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We consider open quantum systems whose dynamics is governed by a time-independent Markovian Lindblad

master equation. Such systems approach their stationary state on a timescale that is determined by the spectral
gap of the generator of the master equation dynamics. In a recent paper [Carollo ef al., Phys. Rev. Lett. 127,
060401 (2021)] it was shown that under certain circumstances it was possible to exponentially accelerate the
approach to stationarity by performing a unitary transformation of the initial state. This phenomenon can be

regarded as the quantum version of the so-called Mpemba effect. The transformation of the initial state removes
its overlap with the dynamical mode of the open system dynamics that possesses the slowest decay rate and,
thus, determines the spectral gap. Whereas this transformation can be exactly constructed in some cases, it is, in
practice, challenging to implement. Here we show that even far simpler transformations constructed by a global

unitary spin rotation allow to exponentially speed up relaxation. We demonstrate this using simple dissipative
quantum spin systems, which are relevant for current quantum simulation and computation platforms based on

trapped atoms and ions.

DOI: 10.1103/PhysRevA.106.012207

I. INTRODUCTION

The study of open quantum systems is an important sub-
field in modern physics. It considers ensembles of quantum
particles that are weakly coupled to an external bath. This
coupling gives rise to irreversible processes and a relaxation
dynamics that typically leads to a stationary state. In the
simplest possible setting this dynamics is governed by a
Markovian Lindblad master equation [1-3], which evolves
the quantum state p of the system in time. This approach is
applicable to a wide range of phenomena, including simple
processes, such as spontaneous decay, or sophisticated many-
body effects, such as sub- and superradiance [4]. Moreover,
this formulation allows to describe stationary state phases,
transitions among them [5,6], even protocols for (quantum)
computation [7], and the creation of correlated many-body
states [8—10] which may be relevant in the realm of quantum
technologies.

In the context of these applications one may be interested in
approaching the stationary state, i.e., the end result of a com-
putation or a desired correlated state, on a timescale which
is as short as possible. In the case of Markovian (Lindblad)
time evolutions, this timescale is dictated by the spectrum—in
particular, by the spectral gap—of the dynamical generator.
This gap is, however, difficult to alter without changing the
characteristics of the stationary state itself. An alternative
approach to this problem is offered by the so-called Mpemba
effect which was first discussed in the context of classical
nonequilibrium problems. Originally, it describes the coun-
terintuitive phenomenon that water, which is initially at a
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high temperature, freezes faster than it would when starting
from a lower temperature. It is named after Mpemba who has
discovered this effect while preparing ice cream, at that time
being a schoolboy in Tanzania [11]. The observed accelerated
approach to the stationary state turns out to originate from the
fact that a high-temperature thermal state has lower overlap
with slowly decaying dynamical modes than a thermal state
with low temperature [12-21].

This idea can be generalized to the dynamics of open
quantum systems as recently discussed in Ref. [22]. Here it
was shown that for any given pure initial state py relaxation
to stationarity can be accelerated by the application of a
preliminary unitary operation U, see Fig. 1(a). It was shown
how this unitary needs to be constructed such that the new
initial state pgp = U poU" arrives at stationarity exponentially
faster. The idea underlying the construction of the unitary
is that it should make the initial state “orthogonal” to, i.e.,
not overlapping with the dynamical mode associated with the
slowest decay rate, which, in fact, corresponds to the spectral
gap of the dynamical generator. For certain cases this unitary
can be explicitly constructed. However, this construction may
be not so useful in practical terms as one needs knowledge
of the precise structure of some eigenmodes of the dynamical
generator. The resulting unitary is typically rather contrived,
i.e., it remains doubtful that it can be readily implemented in
an experimental setting.

In this paper we investigate whether it is possible to
achieve an exponential acceleration in the relaxation towards
stationarity through the application of substantially simpler
unitaries. To be specific, we focus on driven dissipative spin
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FIG. 1. Quantum Mpemba effect and open quantum Ising spin
chain. (a) The application of a unitary transformation U (6, ¢) to
the initial state py may accelerate the approach of an open quantum
system to its stationary state. This is achieved when the unitary re-
moves the overlap of the transformed initial state py with the slowest
decaying mode with lifetime 7, (inverse of the negative real part of
the spectral gap A,, see the main text). In that case the long-time dy-
namics is governed by the lifetime 73 < 7,. In this paper we consider
global unitary spin rotations, which are parametrized by the polar
and the azimuthal angles 6 and ¢, respectively [see panel (b) and the
main text]. (b) Sketch of a one-dimensional quantum Ising spin chain
with transverse magnetic-field strength €2 and power-law interactions
(exponent «). Spins decay from their up-state |1) to the down-state
|{) atarate y. (c) Unit sphere depicting spin rotation angles 6 and ¢
for which the unitary U (6, ¢) leads to an accelerated approach to the
stationary state. The corresponding angles are indicated in red color.

chains, shown in Fig. 1(b), which feature power-law inter-
actions and single-spin decay. These systems model typical
many-body settings realized on quantum simulators using
trapped ions [23] and neutral atoms [24] and are, thus, of
direct relevance to current efforts in quantum computation and
simulation. We show that already a global rotation—solely
dependent on the two angles 6, ¢ which parametrize the unit
sphere—can be sufficient to observe a quantum Mpemba ef-
fect. In order to obtain a quantitative picture, we compute—as
a function of interaction strength and range—the area on the
unit sphere for which an exponentially accelerated approach
to stationarity is achieved [see Fig. 1(c)]. We find that the
Mpemba effect in Markovian open quantum systems is robust
in the sense that it occurs with a simple unitary for a variety
of angles in all studied parameter regimes. (We note that, fol-
lowing the discussion presented in the Supplemental Material
of Ref. [22], it is possible to investigate the acceleration of
the approach to the stationary state through simple unitaries
also in the case of non-Markovian dynamics.) Moreover, our
simplified approach also works in situations where it is not
possible to analytically construct the ideal unitary with the
approach put forward in Ref. [22].

Our results may be of practical relevance for applications
in quantum technology, e.g., for accelerating the dissipative
preparation of entangled states and the processing speed of
dissipative quantum computation [7] and pattern recogni-
tion [25-28].

II. QUANTUM MPEMBA EFFECT

The open quantum systems we are considering in this paper
are described by a Markovian Lindblad master equation [3]
which evolves the density matrix p with the dynamical gener-
ator (master operator) W,

p) =Wlp()]

.1 .
= —ilH, p()] + ) (Lkpa)L; - S{LL, p(t)}).
k

(1)

Here H is the quantum Hamiltonian which governs the co-

herent dynamics, and the L; are the so-called jump operators

which implement incoherent and dissipative processes [3].
The time evolution of any initial state py is given by

D?

p(t) = €""[po] = pss + Y _ tr(lipo)ree™. )
k=2

Here, D is the dimension of the system Hilbert space, and I,
ry, and Ay are the left eigenmatrices, the right eigenmatrices,
and the eigenvalues of the dynamical generator, respectively,

Wird = e, WL = Al 3)

where W7 is the dual (also called adjoint) master operator
which acts on observables rather than on states. The stationary
state of the time-evolution psg is the right eigenmatrix of the
dynamical generator associated with the eigenvalue zero and
has been taken out of the sum. The remaining eigenvalues
A have a real part that is smaller or equal than zero. In the
following we assume that the A;’s are sorted in ascending
order according to the modulus of their real part: |[Re{A;41}| =
|Re{Ar}|. In this case A, corresponds to the spectral gap, and
the negative inverse of its real part sets the longest timescale
of the relaxation dynamics. This means, that for long times
one has

(1) — pssll ~ exp (Re{iz}r), “4)

where || - || is a suitably chosen norm. From the expansion (2)
it then follows that if there exists a unitary U which eliminates
the overlap of the initial state with this slowest decaying mode,
i.e.,

tr(LU poU™) = 0, )

the approach to the stationary state is exponentially acceler-
ated. The new timescale over which the stationary state is
approached is given by the inverse of the negative real part
of A3: 73 = —1/Re(X3) [see sketch in Fig. 1(a)],

o) — pssll ~ exp(Re{As}r). (6)

In Ref. [22] it was shown that the unitary U accomplish-
ing condition (5) can be explicitly constructed for a pure
initial state—which we write as py = |0) (O]—provided that
the eigenvalue A, which corresponds to the slowest decaying
mode, is real and nondegenerate. In this case the correspond-
ing left-hand eigenmatrix /, is Hermitian and can be spectrally
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decomposed as

D
b= auldn)(Bnl, (7)

m=1

with the eigenvalues «,, € R and the orthonormal set of
eigenstates {|¢,,)}. If one of the eigenvalues is zero—without
loss of generality we assume «; = O—then condition (5) can
be met by a unitary that rotates the initial state |0) onto the
corresponding eigenstate |¢;) such that |{¢;|U|0)| = 1.

In general, the expansion (7) does not contain a zero
eigenvalue. A unitary, which satisfies condition (5) can, nev-
ertheless, be constructed. Underlying this construction is the
observation that among the eigenvalues «,, some have to be
positive and some negative. This results from the fact that the
overlap between [, and the stationary state vanishes, i.e.,

D
0= tr(lpss) = Y ctu(mlss|dm)- ®)

m=1

Given that the stationary state is a positive operator, i.e.,
(Dmlposs|dm) = 0, it follows that there are both positive and
negative o,,’s. Without loss of generality we assume that
o) < 0 and o, > 0. Introducing the unitary,

U(s) = expl—is([¢1) (d2] + |#2) (¢1DIR, €))

with R being also a unitary operator such that R |0) = |¢,),
one can show that [22]

tr[lLU (s)poU ' (s)] = a1 cos>(s) + aa sin’(s),  (10)

— ﬂ) , (11)
o
condition (5) is met.

Unfortunately, this way of constructing the unitary operator
accelerating the relaxation to stationarity is not justified in
other situations. For example, a scenario that is often encoun-
tered is one where the eigenvalues of the lowest excited modes
of the master operator form a complex conjugate pair,

and, thus, by choosing

§ = arctan (

p(t) = pss + tr(lpo)iae™ + tr(l po)Fye™ +--- . (12)

In these cases, the state of the system approaches stationarity
displaying (damped) oscillations for certain matrix elements
and not a purely exponential decay. To achieve acceleration
one would seek a unitary U that accomplishes

tr(LU poU") = [tr([U poUH)]* = 0. (13)

However, due to the fact that /, is not Hermitian in these
cases, a decomposition, such as the one in Eq. (7) is not
possible and the previously presented route for constructing
U cannot be pursued.

III. ACCELERATED APPROACH TO STATIONARITY
VIA SIMPLE UNITARIES

Whereas the unitary transformation (9) can be in theory
constructed, it will be, in practice, challenging to implement
given that it requires precise knowledge of mode /,. Moreover,
when the eigenvalues of the slowest decaying modes form a

complex conjugate pair the theory of the previous section is
not applicable. It is, therefore, of relevance to understand
whether simpler unitaries exist that also may lead to the de-
sired acceleration towards stationarity. This appears possible
given that the mere requirement for achieving acceleration is
a vanishing overlap between the transformed initial state and
the slowest decaying mode. For sufficiently large state spaces,
it is reasonable to be expected that this should be possible to
achieve with a simple unitary.

To investigate this we consider for concreteness a one-
dimensional spin system, composed by N spins, whose
coherent evolution is governed by the Hamiltonian [see
Fig. 1(b)],

|k — ml|*’

N N 2.z
H=2Y of+vy 2o (14)
k=1

k<m

where 0" (v = x,y, z)’s are the usual Pauli matrices. The pa-
rameter €2 is the transverse field strength, V' is the interaction
strength, and « is the exponent that controls the interaction
range [29]. Dissipation is governed by the jump operators,

Ly = Jyo; = %7(0; —io}), (15)
which model single-spin decay from the up-state |1) to the
down-state || ) at rate y. Related models have been theoret-
ically studied in the past [5,30-33], and instances of these
systems can be experimentally realized in systems (quantum
simulators) consisting of trapped ions [23,34] and Rydberg
atoms [24,35,36].

In order to obtain first insights into the model we show in
Fig. 2 the negative real part of the eigenvalues X, of the master
operator [see spectral expansion given by Eq. (2)]. Moreover,
we indicate where A, possesses a nonzero imaginary part and
the time-evolved state is, thus, of the form (12). As can be
seen in the figure, this is indeed a relevant case, which occurs
across a wide region of parameters. The exact value of the
imaginary part of A, is reported in the Appendix.

For the purpose of this paper we consider a pure initial state
in which all spins occupy the down-state,

po= N4 L (16)

The unitary that we apply to this initial state has the form

N
u®.¢)=[]vs"@. 9, (17)
k=1
with
UR 0. ¢) = exp (éd)o,f) exp (éeog). (18)

This unitary, which acts globally on all spins simultane-
ously, rotates them first by an angle & € [0, =] (polar angle)
about the y axis and, subsequently, by an angle ¢ € [0, 27)
(azimuthal angle) around the z axis. On quantum simulator
platforms such operations can be readily realized by suitably
timed laser or microwave pulses and is, therefore, significantly
easier to implement than the ideal unitary (9). The goal is
now to determine the angles 6 and ¢ for which acceleration
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FIG. 2. First excited mode of the master operator. The density
plot shows the negative real part of the first nonzero eigenvalue A,
of the master operator W [see Eq. (1)] on the Q-V plane for three
different values of the power-law exponent «. The red line delimits
the region where X, has a zero and a nonzero imaginary part. The
latter case corresponds to the situation described by Eq. (12). Note,
that for obtaining the data presented here we have chosen the lowest
excited eigenvalue of W which lies in the same symmetry subspace
as the initial state (16). The data shown are for a system size of N = 5
and open boundary conditions.

is achieved. To accomplish this we use the criterion,

x(0,9) = tlLU©, $)poU (0, $)]] < e, 19)

where ¢ is a threshold, which we set to 1072, In Fig. 3
we depict these angles for various parameter regimes of the
considered spin system. We find that it is indeed generally
possible to find rotation angles (6, ¢) which reduce the over-
lap of the initial state and the lowest decaying mode below
the chosen threshold. In fact, there are entire areas on the unit
sphere for which acceleration of the approach to stationarity is
achieved. As can be seen in Fig. 3—where all the rotation an-
gles leading to acceleration are marked in red—the size of this
area on the unit sphere may depend strongly on the values of
the parameters 2 and V. On one hand, when both 2 and V' are
simultaneously large or small only a small rotation (6 < )
away from the initial state (6 = 0, ¢ = 0) suffices to speed up
the approach to stationarity. On the other hand, one observes
that for small values of 2 and large values of V the area on
the unit sphere for which acceleration is achieved becomes
large. This drastic quantitative change is due to the fact that
the real parts of the eigenvalues corresponding to the slowest
decaying mode of the master operator cross, and, therefore,
the character of the slowest decaying mode is changing. In
Fig. 2 this eigenvalue crossing also manifests, e.g., through
the appearance of an imaginary part in the eigenvalue corre-
sponding to the slowest decaying mode. In the following we
investigate the relative area on the unit sphere spanned by the
angles 6 and ¢, where acceleration is achieved, i.e., the size

V/iv 5 7

FIG. 3. Rotation angles which lead to an accelerated approach to
stationarity. The application of the unitary (17) to the initial-state (16)
can reduce its overlap with the slowest decaying mode of the master
operator (1). Angles for which this overlap x (6, ¢) is smaller than
€ = 102—see Eq. (19)—are displayed in red. The abrupt change
in the size of the red region for large V is due to a crossing of the
eigenvalues of the master operator, which can also be observed in
Fig. 2. The data shown are for N = 5 and power-law exponent o = 0.
Note, that if one were to decrease the threshold value € the width of
the red ribbonlike lines (see small values of V') would shrink and the
extended red areas (see large values of V') would contract.

of the red areas in Fig. 3. This quantity is defined as

1
A= —

4 0
where ®[x] is the Heaviside step function and € is the thresh-
old parameter introduced above. The corresponding data are
shown in Fig. 4(a) for a system of N = 5 spins [37]. Through-
out the entire Q2-V plane we find A to be nonzero, which means
that it is always possible to find a global unitary (17) that
accomplishes a speedup of relaxation. However, the size of the
area may differ considerably. In particular, for large values of
V the area is significantly extended which might offer some
robustness with respect to variations in the angles 6 and ¢
that could be relevant for experiments. This change from a
small to a large area is not gradual but appears at a critical
value of V, which increases with 2, regardless of the value
of «, i.e., the exponent describing the power-law decay of
the interactions. This abrupt change might be a (finite-size)
signature of a dissipative phase transition in the stationary
state of the dissipative spin chain, which has been studied
previously in several works [29-31,38].

As a final point of investigation, we analyze the achievable
acceleration. To this end we compare the timescales corre-
sponding to the slowest and second slowest decaying modes,
which are given by 7, = —1/Re(X,) and 13 = —1/Re(}3),

2 b4
d¢/ do sin 0O[e — x(0, )],  (20)
0
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FIG. 4. Relative size of the parameter region in which accelera-
tion is achieved and gain in relaxation time. (a) Relative area (20) on
the unit sphere for which the overlap of the initial state with the slow-
est decaying mode is smaller than € = 1072, This area corresponds
to the regions marked in red in Fig. 3. (b) Ratio of the timescales
73 = —1/Re(X3) and 7, = —1/Re(A,) which quantifies the minimal
reduction in relaxation timescale which can be achieved by removing
the overlap between the initial state and the slowest relaxing mode
of master operator (1). Lower values mean larger acceleration. Note
that for obtaining the data presented here we have chosen the modes
of master operator W that lie in the same symmetry subspace as
the initial state (16). The data shown in the panels are for a system
size of N = 5 (open boundary conditions) and various values of the
power-law exponent «.

respectively. In Fig. 4(b) we show the ratio of the two
timescales 73/1, i.e., the smaller this quantity, the higher
the achievable acceleration. As can be seen from the data,
the relaxation timescale can be reduced up to a factor of 3,
depending on the specific values of € and V. In the region
where the abrupt transition is visible in panel (a) hardly any
acceleration is possible. This means that the eigenvalues of
the slowest and second slowest decaying modes become de-
generate, and corroborate the picture of the onset of a phase
transition which is typically associated with collapsing eigen-
values of the dynamical generator.

IV. CONCLUSIONS AND OUTLOOK

We have shown—using an open transverse field Ising
model as an exemplary case—that the approach to station-

arity of an open quantum system can be accelerated by a
unitary rotation of the initial state. The underlying idea of
this so-called Mpemba effect is that such rotation renders the
initial state orthogonal to the slowest decaying mode of the
master operator. Given the high-dimensional state space of a
many-body system, it appears plausible that it should not be
too challenging to achieve this. Indeed, even for the global
unitary considered in our paper it was always possible to find
spin rotation angles that, in principle, yield an exponential
speedup of the relaxation dynamics. This is an encouraging
finding, given that this type of unitary is simple to implement
on current quantum computing and simulation platforms.

There are, nevertheless, a number of open questions which
give room for further studies. For example, the current in-
vestigation focuses on the case of a pure initial state and an
extension of the investigation of the Mpemba effect to the
case of mixed states is highly desirable. Moreover, one may
ask whether and under what conditions it is possible to render
the initial state orthogonal to a large set of slowly decaying
modes. This may become particularly important in many-
body systems in the vicinity of phase transitions where the
spectrum is dense and many eigenstates of the master operator
acquire a real part close to zero. On one hand these questions
can be explored numerically in certain model systems, such as
the spin chains considered here. On the other hand, it would
be interesting to understand under what circumstance it is—at
least, theoretically—possible to explicitly construct unitaries
or, more generally, quantum maps that remove the overlap of
a given initial state with a set of slowly decaying modes.

FIG. 5. Imaginary part of the first excited mode of the master
operator. The density plot shows the absolute value of the imaginary
part of the first nonzero eigenvalue A, of the master operator W [see
Eq. (1)] on the Q-V plane for three different values of the power-law
exponent «. Note, that for obtaining the data presented here we have
chosen the lowest excited eigenvalue of W which lies in the same
symmetry subspace as initial state (16). The data shown are for a
system size of N = 5 and open boundary conditions.
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APPENDIX: IMAGINARY PART OF A,

In this Appendix, we provide additional results showing the
imaginary part of the eigenvalue A, considered in Fig. 2. This
is shown in Fig. 5. We recall here that the imaginary part of the
eigenvalue A, does not determine the lifetime of the slowest
decaying mode but solely introduces (damped) oscillations in
the quantum state density matrix approaching stationarity.
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