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Asymptotically tunable quantum states and threshold scattering anomalies
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Quantum systems can support irregular eigenstates at their threshold, which can be bound, loosely bound,
or half bound. Such states are physically significant, and for instance half-bound states are known to lead to
anomalous quantum scattering, where the reflection coefficient vanishes at the threshold rather than approach
unity. Here, we present irregular threshold states which are generalizations of the above cases. The asymptotic
behavior of these states can be tuned arbitrarily by precise control of the potential; hence, they are denoted
“asymptotically tunable.” We provide exact analytical prescriptions on how to generate and control these
systems. We explore several examples in 1D, including states that exhibit a power-law–like asymptotic scaling,
and hybrid states that exhibit asymmetric boundary conditions (e.g., are fully bounded for x → ∞ but unbounded
for x → −∞, etc.). We numerically explore the scattering properties of these systems and find a close connection
between the asymptotic behavior of the threshold states, and the appearance of anomalous scattering. We show
that the threshold reflection coefficient can exhibit both discontinuities and derivative discontinuities as the
system transitions from regular to irregular, which persist even under perturbations, and thus seem to not be
quantum critical. These states could be useful for quantum system engineering, and for potential applications in
optical systems for manipulating light.

DOI: 10.1103/PhysRevA.106.012210

I. INTRODUCTION

The physical properties of a quantum systems are usually
determined either by bound states lying below the threshold
energy (with E < 0), or by scattering states lying above the
threshold energy (with E > 0). However, there are also cases
where other types of quantum states are significant. For in-
stance, resonances with complex eigen-energies describe open
systems and metastable phenomena [1,2]. Similarly, bound
states in the continuum (with E > 0) [3–6] have found several
applications in recent years, particularly in optics [7]. In this
paper, we discuss physical effects associated with quantum
states located exactly at the threshold energy, E = 0. A variety
of abnormal threshold eigenstates have already been discussed
in the literature over the years. These include bound states
(square integrable), loosely bound states (asymptotically van-
ishing, but not square integrable) [8–13], and half-bound
states (which uphold Neumann boundary conditions with van-
ishing derivatives at the asymptotes) [14–19]. Previous works
have shown that when the potential supports either low-lying
bound states [20–25] or half-bound states [15–18,26,27], the
scattering reflection coefficient at E = 0 exhibits an anoma-
lous behavior and is smaller than unity.
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Here, we present and explore a different family of
threshold states in localized potentials, which asymptotically
diverge or converge with an arbitrarily tunable functional
form. We analytically show how to engineer the system in
order to control this asymptotic behavior all the way from
bound, to diverging, and provide several examples in 1D.
We numerically investigate quantum scattering from these
potentials and find a close connection between the asymptotic
behavior of the supported threshold state, and the presence
of anomalous reflection. We further show that the system can
continuously transition from abnormal to normal threshold
reflection by tuning a single parameter in the Hamiltonian.
However, in some cases this transition exhibits a discontinuity
or derivative discontinuity in the scattering coefficients. We
demonstrate that these effects persist even under perturbations
and are relatively robust.

The paper is ordered as follows: In Sec. II we introduce the
analytical approach used to engineer desired threshold states
and the logic of our proposal. In Secs. III and IV we explore
several interesting cases in 1D systems and demonstrate con-
trol of the asymptotic behavior of threshold states. Section V
numerically explores the threshold reflection properties of the
potentials that support asymptotically tunable states as they
transition from abnormal to normal scattering. Section VI
summarizes our results.

II. ANALYTICAL APPROACH

The purpose of this paper is to explore quantum systems
that support anomalous threshold behavior. We begin by out-
lining our approach to identify such systems. To this end,
we consider the following 1D time-independent Schrödinger
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FIG. 1. Illustration of different types of eigenstates in 1D quantum systems, and their asymptotic behavior classified by their eigenenergy.
(a) Bound (orange), scattering (red), and resonance (green) states. The dashed green line denotes the exponential divergence of the resonance
state. (b) A half-bound threshold state that converges to a constant value asymptotically (vanishing derivative), and is non–square-integrable.
Blue line represents the potential function that supports these eigenstates.

equation, given in atomic units by

(
−1

2

∂2

∂x2
+ V (x)

)
ψn(x) = εnψn(x), (1)

where V (x) is a general potential-energy function, and ψn

describes the nth eigenstate of the Hamiltonian with the
associated eigenenergy εn. This eigenvalue problem is stan-
dardly solved with outgoing boundary conditions, giving
rise to a variety of physical states. It is instructive to
overview the various allowed solutions in the case of a lo-
calized potential, i.e., when the potential function vanishes
at infinity (V (x → ±∞) → 0, we assume without loss of
generality that the threshold lies at zero energy). In this
case, one may formally solve Eq. (1) at the asymptotes us-
ing plane waves, ψn(x → ±∞) ∝ e±ikx , where k = (2εn)1/2.
Consequently, it is convenient to categorize physical states
according to their eigenenergies as illustrated in Fig. 1. For
εn < 0, one obtains bound states that asymptotically vanish
at infinity [ψn(x → ±∞) → 0] and are square integrable
[∫ |ψn(x)|2dx = 1]. Bound states standardly vanish exponen-
tially at the asymptotes (in 3D systems bound states can also
exist in the continuum with subexponential decay [3–6], but in
1D this is not possible for localized potentials [28]). For εn >

0, one obtains scattering (or continuum) states which do not
converge asymptotically, and are non–square-integrable. Be-
sides bound and scattering states, resonances are also possible
solutions of Eq. (1). These arise when the eigenvalues εn are
allowed to be complex, and lead to metastable phenomenon
[1,2]. Resonances exponentially diverge at the asymptotes and
are non–square-integrable [1,2]. Finally, there is one more
family of solutions that is often disregarded, which is obtained
exactly at the threshold, εn = 0. These are so-called threshold
states. Notably, there are no particular boundary conditions
that threshold states must uphold, providing some freedom
in their asymptotic behavior. For instance, previous works
have found threshold states to be bound and square integrable,
loosely bound (asymptotically vanishing but non–square-
integrable), or half bound, upholding Neumann boundary con-
ditions [ψn(x → ±∞) → const �= 0, ∂xψn(x → ±∞) → 0],
as illustrated in Fig. 1(b).

To analytically explore these states, we invert Eq. (1) to the
following form:

V (x) = 1

2

ψ ′′
n (x)

ψn(x)
, (2)

where we used εn = 0, and ψ ′′
n(x) represents the second

derivative of ψn. This approach has been found useful for a
variety of applications (see, e.g., Refs. [27,29,30]), and we
will show here that it is well suited to explore threshold
phenomena. Equation (2) highlights the one-to-one mapping
between the eigenstates of the Hamiltonian and V (x)—the
knowledge of a single eigenstate is sufficient to fully recover
the functional form of V (x) up to a constant. This mapping is
particularly useful for engineering threshold states: By plug-
ging in any trial wave function, one immediately obtains the
potential function that supports it as an eigenstate. If this trial
wave function behaves asymptotically different than the stan-
dard bound, continuum, or resonance states (i.e., it cannot be
expressed as a single plane wave), then the resulting potential
either supports a threshold state, or is nonlocalized (which
is irrelevant to our discussion). For instance, plugging into
Eq. (2) a Gaussian wave function (that vanishes faster than an
exponential rate) leads, as expected, to a harmonic potential
that is nonlocalized. Alternatively, if one plugs into Eq. (2) a
half-bound state that converges to a constant value at infinity,
one retrieves a localized potential that supports such a state at
the threshold, as illustrated in Fig. 1(b).

The above considerations can be combined with Sturm’s
theorem in 1D (also known as “the node theorem,” stating that
the nth wave function has exactly n − 1 nodes [31]) to yield
further spectral control. That is, by “guessing” wave functions
with a particular number of nodes and desired parity in Eq. (2),
one may also fix the number of bound states supported by
the resulting potential. In particular, if the trial wave function
is nodeless, then it is necessarily also the lowest real-energy
eigenstate and the potential does not support bound states.

In the following we use Eq. (2) to generate potential func-
tions that support threshold states, obtaining the analytical
expressions for the wave functions. For simplicity, we limit
our analysis to nodeless states, such that the potentials do not
support any lower-lying bound states (though the analysis is
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FIG. 2. Asymptotically tunable threshold states and the associated potentials that support them according to Eqs. (3) and (4) for different
values of the parameters a and b. The asymptotic behavior of the threshold state is indicated in each subplot with the values of the parameters;
a.u. stands for atomic units.

general). We note that our approach is complementary to the
supersymmetric quantum mechanics approach [32] that was
previously used to investigate threshold phenomena [6,12,18].

III. THRESHOLD-STATE ENGINEERING

We now explore types of threshold quantum states where
the asymptotic behavior can be directly manipulated. For this,
we utilize the approach described above, and consider the

following trial wave function:

ψ (x) =
(

arctan (x) + π

2

)−a(
π

2
− arctan (x)

)−b

, (3)

where a and b are real tunable parameters, and we note that
ψ (x) in Eq. (1) is not normalized. Plugging Eq. (3) into
Eq. (2), one obtains the following potential:

V (x) = f0(x) + f1(x)arctan(x) + f2(x)arctan2(x) + f3(x)arctan3(x)

(x2 + 1)2(4arctan2(x) − π2)2 , (4)

where f0(x), f1(x), f2(x), and f3(x) are the following linear
functions:

f0(x) = 2π2
(
(a + b) + (a − b)2 + π (a − b)x

)
f1(x) = −4π (2(a − b)(a + b + 1) + π (a + b)x)
f2(x) = 8((a + b)(a + b + 1) + π (b − a)x)
f3(x) = 16(a + b)x

. (5)

V (x) and ψ(x) are plotted in Figs. 2(a)–2(d) for some ex-
emplary values of a and b. It is worthwhile examining the
asymptotic behavior of these functions. V (x) in Eq. (4) has
a numerator that converges to a constant value of 8π2b(b−1)
as x tends to infinity, and a constant value of 8π2a(a−1) as
x tends to minus infinity, regardless of the values of a and b
(because the terms that are linear in x cancel out for |x| � 1).
The denominator on the other hand diverges at the asymptotes
with a parabolic scaling ∼16π2x2. Thus, this potential is lo-
calized in space for any values of the parameters a and b, and
exhibits a composite barrier-well type structure (see Fig. 2).
Interestingly, the threshold state supported by this potential
exhibits an asymptotic behavior that strongly depends on the
values of a and b. One can show that its series expansion at
infinity, to leading order, is

ψ (x) → πaxb, (6)

while at minus infinity it is

ψ (x) → πb(−x)a. (7)

Therefore, ψ(x) exhibits a power-law behavior at the
asymptotes that can be arbitrarily controlled by tuning a and
b. In particular, when a, b > 0, the state diverges and is non–
square-integrable, while it can be bound or loosely bound for
a, b < 0. For an asymmetric choice of a �= b, one may design
a threshold state that is “bound” at infinity (i.e., decays faster
than x–0.5), but is loosely bound or diverges at minus infinity.
Remarkably, this control is irrespective of the fact that V (x)
is always localized and analytic. Lastly, we point out that the
particular choice of ψ(x) was quite arbitrary in our analysis,
and there are many other choices that lead to similar types of
control.

At this point, we can extend our analysis to a plethora of
other “weird” states. This possibility stems from the gener-
ality and simplicity of the above approach–once a particular
ψ(x) and V (x) pair is obtained, the result is analytic and
guaranteed. For instance, we suggest the following simple
form for a nodeless half-bound state:

ψ (x) = α + (1 − α)sech2(x), (8)

where α is a real parameter that is bound from 0 to 1, and the
potential that supports such states is straightforwardly derived
by substituting Eq. (8) in Eq. (2) (for analytic expressions
see the Appendix). This state is complementary to those sug-
gested in Ref. [18] using supersymmetric quantum mechanics
[32]. Such a model system can be quite useful, since for
α = 0 this state is fully bound with an eigenenergy below the
threshold (exponentially decaying at infinity), while for α > 0
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FIG. 3. Half-bound threshold states and the associated potentials that support them according to Eq. (8) for exemplary parameters. (a)–(e)
Eigenstates for different values of α. The states converge to the constant value α at the asymptotes. (f) Numerically calculated quantum
threshold reflection coefficient vs the parameter α from the unperturbed potential (solid line), and using a perturbed potential with an overall
δ = 2% amplitude variation (dashed). Inset in (f) indicates how the potential function changes as α is tuned, where the arrow marks the
direction of increase in α.

it is half bound. By tuning α, one can study the system as
it transitions between the two regimes (see plots for several
values of α in Fig. 3).

As a final example, we consider loosely bound and di-
verging threshold states that scale logarithmically at the
asymptotes. For loosely bound states we employ

ψ (x) = 1

ln(1 + β + x2)
, (9)

while for diverging states we employ

ψ (x) = ln(1 + γ + x2), (10)

where β and γ are real positive parameters. In both cases the
potentials are straightforwardly derived (see the Appendix),
and are localized. Some illustrative cases are plotted in Fig. 4.

We emphasize that the exemplary cases shown here for
types of threshold states are only a select few. The approach
to design and control their properties is fully general, and one
may tailor a potential function to suit any desired functional
form. For instance, one may similarly tailor states to scale log-
arithmically at infinity, but exhibit a power-law–like scaling
at minus infinity, and so on and so forth. In a similar manner,
this approach can be directly extended to higher-dimensional
systems. For instance, in 3D one may use spherically symmet-
ric trial wave functions that diverge (converge) with a desired
scaling in r for the radial part of the Schrödinger equation.

IV. DEGENERATE THRESHOLD SOLUTIONS

At this point, and before moving on to calculate physi-
cal observables in systems supporting asymptotically tunable
threshold states, we acknowledge an important mathematical
point: For a second-order linear ordinary differential equation,
two independent solutions always exist. Thus, the presented

wave functions, ψ (x), constitute only half of the potential so-
lution space. Standardly in quantum mechanics, other families
of solutions are discarded if they exhibit ill-behaved boundary
conditions (e.g., exponentially divergent at the asymptotes for
the harmonic oscillator potential). Since we have not used
a strong boundary constraint here (but rather demanded a
particular parity and scaling at the asymptotes), we are not
guaranteed a unique solution, and we must contemplate the
role of the other independent solution, termed ψ2(x) from this
point on. Given ψ (x) solves Eq. (1) for ε = 0, we can directly
obtain ψ2(x) as [33]

ψ2(x) = ψ (x) ∫ dx

[ψ (x)]2 , (11)

which can be plugged back into Eq. (1) to show that it is
also a solution. Figure 5 presents this “other” solution for
several of the exemplary cases explored in the section above.
Several observations should be noted. First, while ψ (x) was
chosen to have an even parity (i.e., it is a nodeless positive
definite state), ψ2(x) exhibits a node and odd parity. Notably,
one should be able to make any threshold-state transition
into a bound state by slightly (and continuously) changing
the Hamiltonian. For ψ (x) this poses no issue, since it is
nodeless and can easily turn into the first bound state with-
out violating Sturm’s theorem [31]. ψ2(x) on the other hand
could not make this transition since, having a node, it would
violate Sturm’s theorem [31]. This provides some physical
intuition that ψ2(x) likely does not physically contribute to
connected observables. Second, ψ2(x) can generally diverge
faster than ψ (x) at the asymptotes. For instance, in the case
shown in Fig. 5(b) where ψ (x) is determined by Eq. (3) for the
parameters a = −1.5, b = 0.5, ψ (x) converges at x → −∞
with a scaling of ψ ∝ (−x)−1.5, while from Eq. (11) ψ2(x)
diverges as ψ2 ∝ (−x)2.5. This by itself is not a fundamental
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FIG. 4. Logarithmically diverging and converging threshold states and the associated potential functions that support them according to
Eqs. (9) and (10), for exemplary parameters. (a), (b) Eigenstates for different values of β. The states are loosely bound and non–square-
integrable. (c) Numerically calculated quantum threshold reflection coefficient, R(E = 0), vs the parameter β. Inset in (c) indicates how the
potential function changes as β is tuned, where the arrow marks the direction of increase in β. (d), (e) Eigenstates for different values of γ .
The states are logarithmically diverging and non–square-integrable. (f) Numerically calculated quantum threshold reflection coefficient vs the
parameter γ . Inset in (f) indicates how the potential function changes as γ is tuned, where the arrow marks the direction of increase in γ ; the
logarithm is base 10.

issue, since it simply establishes that ψ2(x), just like ψ (x),
is an irregular threshold state with nonstandard asymptotic
scaling (in that regard both families of independent solutions
represent asymptotically tunable threshold states). On the
other hand, from Eq. (4) we have that the potential converges
with V ∝ (−x)−2, such that ψ2(x) diverges faster than V (x)
converges. Thus, ψ2(x) is a zero-energy (threshold) solution
only by an exact cancellation of various contributions in a
type of detailed balance that seems unphysical, since small
perturbations would lead to infinite energies. Lastly, from
the perspective of the main physical observable that will be
explored below (the reflection–transmission coefficients at the
threshold), the physical state itself does not play a direct role

because it is initially unoccupied. In that respect, the potential
function V (x), which is nonambiguous, determines all scatter-
ing properties. Indeed, the threshold states are only indirectly
involved because they determine V (x) via the conceptual in-
version process, but once that has been assigned, the role of
ψ (x) [or ψ2(x)] has ended.

To summarize this discussion, all of these considerations
indicate the following: (i) The presented potentials always
support irregular asymptotically tunable threshold states,
since those are constructed by any superposition of the full
solution space. (ii) The conclusions that will be presented
below for the anomalous scattering are not affected by a pos-
sible second degenerate threshold solution. (iii) ψ2(x) likely

FIG. 5. Independent energy-degenerate threshold solutions to the Schrödinger equation in some exemplary cases, where ψ denotes the
analytical nodeless solutions, and ψ2 denotes the other independent solution that can be obtained from ψ with Eq. (11). (a), (b) Independent
solutions where ψ is obtained from Eq. (3) for the parameters a = b = −1, and a = −1.5, b = 0.5, respectively. (c) Similar to (a) and (b), but
where ψ is obtained from Eq. (8) for α = 0.5.
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FIG. 6. Quantum threshold reflection coefficient from the potential in Eq. (4) for different values of the parameters a and b. (a) Reflection
coefficient calculated for all values of a and b. (b) Cut along the diagonal of (a) for the case of a = b, showing derivative discontinuity [red
dashed line in (a) shows the diagonal cut]. Inset shows zoom-in around the derivative discontinuity at a = b = 0. (c) Same as (b) but along a
cut of b = 0.3 [dashed blue line in (a)], showing a discontinuity in the reflection coefficient at a = 0.

does not have a main physical contribution to any observed
effects. At the same time, we note that some care is needed,
because the main role of the threshold states in the anomalous
reflection process remains vague, and we cannot definitively
rule out that both states might play some role (e.g., they
might play a role in the scattering discontinuities that will be
explored below).

V. SCATTERING ANOMALIES

Having presented a variety of systems that support asymp-
totically tunable threshold states, we move on to explore
their physical properties, focusing on the threshold quantum
scattering behavior. To this end, we numerically calculate
the reflection coefficient at the threshold for the potential
functions described above, R(E = 0), and explore its depen-
dence with respect to the asymptotic behavior of the supported
states. Technical details on the methodology are found in the
Appendix.

We begin with the potential function in Eq. (4) that
supports threshold states that diverge (converge) with a
power law–like scaling at the asymptotes. Figure 6 presents
R(E = 0) from this potential for various values of the param-
eters a and b. Some immediate observations can be made:
(i) As expected, R is fully symmetric under a → b. (ii) The
system exhibits anomalous reflection [R(E = 0) �= 1] for a
variety of potential parameters, including when the supported
threshold states are bound, loosely bound, half bound, outright
diverge, and all combinations thereof. (iii) As the absolute
values of a and b increase, the reflection reaches unity, which
is the standardly expected value for regular systems [34].
This occurs despite the fact that for any value of a and b
the potential supports irregular threshold states (in the sense
that these states asymptotically do not decay exponentially
for a, b < 0, and that they diverge for a, b > 0). (iv) The
transition from anomalous to regular reflection can be fully
continuous and smooth along some parameter contours (e.g.,
a = −0.5, −1 < b < 1), but also exhibits discontinuities and
derivative discontinuities along others. For instance, Fig. 6(b)
clearly shows a derivative discontinuity in the threshold reflec-
tion coefficient for a = b as a transitions through zero. More
noticeably, there is a discontinuity in R(E = 0) for a = 0 and

b = 0 in a wide parameter regime [see sharp lines in Fig. 6(a)
and exemplary cut in Fig. 6(c)].

At this point, we recall that several works have investigated
the connection between the presence of half-bound states or
shallow-bound states at the threshold to anomalous quantum
scattering [25,26]. Here we have demonstrated that a wide
range of different states can also lead to such anomalous
behavior, and that the strength of the anomaly seems to be
correlated with the asymptotic behavior of the supported ir-
regular states (since beyond certain values of a and b regular
reflection is restored).

Previous works have also shown that the anomalous thresh-
old reflection is a quantum critical phenomenon [16,25,26].
That is, vanishingly small perturbations to the potential func-
tion (such as changing its amplitude or some other parameters
in the Hamiltonian) cause a collapse of the half-bound states
(resulting in either bound or scattering states instead), ex-
ponentially restoring the reflection coefficient to unity. We
further explore this notion by calculating the threshold re-
flection from our particular half-bound model [Eq. (8)]. In
this case, we find that by tuning a single parameter in the
Hamiltonian, α, the reflection can be fully controlled all the
way from unity to zero [see Fig. 3(f), solid line]. The transition
from anomalous to regular reflection is fully continuous and
noncritical along α, even though a half-bound state is present
through the transition for any α�0. This concept is put to
further testing by calculating the threshold reflection from the
system when it is perturbed by an overall amplitude variation
in the potential, i.e., V(x)→(1±δ)V(x). The perturbations in-
deed cause considerable changes in the threshold reflection
coefficient, such that larger values of α are needed to obtain
nonunity reflection [Fig. 3(f), dashed lines compared to solid
lines]. Still, even under perturbations as large as ±5% the
anomalous behavior persists, and a continuous and smooth
transition is always observed from regular to irregular re-
flection as α is varied. Moreover, for values of α > 0.85 the
perturbation hardly changes the value of the threshold reflec-
tion, which is maintained close to zero. Overall, this suggests
that this particular half-bound model shows anomalies that are
relatively robust under perturbations.

We next explore the sensitivity of R(E = 0) from the po-
tential function in Eq. (4) that supports asymptotically tunable
threshold states to small perturbations (which are not half
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FIG. 7. Sensitivity of quantum threshold reflection coefficient to perturbations, for the potential in Eq. (4). (a), (b) R(E = 0) calculated for
different values of the parameters a and b, but where the total amplitude of the potential is perturbed by δ = ±2%. (c), (d) Same as (a) and (b),
but where the perturbation is an added sech(x) function with an amplitude of δ = ±2% of the original potential amplitude.

bound). It is especially interesting to examine the sensitivity
of the sharp discontinuity features in Fig. 6. We consider here
two types of perturbations: (i) changing the overall amplitude
of the potential by δ, denoted as V (x) → (1 ± δ)V (x), and
(ii) adding a small perturbative function ±δsech(x) to the
potential (which on its own supports a bound state for any well
depth), denoted by V (x) → V (x) ± δsech(x). Figure 7 shows
the threshold reflection coefficient under these perturbations
for δ = 2%. As seen in Figs. 7(a) and 7(b), the reflection
coefficient is not very sensitive to changes in the amplitude
of the potential. It maintains its structure and dependence on
the parameters a and b. However, it is much more sensitive
to the addition of small binding or antibinding functions [see
Figs. 7(c) and 7(d)]. Still, even here the anomality survives,
including the presence of both discontinuities and derivative
discontinuities in the threshold quantum reflection coefficient.
These types of states thus support relatively robust irregular
threshold phenomena that seem to not be quantum critical.

Lastly, we explore the reflection properties from our ex-
emplary system that supports asymptotically logarithmically
scaling threshold states [Eqs. (9) and (10)]. Figures 4(c) and
4(f) present the threshold reflection from this system, showing
that similar control is obtained by tuning a single parameter in
the Hamiltonian (β or γ ). We emphasize that these parameters
control only the spatially local properties of the threshold
states. As a result, the control over the reflection coefficient is
somewhat limited. We also note that contrary to the previous

example in Fig. 6, here as one changes the potential to support
more strongly diverging states (increase γ ) the reflection co-
efficient reduces and saturates. We believe that the saturation
results from the spatially local nature of the control param-
eters, as for all values of β and γ the asymptotic scaling of
the supported threshold states is the same. This highlights the
strong, and complex, connection between quantum reflection
at zero energy, and the asymptotic properties of the supported
threshold states.

VI. SUMMARY

In this paper we introduced a new type of irregular
threshold quantum states, denoted as asymptotically tunable
states. These states can be fully controlled to reproduce any
type of asymptotic behavior, e.g., power-law–like divergence
(convergence), logarithmic-like scaling, and so on. We have
analytically demonstrated that a vast variety of such systems
exist, gave an exact analytic prescription on how to find them,
and provided expressions for both the potential functions and
the supported anomalous states for a few unique cases in 1D.
We investigated the reflection properties from these systems
and showed that they support anomalous reflection, which is
fully tunable, and whose strength seems to be correlated to
the asymptotic properties of the threshold states. Importantly,
we provided models for systems that transition from regu-
lar to irregular threshold reflection when a single parameter
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in the Hamiltonian is varied. This transition may be fully
continuous, or in some cases, abrupt, with discontinuities
and derivative discontinuities for the quantum reflection (even
though the potential and supported states are fully analytic and
smooth at all times). The effect is reminiscent of a quantum
phase transition at zero temperature. Lastly, we showed that
such phenomenon is not necessarily quantum critical, and that
certain systems are relatively robust against perturbations.

We expect our work to find applications in atomic and
molecular systems, e.g., for tailoring a desired scattering
property, or engineering the system’s spectral properties. Al-
ternatively, optical systems under the paraxial approximation
(that are mathematically equivalent to the Schrödinger equa-
tion) provide readily accessible setups to demonstrate the
existence of the states, as for instance has been shown for
bound states in the continuum [7], resonances [35,36], and
recently for half-bound sates [27]. Here we envision that
controllable threshold anomalies might open possibilities in
tailoring light propagation and guiding. We also hope that
this work will inspire further research of such systems, which
could lead to the discovery of anomalies in other physical
observables, and has potential for quantum control.
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APPENDIX

1. Numerical details

We provide here technical details on the numerical calcula-
tions for the reflection coefficients. We numerically calculated
the reflection coefficients on nonequidistant Cartesian grids,
using the transfer matrix method [37–39] (rather than with
direct propagation methods [40]). In this approach, the time-
independent Schrödinger equation is solved with outgoing
waves at one boundary, and both incoming and outgoing
waves at the other boundary. In particular, we used the sim-
plest variant of the method that assumes a plane-wave solution
for the scattering problem between every two grid points,
where the coefficients of the waves are propagated along the

grid with transfer matrices. The reflection and transmission
coefficients were calculated directly from the system’s total
transfer matrix.

For some of the cases examined, large grids were needed
when the potential functions decay slowly with a power-
law scaling. For instance, for scattering from the potential
in Eq. (4), we used a grid of total size L = 500 bohr, with
an outer spacing of 0.1 bohr, and an inner mesh around the
origin (up to 20 bohr around the center) of 10–3 bohr. The
nonequidistant grids were used in order to have denser sam-
pling around the origin, where the potential functions change
rapidly (while in the asymptotic regions changes are much less
abrupt). In all cases grid sizes and spacings were tested for
convergence.

The reflection coefficient at the threshold was either cal-
culated directly (when the potential function approached the
threshold from below), or by extrapolation (when the po-
tential function approached the threshold from above). For
extrapolation, the reflection coefficient was calculated over a
large energy range (in steps of 5×10–5 hartree from 0 up to
5×10–3 hartree), and a piecewise cubic interpolating Hermite
polynomial was fitted to the data, and extrapolated to zero
energy.

2. Exact expressions for potentials

We give here the exact expressions for the potentials that
support some of the irregular threshold states explored in the
main text. The potential that supports the half-bound threshold
state in Eq. (8) is

V (x) = 2
2 − 3sech2(x)

2 + α[1 + cosh(2x)]
− 3sech2(x). (A1)

The potential that supports the threshold state in Eq. (9)
that converges logarithmically and is loosely bound is

V (x) = 4x2 + (x2 − 1 − β )ln(1 + β + x2)

(1 + β + x2)2ln2(1 + β + x2)
. (A2)

The potential that supports the threshold state in Eq. (10)
that diverges logarithmically is

V (x) = 1 + γ − x2

(1 + γ + x2)2ln(1 + γ + x2)
. (A3)
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