM effect. Indeed, in such a case
the HOM dip disappears and there is no HOM interference.
If |dA〉 and |dB〉 have partial overlap, the two particles are
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FIG. 2. A schematic diagram for the Hanbury-Brown-Twiss ex-
periment. Independent particles from sources A and B travel and
arrive at the two detectors at x1 and x2.

partially distinguishable. In that case the HOM is present,
but partially suppressed. Thus the relation Eq. (7) quantifies
the complementarity between particle distinguishability and
two-particle interference.

It is straightforward to see that when |dA〉 and |dB〉 are
orthogonal, a quantum eraser can be set up by selecting both
particles in a state of the internal degree of freedom which has
equal overlap with both |dA〉 and |dB〉.

III. THE HANBURY BROWN-TWISS EFFECT

The HBT effect was discovered much before the HOM
effect, in classical radio waves. Later it was demonstrated
in classical light [14]. Its applicability and meaning in the
quantum domain was widely debated and misunderstood. The
physical understanding of the HBT effect in the quantum
domain was provided by Fano [15]. In fact, an early two-
photon experiment [28] was believed to demonstrate nonlocal
quantum correlations, but was later shown to be just the HBT
effect [18]. In the HBT experiment two particles emerge from
two spatially separated sources A and B and travel to separate,
movable detectors at positions x1 and x2 (see Fig. 2). In our
setup, the particles travel as wave packets along the y axis
and spread in both the x and y directions. For the purpose
of the HBT effect, their dynamics only along the x axis are
relevant. In the following we do not consider the motion of
the particles along the y axis explicitly. We just assume that
the wave packets travel with a uniform velocity along the y
axis, and after a fixed time they land up at the detectors.

Let us also assume that the particles carry another degree
of freedom, which may be spin for massive particles and po-
larization for photons. This degree of freedom can potentially
make the two particles distinguishable. In the following we
assume that the particles, when they emerge from the two
sources, are Gaussian wave packets centered at x0 and −x0,
traveling along the y axis. The widths of the wave packets are
assumed to be small, denoted by ε. The additional degree of
freedom of the particles is assumed to have a two-dimensional
Hilbert space, and the particles emerging from source A (B)
have a state |dA〉 (|dB〉).

As in the case of the HOM experiment, the full wave
function of the two particles, with the additional degree of
freedom, when they just emerge from the sources, can be

written as

ψ (x1, x2, 0) = 1√
πε

(
e

−(x1−x0 )2

ε2 e
−(x2+x0 )2

ε2 |dA〉1|dB〉2

+ηe
−(x1+x0 )2

ε2 e
−(x2−x0 )2

ε2 |dA〉2|dB〉1

)
, (8)

where x1 and x2 denote the positions of the particles, and
η = ±1. For bosonic particles, the wave function should be
symmetric, and η should be 1. For fermions, the two-particle
wave function should be antisymmetric, requiring η to be −1.
The particles travel along the y axis to the two detectors and
also spread in the x direction governed by the free-particle

Hamiltonian H = p2
1

2m + p2
2

2m , where m is the mass of the parti-
cles.

After a time t the particles reach the detectors. The ampli-
tude of finding the particles at the detectors at x1 and x2 then
works out to be

ψ (x1, x2, t ) = α

(
e

−(x1−x0 )2

ε2+i� e
−(x2+x0 )2

ε2+i� |dA〉1|dB〉2

+ηe
−(x1+x0 )2

ε2+i� e
−(x2−x0 )2

ε2+i� |dA〉2|dB〉1

)
, (9)

where � ≡ 2h̄t/m, and α = 1√
π (ε+i�/ε)

. The joint probability
density of finding the particles at x1 and x2 is given by

|ψ (x1, x2, t )|2 = 2

πσ 2
e

−2(x2
1+x2

2+2x2
0 )

σ2 cosh

(
4(x1 − x2)x0

σ 2

)
(

1 + η|〈dA|dB〉|2 cos
( 4�(x1−x2 )x0

ε4+�2

)
cosh

( 4(x1−x2 )x0
σ 2

)
)

, (10)

where σ 2 = ε2 + �2/ε2. The above expression represents
a two-particle interference pattern exhibited in coincident
counting of the two detectors, as a function of the detector
separation. If the interference is observed sufficiently far from
the sources, the situation is equivalent to the Fraunhofer limit,
and � � ε2 can be assumed to hold. In this limit, the above
expression simplifies and yields a distinct interference pattern
(see Fig. 3). It represents the HBT effect. The reduced visibil-
ity seen in Fig. 3 is due to |〈dA|dB〉| being less than 1. It should
be stressed here that the use of Gaussian wave packets here
is just for the sake of calculational convenience. A different
profile of the wave packets would lead to the same effect.

Normally one has to be careful in deciding how to define
visibility in a two-particle interference [29,30]. However, in
the HBT setup considered here, it is quite straightforward,
and one can just use the Michelson fringe contrast for the
coincident counts Imax−Imin

Imax+Imin
. When the wave packets arrive at

the detectors at x1 and x2, they are expected to be very broad
and strongly overlapping. The maxima of the intensity will be
for the separations of the two detectors for which the cosine
term in Eq. (10) is equal to +1, whereas the minima will be
for separations for which the cosine term is equal to −1. In
the limit � � ε2 the cosh term will be approximately 1. The
(ideal) visibility of interference is then given by

V = Imax − Imin

Imax + Imin
= |〈dA|dB〉|2. (11)
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FIG. 3. The probability density of the coincident count Eq. (10),
plotted against detector separation, for |〈dA|dB〉| = 0.7, in the limit
� � ε2. The detector separation has been scaled with the fringe
width, making other parameters unimportant for the interference
pattern. The interference visibility is noticeably reduced.

Under nonideal conditions the visibility is V � |〈dA|dB〉|2.
In certain experimental situations there may be only a few
fringes within a rather narrow envelope of the wave function.
This will make evaluating the visibility from the interference
pattern more difficult.

As in the HOM experiment, one can distinguish between
the two particles by analyzing the state of its additional degree
of freedom, i.e., the spin or the polarization. One can then
define the particle distinguishability by Eq. (6). Using Eqs. (6)
and (11), one can write the duality relation

D + V = 1, (12)

which is identical to that derived for the HOM effect Eq. (7).
Thus, it can be thought of as a universal duality relation be-
tween particle distinguishability and two-particle interference.
It should be emphasized here that in the two-particle interfer-
ence discussed here, no coherence in the sources is required.
Any random fluctuation in phases at the source would not
affect the interference or its visibility. These experiments can
also be performed with thermal light [26].

From Eq. (10) it is obvious that, if |dA〉 and |dB〉 are or-
thogonal, no interference will be seen. One can put filters in
front of the two detectors which allow only the particles which
have state |d±〉 = (|dA〉 ± |dB〉)/

√
2 to pass through. Identical

filters need to be put in front of both detectors. In such a
situation, the two-particle state at the detectors will be

ψ+(x1, x2, t ) = α

2

(
e

−(x1−x0 )2

ε2+i� e
−(x2+x0 )2

ε2+i�

+ηe
−(x1+x0 )2

ε2+i� e
−(x2−x0 )2

ε2+i�

)
, (13)

if both the filters allow |d+〉. The same state results in the
situation where both the filters allow the |d−〉 state. This state
leads to an interference pattern with maximum visibility and
corresponds to quantum erasure. Alternately, one can put a
filter which allows only particles with state |d−〉 = (|dA〉 −
|dB〉)/

√
2 in front of the detector at x1, and a filter which

allows only particles with state |d+〉 = (|dA〉 + |dB〉)/
√

2 in
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FIG. 4. The probability density of the coincident counts Eq. (10),
in the experimental situation where there are spin filters in front of
the two detectors, depicted by Eq. (13) (solid blue line) and Eq. (14)
(dotted red line), plotted against detector separation, for |〈dA|dB〉| =
0, in the limit � � ε2. The two complementary interference patterns
have maximum visibility and represent quantum erasure.

front of the detector at x2. In this situation, the two-particle
state at the detectors will be

ψ−(x1, x2, t ) = α

2

(
e

−(x1−x0 )2

ε2+i� e
−(x2+x0 )2

ε2+i�

−ηe
−(x1+x0 )2

ε2+i� e
−(x2−x0 )2

ε2+i�

)
. (14)

This state also leads to an interference pattern with maxi-
mum visibility, but one which is shifted such that maxima
are located at the positions of the minima of the previous
interference pattern (see Fig. 4). This analysis shows that a
quantum eraser is very much possible in a HBT experiment.
Two-particle interference with partially distinguishable parti-
cles is a potentially useful phenomenon. A quantum-enhanced
microscope was demonstrated by using two-photon interfer-
ence and employing the photon polarization states [31].

IV. EQUIVALENCE OF HOM AND HBT EFFECTS

The HBT effect and the HOM effect have been treated as
two distinct effects. While the HBT effect has also been seen
in classical waves, the HOM effect is believed to be a purely
quantum effect. The preceding analysis of the two effects,
and the same kind of complementarity observed in the two,
points to a closer connection between the two. We wish to
emphasize that in our view the two effects are the same. This is
elaborated upon in the following discussion. If one considers
the single-particle two-slit interference and the single-particle
Mach-Zehnder interference experiment, one may naively
think of them as very different experiments, but a deeper
look at the two reveals that they are in essence completely
equivalent. In the two-slit experiment, the particle passes
through two spatially separated slits and then emerges as
two rapidly expanding wave packets which overlap with each
other. In different parts of the overlapping wave packets, there
is constructive or destructive interference. In a Mach-Zehnder
interferometer, a particle is split into two distinct wave packets
traveling two different paths, which is like the particle passing
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through a double-slit. Then the two parts are combined at a
beamsplitter, and both are split into two parts, so that each
beam has parts from both wave packets. The essential differ-
ence is that the phase difference between the two paths has
to be tuned in such a way that in one output beam the two
packets interfere destructively, and in the other they interfere
constructively. It is as if all the dark fringes of the double-slit
interference are combined into one dark output beam.

Now, the difference between the HBT experiment and the
HOM experiment is very similar to that between the two-
slit experiment and the Mach-Zehnder experiment. In the
HBT setup, two particles emerge from two spatially separated
sources and travel in the same direction as the expanding wave
packets. After some time they overlap, and the joint detection
of the two at different spatial locations shows a constructive
or destructive interference. For certain separations of the two
detectors, there is no coincident detection. These are the dark
fringes. In the HOM setup, like a Mach-Zehnder setup, two
particles emerge from two different sources and travel two
separated well-defined paths, and they do not overlap. They
are brought together at a beamsplitter and split into two parts
each. Each of the two beams has parts coming from each par-
ticle. Just as in the Mach-Zehnder setup the phase difference
between the two paths has to be fine-tuned to get null output
at one of the two detectors, the time delay between the two
photons in the HOM experiment has to be fine-tuned so that

the coincident count at the output beams becomes zero. This
is equivalent to the coincident count becoming zero for certain
separations of the two detectors in the HBT experiment. Thus
the HBT and HOM effects are quite analogous to each other
and can be looked upon as a single two-particle-interference
phenomenon.

V. CONCLUSION

In conclusion we have analyzed the HOM and HBT effects
and shown that there exists a quantitative complementarity
between the particle distinguishability and the visibility of the
two-particle interference. The more distinguishable the two
particles are, due to some internal degree of freedom, the more
degraded is the two-particle interference. This complemen-
tarity should be universal in nature and should apply to any
two-particle interference. Such a complementarity points to
the fact that there is a single phenomenon underlying the HBT
and HOM effects. The quantitative complementarity which is
demonstrated here can be used to characterize the two-particle
interference in any variant of these two experiments.
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[25] F. Herbut and M. Vujičić, First-quantization quantum-
mechanical insight into the Hong-Ou-Mandel two-photon
interferometer with polarizers and its role as a quantum eraser,
Phys. Rev. A 56, 931 (1997).

[26] T. Peng, H. Chen, Y. Shih, and M. O. Scully, Delayed-Choice
Quantum Eraser with Thermal Light, Phys. Rev. Lett. 112,
180401 (2014).

[27] A. Castellini, R. L. Franco, L. Lami, A. Winter, G.
Adesso, and G. Compagno, Indistinguishability-enabled co-

herence for quantum metrology, Phys. Rev. A 100, 012308
(2019).

[28] R. Ghosh and L. Mandel, Observation of Nonclassical Effect
in the Interference of Two Photons, Phys. Rev. Lett. 59, 1903
(1987).

[29] G. Jaeger, M. A. Horne, and A. Shimony, Complementarity
of one-particle and two-particle interference, Phys. Rev. A 48,
1023 (1993).

[30] D. Georgiev, L. Bello, A. Carmi, and E. Cohen, One-particle
and two-particle visibilities in bipartite entangled Gaussian
states, Phys. Rev. A 103, 062211 (2021).

[31] T. Ono, R. Okamoto, and S. Takeuchi, An entanglement-
enhanced microscope, Nat. Commun. 4, 2426 (2013).

012213-6

https://doi.org/10.1103/PhysRevA.45.7729
https://doi.org/10.1103/PhysRevA.56.931
https://doi.org/10.1103/PhysRevLett.112.180401
https://doi.org/10.1103/PhysRevA.100.012308
https://doi.org/10.1103/PhysRevLett.59.1903
https://doi.org/10.1103/PhysRevA.48.1023
https://doi.org/10.1103/PhysRevA.103.062211
https://doi.org/10.1038/ncomms3426

