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Landau-Zener transitions through a pair of higher-order exceptional points
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Non-Hermitian quantum systems with explicit time dependence are of ever increasing importance. There
are only a handful of models that have been analytically studied in this context. Here, a PT -symmetric
non-Hermitian N-level Landau-Zener type problem with two exceptional points of N th order is introduced.
The system is Hermitian for asymptotically large times, far away from the exceptional points, and has purely
imaginary eigenvalues between the exceptional points. The full Landau-Zener transition probabilities are derived,
and found to show a characteristic binomial behavior. In the adiabatic limit the final populations are given by the
ratios of binomial coefficients. It is demonstrated how this behavior can be understood on the basis of adiabatic
analysis, despite the breakdown of adiabaticity that is often associated with non-Hermitian systems.
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I. INTRODUCTION

Quantum systems with explicitly time-dependent Hamil-
tonians play an important role in many experimental appli-
cations. If the parameters change sufficiently slowly in time,
the adiabatic theorem states that there are no transitions of
population between the different instantaneous eigenstates.
When the speed of parameter change is not slow compared
to characteristic scales related to the energy gaps between
different instantaneous eigenstates, transitions between the
states occur. Fortunately, many realistic situations can be well
described by simplified models. Undoubtedly the most impor-
tant of these models is the Landau-Zener, or more accurately
Landau-Zener-Stückelberg-Majorana (LZSM), model. It de-
scribes the transfer of population between two levels driven
linearly through an avoided crossing [1–4], modeled by the
time-dependent Schrödinger equation

i

(
ψ̇1

ψ̇2

)
=

(−αt v

v αt

)(
ψ1

ψ2

)
. (1)

Assuming the system at time t → −∞ fulfills |ψ1| = 1 and
|ψ2| = 0, i.e., |ψ (t → −∞)〉 ∝ |+〉, the probability |ψ1(t →
+∞)|2 to find the system in the initial state at time t → +∞
is given by the LZSM formula

PLZ = e− πv2

α . (2)

This describes the probability of a transition between two
instantaneous (or adiabatic) states for time-dependent Hamil-
tonians in the vicinity of an avoided crossing of energy levels,
with velocity α of parameter variation. In the adiabatic limit
α → 0 this probability tends to zero, and a system follows the
instantaneous states, as expected from the adiabatic theorem.

While the LZSM probability is derived from the asymp-
totic behavior of this idealized system, the result is much more
robust. In practice, nonadiabatic transitions happen close to
avoided energy crossings, and the behavior away from these
crossing plays no significant role. Thus the results accurately

describe the transition probabilities in a large number of
physical situations which in the neighborhood of an avoided
crossing of two adiabatic eigenstates can be approximated
by (1).

Systems with more than two relevant eigenstates with
nontrivial avoided crossing scenarios are harder to treat an-
alytically, in particular due to interference effects following
multiple transitions. A number of important model systems
can be solved fully and provide important insights into more
general behavior [5–14]. In particular, higher-dimensional
Hamiltonians that are elements of an su(2) algebra provide
model systems that show nontrivial population transfer, but
can be solved using algebraic and group theoretical ideas
on the basis of a corresponding 2×2 model [15]. In fact,
already in Majorana’s original paper on the problem, higher-
dimensional realizations were considered [3,16].

In recent decades there has been an ever growing interest in
quantum systems described by non-Hermitian Hamiltonians,
that arise naturally in the context of dissipation, scattering
and losses (see, e.g., [17–19] and references therein). In par-
ticular non-Hermitian PT -symmetric systems that possess
an antilinear symmetry that can be interpreted as a balance
of gain and loss are leading to exciting new developments
and applications [20,21]. The eigenvalues of non-Hermitian
Hamiltonians are typically complex and, more importantly,
their eigenvectors are in general not orthogonal to each other.
This phenomenon is most pronounced at what is known as ex-
ceptional points (EPs) in the parameter space, at which two or
more of the eigenvectors coalesce and the Hamiltonian is not
diagonalizable, but similar to a Jordan normal form (see, e.g.,
[22] and references therein). An exceptional point at which N
eigenfunctions coalesce is referred to as an exceptional point
of order N .

Instantaneous energies cross at exceptional points, and in
their neighborhood the eigenvalues depend on the param-
eters in a characteristic nonanalytic fashion. In particular,
N th-order exceptional points often appear as N th root branch
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points in the instantaneous energies of a system. However,
the eigenvalue perturbations around an N th-order excep-
tional point can follow more complicated patterns in specific
cases [23–25] and can be understood through analysis of the
Puiseux expansion [26,27]. The nonanalytic nature of the en-
ergies as functions of the parameters, combined with the
influence of the nonvanishing imaginary parts causing relative
exponential decays and growths, leads to unusual behavior
in the neighborhood of exceptional points when parameters
are varied in time. This unusual behavior, in particular in
the adiabatic regime, has been highlighted by recent theoret-
ical [28–32] and experimental [33–37] work associated with
encircling exceptional points. Specifically higher-order excep-
tional points have been explored in PT -symmetric systems in
[38–43] and in non-Hermitian systems without PT symmetry
[44–46].

There have been various investigations of non-Hermitian
generalizations of the LZSM model [47–52] which involve
exceptional points of order 2 [53–55] and higher [39,56]. In
particular the situation where the coupling between the two
levels in the standard LZSM scenario is made imaginary,
described by the time-dependent Hamiltonian

Ĥ (2×2) =
(−αt iγ

iγ αt

)
, (3)

is considered in [57,58].
This system is PT symmetric for all times. It has

imaginary eigenvalues for small times, between a pair of
exceptional points at t (±)

EP = ± γ

α
. Asymptotically for large

times t → ±∞ it reduces to the same Hermitian diagonal
limit as the original LZSM Hamiltonian. The presence of the
imaginary nonreciprocal coupling changes the characteristics
of the transitions, and in the adiabatic limit, α → 0, the final
state equally populates the two levels, irrespective of the initial
state.

In the present paper we generalize these results to a non-
Hermitian N-level system driven through a pair of exceptional
points. In particular, we consider the model

Ĥ = −2αt Ĵz + 2iγ Ĵx, (4)

where α and γ are real and positive constants, and
Ĵx, Ĵy, and Ĵz are the standard quantum angular momentum
operators, i.e., generators of the su(2) algebra. The model
has two N th-order exceptional points at which the matrix is
similar to a full Jordan block. For large t the model again
approximates the Hermitian limit Ĥ ∼ −2αt Ĵz, and transition
probabilities are well defined. Using the SL(2) structure of
the model we derive the full set of transition probabilities be-
tween the asymptotic eigenstates of the N-dimensional model
from the 2×2 realization. The algebraic structure and the PT
symmetry lead to a square root unfolding of the eigenvalues
around the N th-order exceptional point [27]. In the adiabatic
limit this leads to a nontrivial redistribution of populations
following a binomial pattern. Interestingly, this pattern can be
understood on the grounds of an adiabatic argument, arising
from the geometry of the eigenvector system close to the
exceptional point.

The paper is organized as follows. In Sec. II we review
the standard LZSM model and summarize how the N-level
generalization can be solved using its group structure [15].

We then move on to the discussion of the non-Hermitian
system (4) in Sec. III, where we derive the full set of
velocity-dependent transition probabilities between the dif-
ferent asymptotic states. We provide a derivation for the
nontrivial adiabatic limiting behavior, based on the adiabatic
eigenvector structure in Sec. IV. We close with a short sum-
mary in Sec. V. The Appendix provides some details on how
the SL(2) structure is used to deduce an N-dimensional repre-
sentation of a group element from the 2×2 representation. For
convenience we use dimensionless units throughout the paper
with h̄ = 1.

II. LANDAU-ZENER-STÜCKELBERG-MAJORANA
TRANSITIONS IN N-LEVEL SYSTEMS WITH

HERMITIAN su(2) HAMILTONIANS

The original LZSM model, described by the time-
dependent Schrödinger Eq. (1), considers two quantum states
with an energy difference that changes linearly in time, cou-
pled by the coupling constant v ∈ R. For vanishing coupling,
v = 0, the Hamiltonian of Eq. (1) is diagonal with the in-
stantaneous eigenvalues λ1,2 = ±αt , and eigenstates |+〉, |−〉
of the σ̂z operator. At t = 0 it has a diabolical point [29]
where the two eigenvalues degenerate. For nonzero coupling
between the two levels, v �= 0, the energies as a function of
the time display an avoided crossing at t = 0 with energy gap
� = 2|v|. For v �= 0 the instantaneous energies are given by

λ± = ±
√

α2t2 + v2, (5)

with corresponding eigenstates

φ± ∝
(

λ± − αt
v

)
. (6)

In the asymptotic limit t → ±∞ these are the same eigen-
states as those of the uncoupled system. The LZSM proba-
bility (2) of finding the system in the initial eigenstate after
parameter variation from t → −∞ to t → +∞ corresponds
to the probability of transition between the instantaneous
eigenstates that interchange at the avoided crossing, hence
it is often referred to as a “transition probability.” One can
further ask about the probability of the system being found
in the state |+〉 at t → +∞ when starting from the state
|−〉 at t → −∞, and of course the equivalent questions
when starting from the state |+〉. Due to the unitarity of
the problem, these four probabilities are all determined by
the LZSM probability (2). They can be summarized in a
matrix M of transition probabilities between the asymptotic
eigenstates as

M =
(

e− πv2

α 1 − e− πv2

α

1 − e− πv2

α e− πv2

α

)
. (7)

The transition probabilities starting from |+〉 in dependence
on α are depicted in the right panel of Fig. 3 for v = 1.

Of course, in many realistic situations more than two levels
are involved in avoided crossings. Viewing the Hamiltonian
in the LZSM problem as a two-dimensional representation of
an su(2) Lie algebra element, it is natural to consider the N-
dimensional model

Ĥ (t ) = −2αt Ĵz + 2vĴx, (8)
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FIG. 1. Eigenvalues as a function of t of the three level (left
panel) and four level (right panel) Hamiltonians given in Eq. (8) for
N = 3 and 4, respectively, where α = v = 1.

where Ĵz and Ĵx are N-dimensional representations of angular
momentum operators, and v and α are the same real and
positive constants as in the 2×2 case. Perhaps not surprisingly,
the transition probabilities for the N-dimensional problem (8)
are fully determined by the solutions of the 2×2 case, due
to the su(2) algebraic structure [15]. Let us now proceed to
review the solution of the N-dimensional problem using this
idea.

The N-dimensional Hamiltonian (8) can be diagonalized
by the simple rotation

Ĥ = 2λ 
̂Herm Ĵz
̂
−1
Herm, (9)

with


̂Herm = ei φĴy , (10)

where

cos(φ) = −αt

λ
, sin(φ) = −v

λ
, (11)

and

λ =
√

α2t2 + v2. (12)

Thus, the eigenvalues are given by multiples of those of
the 2×2 system, 2mλ with m = J, J − 1, . . . ,−J + 1, −J ,
where J = N−1

2 is the angular momentum quantum number.
Figure 1 depicts the eigenvalues as a function of time for
the cases N = 3 and 4, for α = 1 = v, displaying an avoided
crossing of all N levels around t = 0. Note that while the
avoided crossing scenario looks similar, this model is different
from what is known as the bow tie model [7,8,59,60].

The corresponding eigenvectors are given by∣∣φHerm
j

〉 = 
̂Herm| j〉, (13)

where | j〉 denotes the eigenvectors of Ĵz corresponding to the
eigenvalues J − j. That is, j goes from zero to N − 1. For t →
±∞ we have Ĥ → ∓αt Ĵz, and the asymptotic eigenvectors
are given by those of Ĵz, as expected.

The LZSM transition probabilities between the asymptotic
eigenstates Mjk are given by the squared moduli of the matrix
elements of the time evolution operator Û (t, t0) from t0 =
−∞ to t = +∞. Since the Hamiltonian is an element of the
su(2) Lie algebra, the time evolution operator Û is an element
of the group SU(2). Thus, the N-dimensional representation
can be deduced from the two-dimensional one.

In fact, the transition probabilities only depend on the
squared moduli of the elements of the 2×2 time evolution
operator, that is, the transition probabilities in the 2×2 case.

This can be seen as follows. In general, the matrix elements
of a group element D of the group SL(2) [the complexification
of the group SU(2)] in N dimensions are given in terms of the
2×2 representation, which for simplicity we shall denote by
the lowercase letter d̂ , as

D(N )
jk =

(
n
j

) 1
2
(

n
k

)− 1
2

lmax∑
l=lmin

(
n − j
k − l

)(
j
l

)
dn− j−k+l

11 dk−l
12 d j−l

21 dl
22

=
lmax∑

l=lmin

√
k!(n−k)!(n− j)! j!

(n− j−k+l )!(k−l )!( j−l )!l! dn− j−k+l
11 dk−l

12 d j−l
21 dl

22, (14)

where

lmin = max(k − (n − j), 0), (15)

lmax = min(k, j), (16)

and the d jk denote the matrix elements of d̂ , where for ease of
notation the indices run from zero to n = N − 1. This can be
deduced for example from the action of the group element on
the basis of coherent states of the complex projective Hilbert
space CPn, as summarized in the Appendix.

In the 2×2 case, due to its unitarity, the time evolution
operator is of the form

Û (t = ∞, t = −∞) =
(

a b
−b∗ a∗

)
, (17)

with |a|2 + |b|2 = 1. The matrix elements of Û in the N-
dimensional representation can be deduced from the 2×2
representation using Eq. (14). Here, we are interested in the
transition probabilities between the diabatic states (i.e., the
eigenstates at t → ±∞), rather than the full time evolution
operator. The transition probability between states k and j is
given by Mjk = |〈 j|Û |k〉|2 = |Ûjk|2. Due to the unitarity of Û
these are functions of only the squared moduli of the matrix
elements of the 2×2 representation, A = |a|2 and B = |b|2,
i.e., the transition probabilities of the two-level case.

Using Eq. (14) to deduce U (N )
jk , after some algebra we find

the transition matrix elements

Mjk =
∑
l,l ′

(−1)l+l ′cll ′A
n− j−k+l+l ′Bk+ j−(l+l ′ ), (18)

with

cll ′ =
(

k
l

)(
n − k
j − l

)(
n − j
k − l ′

)(
j
l ′

)
. (19)

In particular the transition probabilities between the first
diabatic state and any other states, Mj0, only have one con-
tributing term that is l = l ′ = 0 and thus Mj0 is simply given
by the binomial expression

Mj0 =
(

n
j

)
An− jB j, (20)

with A = e− πv2

α and B = 1 − e− πv2

α . These transition proba-
bilities are plotted in Fig. 2 for three and four dimensions as a
function of α for v = 1.

For intermediate velocities of parameter variation the bi-
nomial character of the transitions between different levels
becomes apparent in the multilevel systems as compared to
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FIG. 2. Transition probabilities as a function of α for v = 1 for
the three level (left) and four level (right) Hermitian Hamiltonians
given by Eq. (20). The green dot-dashed, blue dashed, and red solid
(and purple dotted) lines correspond to j = 0, 1, 2, and 3, respec-
tively, for the three level (four level) Hamiltonian.

the two-level system. In the adiabatic limit we have A → 0
and B → 1 and thus Mk0 → δkn, as expected from the struc-
ture of the instantaneous eigenvalues. In the quantum quench
limit, on the other hand, we have A → 1 and B → 0, and
thus Mk0 → δk0. In neither of these limits can the binomial
structure of the transition probabilities be seen.

III. THE NON-HERMITIAN MODEL

Let us now turn to the main topic of this paper, the non-
Hermitian Hamiltonian (4), the N-level generalization of the
2×2 system given in Eq. (3) which we first review.

Here αt and −αt are the on-site energies of the two states
under consideration, which are linearly changed in time as
in the standard LZSM model, with velocity α, assumed to
be positive here without loss of generality. The real-valued
time parameter t runs from −∞ to ∞. The system is PT
symmetric, i.e., it fulfils [P̂T̂ , Ĥ ] = 0, where T̂ is a time-
reversal operator, which in the present case is given by the
complex conjugation operator, i.e., T̂ : i �→ −i, and P̂ = σ̂z is
a parity operator that maps σ̂x to −σ̂x. This 2×2 model has
been analyzed in detail in [57,58]. Note that the time-reversal
operator T̂ is an antilinear operator and thus does not flip the
sign of the parametric time t .

In contrast to the Hermitian LZSM model, the system
(3) has a nonreciprocal imaginary coupling between the two
states, described by the real parameter γ , with γ > 0. As
discussed in [57] it naturally arises as a linear approximation
of the Bloch Hamiltonian in a double-periodic lattice with
absorption or losses in every other lattice site, under the in-
fluence of a static force. A more direct implementation in
two waveguides would be possible if nonreciprocal imaginary
couplings could be achieved. This is a topic of some research
effort, and might be achievable in the near future [61,62].

The eigenvalues of the 2×2 model (3) are given by

λ± = ±
√

α2t2 − γ 2, (21)

and are real for times |t | � γ

α
. At times t = ± γ

α
(which we

denote as t±
EP) the system has exceptional points. For times

|t | � γ

α
the eigenvalues are purely imaginary. The two ex-

ceptional points arise from the well-known splitting of the
diabolical point at t = 0 in the Hermitian model with γ = 0
[63].

The (nonorthogonal) eigenvectors can be parametrized in a
similar way to the Hermitian case as

φ± ∝
(

λ± − αt
iγ

)
. (22)

In the asymptotic limit t → ±∞ these approach the eigen-
vectors of σ̂z as for the Hermitian model. For finite times,
however, the eigenvectors are nonorthogonal, but linearly in-
dependent outside the exceptional points. At the exceptional
points the Hamiltonian is not diagonalizable as the two eigen-
vectors coalesce to the single eigenvector

φEP− ∝
(

1
i

)
(23)

at the exceptional point at t−
EP = − γ

α
, and

φEP+ ∝
(−1

i

)
(24)

at the exceptional point at t+
EP = + γ

α
.

The transition probabilities between the asymptotic eigen-
states in the time-dependent system (3) can be derived
following much the same route as Zener’s in the solution of
the original Hermitian problem, or a more general Laplace
transform technique as has been employed for a number of
generalized LZSM problems by Demkov and Ostrovsky [8].
The non-normalized transition probabilities

Mjk = |ψ j (∞)|2∣∣
ψk (−∞)=1 (25)

are given by [57]

M =
(

e
πγ 2

α e
πγ 2

α − 1

e
πγ 2

α − 1 e
πγ 2

α

)
. (26)

In the non-Hermitian system the norm is not conserved in
time. If we are asking for the probabilities of transition
between the asymptotic (orthogonal and stable) eigenstates,
these are given by the renormalized populations at t → ∞
with the respective boundary conditions, i.e.,

Pjk = |ψk (∞)|2∑
l |ψl (∞)|2

∣∣∣∣
ψ j (−∞)=1

= Mjk∑
l Mjl

. (27)

Explicitly these transition probabilities are given by

P00 = P11 = 1

2 − e− πγ 2

α

(28)

and

P01 = P10 = 1 − e− πγ 2

α

2 − e− πγ 2

α

(29)

in the 2×2 case.
The final population probabilities of the instantaneous ba-

sis states when the first eigenstate is initially populated in
dependence on the driving rate according to Eqs. (28) and
(29) are depicted in the right panel of Fig. 3. In the quantum-
quench limit of rapid parameter variation, α � γ 2, as in the
Hermitian case, the state cannot adapt in time, and remains in
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FIG. 3. Transition probabilities as a function of α for v = 1 for
the Hermitian (left) in comparison to the non-Hermitian (right) two
level systems. In the left panel the red solid and blue dashed lines
correspond to j = 0 and 1 in Eq. (20) and in the right panel the red
solid and blue dashed lines correspond to j = 0 and 1 in Eq. (43).

the original eigenstate, i.e., the probability matrix M becomes
diagonal. This may be intuitively understood from the fact
that the two exceptional points occurring in the non-Hermitian
system can be viewed as the remnants of a diabolic point
which has bifurcated. It seems intuitive that in the limit of fast
parameter variation the details of the crossing close to t = 0
are not resolved by the dynamics.

For intermediate driving rates, we observe a typical
LZSM-like behavior interpolating the adiabatic and the
quantum quench limit. However, the adiabatic limit of the
non-Hermitian case is crucially different from that of the Her-

mitian one. In the adiabatic limit, α → 0, we have e− πγ 2

α → 0,
and all Pjk → 1

2 [57,58], in contrast to the adiabatic limit of
the Hermitian system, where the final state is the asymptotic
state that is adiabatically connected to the initial state, and
there is no population in the other eigenstate.

The non-Hermitian adiabatic behavior is not entirely sur-
prising, as there is no smooth continuation of the adiabatic
eigenstates through the exceptional point. At the exceptional
point both eigenstates are degenerate and the adiabatic eigen-
states on one side cannot in any meaningful way be connected
to the ones on the other side. Hence, one can argue that tran-
sitioning through the exceptional point in an adiabatic fashion
the only way for the population to behave after the exceptional
point is to be equal in both branches of the eigenstates. In
the model (3) the eigenvalues are complex between the two
exceptional points, leading to an exponential decay of the
population into the eigenstate with the positive imaginary part.
In the case of an adiabatic time evolution, this means that
for |t | < |t±

EP| the population is entirely in the eigenstate with
the positive imaginary part of the energy. Once we pass the
second exceptional point at t = t+

EP = γ

α
, the indistinguishable

nature of the eigenstates leads to an equal share of the final-
state populations of ψ1 and ψ2. In fact, this argument holds
in the adiabatic limit, no matter what the initial conditions
at t → −∞ are, and hence the final-state populations are
independent of initial-state populations in the adiabatic limit
[57,58]. Following this argument, one may expect that the
final-state populations in the adiabatic limit of an N-level
system would be equally distributed, that is, |ψ j |2 = 1

N . As
we shall uncover in what follows, however, the situation is
more complicated.

The N-level generalization we consider in the present pa-
per, described by the Hamiltonian (4), has the same overall

0

1

t-5 5t-5 5
-5

5

E

0

1

t-5 5t-5 5
-5

5

E

FIG. 4. Eigenvalues (left column) and overlap of the eigenstates
(right column) of the three level (upper row) and four level (bottom
row) systems of Eq. (4) as a function of t , where α = γ = 1. Here the
eigenvectors are normalized in the conventional way as 〈φ j |φ j〉 = 1.
In the left column, the real parts of the eigenvalues are depicted by
black solid lines and the imaginary parts are depicted by red dashed
lines.

structure as the 2×2 case, but the diabolical point in the
Hermitian system is of higher order and splits up into two
exceptional points of order N . Away from the exceptional
points the Hamiltonian is diagonalizable and can be expressed
as a similarity transformation of Ĵz in analogy to the Her-
mitian case. It is more convenient for the calculations in the
remainder of the paper, however, to express Ĥ as a similarity
transformation of Ĵy as

Ĥ = 2λ 
̂Ĵy
̂
−1, (30)

with


̂ = ei π
2

1
λ

(αt Ĵx+iγ Ĵz ), (31)

and

λ =
√

(αt )2 − γ 2. (32)

As in the Hermitian case, the eigenvalues of Ĥ are sim-
ply given by multiples of those of the two-level system, as
Ej = (J − j)λ with j = 0, 1, . . . , n, and where J = n

2 is the
angular momentum quantum number. The eigenvalues of the
3×3 and 4×4 systems are depicted in dependence on t for
α = 1 = γ in the left panel of Fig. 4. Just as in the 2×2 sys-
tem the asymptotic behavior for large absolute values of t is
dominated by the Ĵz term and is thus identical to the behavior
of the Hermitian model (8). The corresponding eigenvectors
can be expressed as

|φ j〉 ∝ 
̂| jy〉 (33)

where | jy〉 are the eigenstates of Ĵy, corresponding to the
eigenvalues J − j.

It is well known that the eigenvectors of non-Hermitian
operators are in general not orthogonal, 〈φ j |φk〉 �= δ jk . In the
present case, all eigenvectors coalesce into a single eigenvec-
tor at the exceptional points at t±

EP = ± γ

α
, while the system

012208-5
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becomes approximately Hermitian in the asymptotic limits
t → ±∞, where the eigenvectors become orthogonal. In the
right panels in Fig. 4 the overlap between pairs of eigenvectors
belonging to different eigenvalues is plotted as a function of
time for the 3×3 and 4×4 case, when the eigenvectors are
normalized in the conventional way. The exceptional points
of higher order are clearly apparent at the sharp peaks at
t±
EP = ± γ

α
, where the eigenstates become parallel and thus

have maximal overlap. Note that the different eigenvectors
unfold at different rates away from the exceptional points
towards the asymptotic limit where they become orthogonal.

At the exceptional points the Hamiltonian cannot be diag-
onalized, which manifests in a divergence of the exponent in
(31), with λ = 0. Instead, Ĥ (t±

EP) is similar to a Jordan block.
Explicitly, Ĥ (t+

EP) can be transformed into Ĵ+ by a unitary
transformation:

Ĥ (t+
EP) =: ĤEP = iγ (Ĵx + iĴz ) = iγ e−i π

2 Ĵx Ĵ+ei π
2 Ĵx . (34)

Its single eigenstate is given by

|φEP〉 = e−i π
2 Ĵx |0〉, (35)

where |0〉 denotes the eigenstate of Ĵz with the largest eigen-
value, J , which is also the single eigenstate of Ĵ+. The rotation
e−i π

2 Ĵx turns this into the lowest eigenstate of Ĵy,

|φEP〉 = |ny〉, (36)

belonging to the eigenvalue −J .
We now turn to calculate the transition probabilities in the

N×N case from the 2×2 system. While the time evolution
operator is not unitary in this case, and is not of the form (17)
for the 2×2 case, the PT symmetry of the system leads to
different constraints, that again allows us to deduce the square
moduli of the time evolution operator elements for the N×N
case from the 2×2 one without knowledge of the phases, as
in the Hermitian case. Specifically, our Hamiltonian is PT
symmetric with P̂ = σ̂z, i.e., Ĥ = P̂Ĥ∗P̂, and is a trace-free
element of the complexified su(2) algebra, sl(2). As a conse-
quence, the time evolution operator is an SL(2) element which
fulfils the symmetry condition Û −1 = P̂Û ∗P̂, and in the 2×2
case can be parametrized as

Û =
(

a b
b∗ a

)
, (37)

with a ∈ R, and a2 − |b|2 = 1. Comparison with (26) shows
that for the time evolution from t → −∞ to t → +∞ we
have

a2 = e
πγ 2

α , (38)

and

|b|2 = e
πγ 2

α − 1. (39)

For the N×N case, applying the general formula (14) yields

Mjk =
∑
l,l ′

cll ′A
n− j−k+l+l ′Bk+ j−(l+l ′ ), (40)

with A = a2 and B = |b|2, and cll ′ given by the product of
binomial coefficients in Eq. (19). The actual transition proba-

FIG. 5. Final-state populations for the three level (lower left
panel) and four level (lower right panel) Hamiltonians in dependence
on α for γ = 1, where the red solid, blue dashed, and green dot-
dashed lines (and purple dotted line) correspond to the transition
probabilities given in Eq. (43) for j = 0, 1, 2, and 3, respectively,
for the three level (four level) Hamiltonian and the black crosses
correspond to numerical simulations.

bilities between the asymptotic eigenstates are then given by

Pjk = Mjk∑
l Mlk

. (41)

In particular, as in the Hermitian case, the transition
probabilities from the lowest asymptotic eigenstate at
t → −∞ are given by

Pj0 = Mj0∑
l Ml0

, (42)

with Mj0 = (n
j

)
An− jB j , that is,

Pj0 =
(

n
j

)
An− jB j

(A + B)n
, (43)

where we observe a similar binomial structure as in the
Hermitian system (20).

The transition probabilities (43) are depicted as a function
of α for γ = 1 for the 3×3 and the 4×4 cases in Fig. 5. These
final-state populations are in good agreement with those found
by numerically integrating the differential equations for select
values of α shown by the black crosses. The most pronounced
difference to the Hermitian case is of course visible in the
adiabatic limit.

While the overall structures of (43) and (20) are similar,
the pronounced difference stems from the difference already
discussed in the 2×2 case, where in the Hermitian system in
the adiabatic limit A → 1 and B → 0, whereas in the non-
Hermitian system A and B tend to infinity at the same rate.
This results in the splitting of the population into equal parts
when traversing through the exceptional point in the 2×2
system. In combination with the binomial coefficients arising
from the su(2) structure this leads to a nontrivial population
ratio when the system is driven adiabatically through the ex-
ceptional points of higher order.

In the adiabatic limit the transition matrix elements become

M (ad )
jk → An

2n

∑
l,l ′

(
k
l

)(
n − k
j − l

)(
n − j
k − l ′

)(
j
l ′

)

= An

2n

∑
l

(
k
l

)(
n − k
j − l

) ∑
l

(
j
l

)(
n − j
k − l

)
. (44)
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Using the Chu-Vandermonde identity∑
l

(
k
l

)(
n − k
j − l

)
=

(
n
j

)
, (45)

this reduces to

M (ad )
jk → An

2n

(
n
j

)(
n
k

)
. (46)

Thus, we have∑
l

M (ad )
jl → An

2n

(
n
j

)∑
l

(
n
l

)
= An

(
n
j

)
. (47)

That is, in the adiabatic limit the transition probabilities be-
tween the asymptotic eigenstates are given by the weights of
the respective binomial coefficients

Pjk → 1

2n

(
n
k

)
, (48)

rather than a simple equidistribution between the states.
For the 3×3 case the adiabatic transition probabilities are
given by

Pj0 = (
1
4

1
2

1
4

)T
, (49)

and in the 4×4 case we have

Pj0 = (
1
8

3
8

3
8

1
8

)T
, (50)

as is clearly visible in Fig. 5. Note that this probability does
not, in fact, depend on which of the asymptotic eigenstates we
start in.

While in the Hermitian case the adiabatic limit is a trivial
consequence of the adiabatic theorem, in the presence of the
exceptional points we observe what at first might appear to be
a nonintuitive behavior. In the following we will show that this
behavior can be in fact understood analytically on the grounds
of the adiabatic theorem for non-Hermitian systems, even
though non-Hermiticity is often associated with a breakdown
of adiabaticity.

IV. ADIABATIC THEOREM AND ADIABATIC LIMIT
IN THE NON-HERMITIAN CASE

The famous adiabatic theorem of Hermitian quantum me-
chanics states that if a system is initially in an eigenstate and
the parameters are varied sufficiently slowly, the state will
remain arbitrarily close to the instantaneous eigenstate that is
smoothly connected to the initial state. The generalization to
the non-Hermitian case has been discussed much in the litera-
ture, and leads to some surprising behaviors [28–32]. Here we
briefly review the derivation of a non-Hermitian version of the
adiabatic theorem, which will allow us to correctly deduce the
nontrivial adiabatic limit obtained in the LZSM problem with
Hamiltonian (4).

For this purpose, we will need the concept of left eigenvec-
tors. The left eigenvectors |χ j〉 of an operator Ĥ are defined as
the right eigenvectors of the adjoint operator Ĥ† according to

Ĥ†|χ j〉 = E∗
j |χ j〉, (51)

that is,

〈χ j |Ĥ = 〈χ j |Ej . (52)

While the eigenvectors of non-Hermitian operators are not
orthogonal to each other in general, the right eigenvectors
are orthogonal to the left eigenvectors belonging to differ-
ent eigenvalues, i.e., we have the biorthogonality relation
〈χ j |φk〉 = αkδ jk . There are several normalization conventions
for non-Hermitian systems [64], and while a different choice
does not influence the results as long as the convention
is followed consistently, different choices are more or less
convenient for different situations. It is often convenient to
renormalize the states such that αk = 1, using

〈χ j |φk〉 = δ jk . (53)

In addition, however, there remains a further degree of free-
dom, regarding the Euclidean norm of the left and right
eigenvectors, compatible with the biorthonormal convention.
If we have a set of left and right eigenvectors |χ̃ j〉 and |φ̃ j〉
that fulfill 〈χ̃ j |φ̃k〉 = δ jk , then so do the scaled eigenvectors
|φ j〉 = f j |φ̃ j〉, and |χ j〉 = 1

f ∗
j
|χ̃ j〉, which leads to differ-

ent Euclidean norms, 〈χ j |χ j〉 = 1
| f j |2 〈χ̃ j |χ̃ j〉, and 〈φ j |φ j〉 =

| f j |2〈φ̃ j |φ̃ j〉. For our purposes it will be convenient to adopt
the convention

〈φ j |φ j〉 = 〈χ j |χ j〉. (54)

This is achieved by the rescaling

|χ j〉 →
( 〈φ j |φ j〉

〈χ j |χ j〉
) 1

4

|χ j〉, (55)

and

|φ j〉 →
( 〈χ j |χ j〉

〈φ j |φ j〉
) 1

4

|φ j〉, (56)

which fulfill the required normalization conditions. For sym-
metric Hamiltonians, ĤT = Ĥ , the left eigenvectors are
proportional to the complex conjugate of the right eigenvec-
tors, |χ j〉 ∝ |φ∗

j 〉 [63], which can be simply seen by taking the
complex conjugate of the left eigenvalue equation.

To derive an adiabatic theorem, let us begin by consider-
ing a set of instantaneous right eigenvectors |φ j (t )〉, and left
eigenvectors |χ j (t )〉 of Ĥ , i.e.,

Ĥ |φ j (t )〉 = Ej (t )|φ j (t )〉, (57)

and

Ĥ†|χ j (t )〉 = E∗
j (t )|χ j (t )〉. (58)

For convenience we assume these to be normalized according
to the biorthogonal inner product 〈χ j (t )|φk (t )〉 = δ jk . Away
from the exceptional points the |φ j (t )〉 form a complete basis,
and we can express the time-dependent state as

|ψ (t )〉 =
∑

j

c j (t )|φ j (t )〉, (59)

with c j (t ) = 〈χ j (t )|ψ (t )〉. For ease of notation we omit the
explicit time dependence in the following calculation. Insert-
ing (59) into the Schrödinger equation yields

i
∑

j

(ċ j |φ j〉 + c j |φ̇ j〉) =
∑

j

c jE j |φ j〉, (60)
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which, when projected onto the left eigenstates, yields

iċ j = (Ej − i〈χ j |φ̇ j〉)c j − i
∑
k �= j

〈χ j |φ̇k〉ck . (61)

Since our Hamiltonian is symmetric, i.e., Ĥ = ĤT , we can
choose

〈χ j | = 〈φ∗
j |, (62)

and differentiating the biorthogonal normalization condition
〈χ j |φ j〉 = 1 then yields

〈φ̇∗
j |φ j〉 + 〈φ∗

j |φ̇ j〉 = 2〈φ∗
j |φ̇ j〉 = 2〈χ j |φ̇ j〉 = 0. (63)

Thus, the diagonal term in (61) simplifies and we have

iċ j = Ejc j − i
∑
k �= j

〈χ j |φ̇k〉ck . (64)

If the eigenvalues Ej are real, we can argue just as in the
Hermitian case, that if the parameters are varied sufficiently
slowly, as long as the energies remain nondegenerate, the non-
diagonal terms vanish. This can be seen explicitly by taking
the time derivative of the eigenvalue Eq. (57) and projecting it
onto the left eigenstate to find

〈χ j |φ̇k〉 = 〈χ j | ˙̂H |φk〉
Ek − Ej

, (65)

which indeed goes to zero for sufficiently slow parameter
variation, in our case for α → 0. Thus, in the adiabatic limit,
away from degeneracies, Eq. (64) reduces to

ċ j = −iE jc j . (66)

If the Ej are complex with different imaginary parts, on the
other hand, not only do the relative populations change due to
the exponential time dependence with different rates, but also
the argument to neglect the nonadiabatic coupling elements in
(64) has to be treated more carefully, as even exponentially
small transitions can be amplified to become dominant contri-
butions by the relative exponential growth between different
instantaneous states. This effect is sometimes referred to as the
“breakdown of the adiabatic theorem” and indeed it can lead
to a derivation from the naive expectation that a system fol-
lows an instantaneous eigenstate if driven adiabatically [34].

Of course we cannot expect to be able to apply the adi-
abatic theorem directly when considering a system driven
through an exceptional point, since the eigenvectors are not
analytic functions of the parameters at the exceptional point
and, thus, it is meaningless to try to connect eigenfunctions
on one side of the exceptional point to those on the other side.
In our case, however, we can nevertheless apply the adiabatic
theorem to understand the splitting of the population we have
observed in the LZSM result, as we shall explain in what
follows.

Due to the different imaginary parts of the eigenvalues
between the two exceptional points, the time-dependent state
in the adiabatic case is given by the instantaneous eigenstate
with the largest imaginary part between the two exceptional
points. As the second exceptional point is approached, this
state becomes the single exceptional point eigenstate. Thus,
we can assume that at the time t = t+

EP, at which the excep-
tional point is reached, the system is in the state |φEP〉 = |ny〉.

After the EP the eigenstates change in a nonanalytic fash-
ion, with N distinct eigenstates emerging from the single
exceptional point eigenstate. For an infinitesimally short time
after the EP, however, the state itself cannot have changed, as
the time evolution governed by the Schrödinger equation is
smooth. Thus, we can assume that for an infinitesimally small
time after t+

EP, t+
EP + δt , the wave function is still given by

|ψ (t+
EP + δt )〉 = |φEP〉. At this point, there exists a complete

(highly nonorthogonal) basis of eigenstates again, in which
the state can be expanded as in Eq. (59), with

|c j (t
+
EP + δt )|2 = |〈χ j (t

+
EP + δt )|ψ (t+

EP + δt )〉|2

= |〈χ j (t
+
EP + δt )|φEP〉|2. (67)

If the parameter variation continues in an adiabatic fashion,
the |c j |2 will remain constant for the remainder of the time
evolution, and we have

|ψ (t )〉 =
∑

j

c j (t
+
EP + δt )e

−i
∫ t

t+EP
E (t ′ )dt ′

|φ j (t )〉. (68)

In the long-time limit the |φ j〉 are given by the orthonormal
Ĵz eigenvectors, and we can interpret the renormalized |c j |2 as
transition probabilities

Pj (t → ∞) = |c j (t+
EP + δt )|2∑

l |cl (t+
EP + δt )|2 , (69)

for infinitesimally small δt .
To calculate the left eigenvectors of the Hamiltonian (4),

instead of using the relation between left and right eigenvec-
tors explicitly, we write

Ĥ† = 2λ∗ X̂ ĴyX̂ −1, (70)

with

X̂ = ei π
2

1
λ

(αt Ĵx−iγ Ĵz ). (71)

Of course it holds that X̂ −1 = 
̂†. Thus, the left eigenvectors
are up to a factor given by

|χ j〉 ∝ X̂ | jy〉. (72)

Working with the normalization convention (54) in what
follows we use the rescaled eigenvectors

|φ j〉 =
( 〈 jy|X̂ †X̂ | jy〉

〈 jy|
̂†
̂| jy〉
) 1

4


̂| jy〉, (73)

and

|χ j〉 =
( 〈 jy|
̂†
̂| jy〉

〈 jy|X̂ †X̂ | jy〉
) 1

4

X̂ | jy〉. (74)

Using this we have

|c j |2 = |〈 jy|X̂ †|ny〉|2
( 〈 jy|
̂†
̂| jy〉

〈 jy|X̂ †X̂ | jy〉
) 1

2

. (75)

To deduce the relevant matrix elements in the N×N rep-
resentation we again use Eq. (14). We start from the matrix
representations of X̂ and 
̂ in the 2×2 case (in the Ĵy basis),
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which are given by

X̂ (2) = 1√
2

(
1 −x−1

x 1

)
(76)

and


̂(2) = 1√
2

(
1 −x

x−1 1

)
, (77)

where we have introduced the abbreviation

x = γ − αt

λ
. (78)

That is, we have

(
̂†
̂)(2) = 1

2

(
1 + x−2 −x + x−1

−x + x−1 1 + x2

)
(79)

and

(X̂ †X̂ )(2) = 1

2

(
1 + x2 x − x−1

x − x−1 1 + x−2

)
. (80)

From this we find

〈 jy|
̂†
̂| jy〉 = x2(2 j−n)〈 jy|X̂ †X̂ | jy〉, (81)

and thus Eq. (75) simplifies to

|c j |2 = x2 j−n|X̂ †
j,n|2.

Using Eq. (14) for X̂ † we further find

X̂ † (N )
jn = xn− j

√
2

n

(
n
j

)− 1
2

, (82)

which reduces (75) to the simple expression

|c j |2 =
(

n
j

)
xn

2n
, (83)

and thus ∑
k

|ck|2 = xn

2n

∑
k

(
n
k

)
= xn. (84)

Thus, we finally find for the asymptotic transition probability

Pj (t → ∞) = 1

2n

(
n
j

)
, (85)

in agreement with the result from the LZSM calculation.
That is, the splitting of population at the exceptional point

can indeed be understood as an adiabatic effect where the
ratios of population in the different branches are given by the
overlaps of the relevant eigenstates with the exceptional point
state.

V. SUMMARY AND OUTLOOK

In summary we have derived the full set of transition prob-
abilities between the asymptotic eigenstates for an N-level,
non-Hermitian, PT -symmetric, Landau-Zener-Stückelberg-
Majorana problem with two exceptional points of order N . In
the adiabatic limit the final populations are given by binomial

coefficients. We have provided an analytical argument based
on the adiabatic theorem and the structure of the instantaneous
eigenvectors to derive the result in the adiabatic limit indepen-
dently.

It is an interesting question how the transfer probabili-
ties would change in a system with N th-order exceptional
points with a different unfolding pattern. The SU(2) case
discussed here lends itself naturally to the analysis of the
transition probabilities, as the energies are completely real in
both asymptotic regimes t → ±∞. For an exceptional point
of order N to unfold into a purely real set of eigenvalues in one
direction of parameter variation in fact implies either a square
root or a linear unfolding. Thus, for other unfolding patterns
the problem could not be considered in the asymptotic limit
and a different approach would be needed. Another interesting
question concerns transitions in a series of exceptional points
of lower order, in which interference effects between different
transition branches would play a role.
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APPENDIX: DEDUCING N×N REPRESENTATIONS
OF SL(2) GROUP ELEMENTS FROM THE 2×2

REPRESENTATION

In this Appendix, for completeness we provide a brief
derivation of Eq. (14) which is central to many of the calcu-
lations in this paper. The main idea of the derivation uses the
basis of SU(2) coherent states, which are in fact equivalent to
the set of SL(2) coherent states, often referred to as the spinor
representation in the literature, to deduce the N-dimensional
basis representation of a group element [65].

An SU(2) coherent state in N dimensions can be repre-
sented as a vector with components

ψ
(N )
j =

√(
n
j

)
(ψ1)n− j (ψ2) j, (A1)

in the standard basis, with ψ1,2 ∈ C, where n = N − 1, and j
runs from zero to n. The spin- 1

2 representation is simply given
by ψ (2) = (ψ1, ψ2)T .

To deduce the N-dimensional representation D̂(N ) from the
two-dimensional one, which we denote by d̂ , we use the fact
that coherent states are mapped into coherent states by an
SL(2) operator, and solve the linear system of equations

D̂(N )ψ (N ) = ψ̃ (N ), (A2)

for D̂, with

ψ̃ (2) = d̂ ψ (2) =
(

ψ̃1

ψ̃2

)
=

(
d11ψ1 + d12ψ2

d21ψ1 + d22ψ2

)
. (A3)
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Explicitly we have

ψ̃
(N )
j =

√(
n
j

)
(d11ψ1 + d12ψ2)n− j (d21ψ1 + d22ψ2) j

=
n− j∑
k=0

j∑
l=0

α
(N, j)
k,l ψn−k−l

1 ψk+l
2 , (A4)

with

α
(N, j)
k,l =

(
n
j

) 1
2
(

j
l

)(
n − j

k

)
dn− j−k

11 dk
12d j−l

21 dl
22, (A5)

whereas by definition we have

(D̂(N )ψ (N ) ) j =
n∑

m=0

(D̂(N ) ) jmψ (N )
m

=
n∑

m=0

√(
n
m

)
(D̂(N ) ) jmψn−m

1 ψm
2 . (A6)

Rephrasing the sum over k in Eq. (A4) as a sum over m =
k + l , which runs from zero to n, the sum over l runs from
lmin = max(m − (n − j), 0) to lmax = min(m, j), and we have

ψ̃
(N )
j =

√(
n
j

) n∑
m=0

lmax∑
lmin

(
j
l

)(
n − j
m − l

)
dn− j−m+l

11

× dm−l
12 d j−l

21 dl
22ψ

n−m
1 ψm

2 . (A7)

Comparing the coefficients in Eqs. (A6) and (A7) then yields
the expression for the matrix elements of D̂ in the N-
dimensional representation as

D(N )
jm =

(
n
j

) 1
2
(

n
m

)− 1
2

lmax∑
l=lmin

(
n − j
m − l

)(
j
l

)
dn− j−m+l

11

× dm−l
12 d j−l

21 dl
22

=
lmax∑

l=lmin

√
m!(n − m)!(n − j)! j!

(n − j − m + l )!(m − l )!( j − l )!l!

× dn− j−m+l
11 dm−l

12 d j−l
21 dl

22. (A8)
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