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The interpretation of non-Markovian effects as due to the information exchange between an open quantum
system and its environment has been recently formulated in terms of properly regularized entropic quantities,
as their revivals in time can be upper bounded by means of quantities describing the storage of information
outside the open system [N. Megier et al., Phys. Rev. Lett. 127, 030401 (2021)]. Here we elaborate on the wider
mathematical framework of the theory, specifying the key properties that allow us to associate distinguishability
quantifiers with the information flow from and toward the open system. We point to the Holevo quantity as
a distinguished quantum divergence to which the formalism can be applied and we show how several distinct
quantifiers of non-Markovianity can be related to each other within this general framework. Finally, we apply
our analysis to two relevant physical models in which an exact evaluation of all quantities can be performed.
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I. INTRODUCTION

The interaction of an open quantum system with its
surrounding environment will typically result in a non-
Markovian dynamics, in which memory effects occur, for
example, due to strong system-environment coupling or low
temperature and, more in general, when the evolution of
the environment takes place on timescales similar to the
relaxation time of the open system [1,2]. The physical pic-
ture behind non-Markovian dynamics is that the interaction
between the open system and the environment establishes
significant correlations between them, as well as changes in
the environment, which subsequently affect the evolution of
the open system, thus leading to memory effects [3–5]. The
first quantitative definition of memory effects in open quan-
tum systems was given in terms of the trace distance [6,7].
The trace distance quantifies the distinguishability of quan-
tum states [8], so its increase in time can be read as
due to some information flowing back to the open system,
leading to an enhanced capability of distinguishing among
pairs of open-system states. In addition, the triangular in-
equality and the contractivity under completely positive and
trace preserving (CPTP) maps of the trace distance allows
us to link unambiguously memory effects, and thus the
non-Markovianity quantified by means of it, to the system-
environment correlations and the changes in the environment
during the dynamics [9–13]. Indeed, this notion of quan-
tum non-Markovianity is referred to open-system evolutions
where the initial system-environment correlations can be ne-
glected as they would generally prevent the existence of
reduced dynamical maps in the first place [14–16]. Other
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approaches to non-Markovianity have also been considered,
e.g., dealing with multitime measurements [17–22].

The possibility to introduce alternative ways of defining
memory effects, based on different distinguishability quanti-
fiers, has been investigated from their inception [7]. Moving
from distances to quantum divergences, relative entropy rep-
resents indeed a natural candidate, due to its informational
meaning associated with the optimal strategy to discriminate
over two probability distributions in an asymmetric hypothesis
testing when an arbitrarily large number of measurements is
allowed [23], as well as due to its contractivity under CPTP
maps. However, the relative entropy can easily diverge, also
for finite-dimensional systems, which would lead to singular-
ities in the corresponding measure of non-Markovianity [7].
Even though some entropic quantifiers have been used to
define quantum non-Markovianity [24–26], only recently [27]
it has been proven that properly regularized versions of the rel-
ative entropy [28] can be equipped with a full interpretation as
quantifiers of information backflow, connecting their revivals
to the microscopic features of the evolution of the open system
and the environment.

Here we further extend this approach by showing that it
is part of a more general mathematical framework, which
encompasses several significant distinguishability quantifiers,
including both distances and divergences that are not neces-
sarily distances [23]. First, we present three key properties that
guarantee a fully meaningful use of distinguishability quanti-
fiers to characterize the exchange of information between the
open system and the environment. These properties allow us
to derive in full generality an upper bound to the revivals of
the distinguishability quantifier at hand, linking any backflow
of information toward the open system to some information
stored within the system-environment correlations or the en-
vironment; importantly, the information content both within
and outside the open system is defined by means of the
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same quantifier. We then show that a normalized version of
the Holevo quantity provides us with a significant instance
of the general framework, in this way connecting the very
notion of quantum non-Markovianity as information backflow
to a quantity of primary importance in quantum information
theory [8]. Moreover, our approach relates distinct quanti-
fiers of non-Markovianity within a common framework, as
we show by taking into account a generalized version of
the trace distance, which has been investigated extensively
in the context of quantum non-Markovianity [4,29–31], and a
symmetrized version of the regularized relative entropy con-
sidered in [27]. Finally, we evaluate explicitly the behavior in
time of the different quantifiers of information in simple but
physically relevant examples, illustrating their similarities and
differences.

The rest of the paper is organized as follows. In Sec. II
we present the general framework in which the revivals of
any distinguishability quantifier satisfying three definite prop-
erties are associated with a backflow of information to the
open system, by means of a general upper bound to the distin-
guishability variations in terms of the information contained
within the system-environment correlations and environmen-
tal changes. In Sec. III we show that a normalized version of
the Holevo quantity falls within this framework and we further
provide a tighter upper bound to its variations, which still
keeps the same physical interpretation. The Helstrom norm of
the weighted difference of two quantum states, which includes
the trace distance as a special case, and a regularized and
symmetrized version of the relative entropy are considered
in Sec. IV, where the connection to the Jensen-Shannon di-
vergence is also shown for a proper choice of the defining
parameters. Section V presents the application of the general
analysis to the spin-star system and the Jaynes-Cummings
model. A summary of our work is given in Sec. VI.

II. CRITERIA FOR NON-MARKOVIANITY QUANTIFIERS

We start by introducing the general framework we use to
define the non-Markovianity of the dynamics of open quan-
tum systems in terms of information backflow. The main aim
of this construction is to clarify what properties a quantifier of
information needs to capture the physical meaning of informa-
tion exchange between an open system and its environment.
Crucially, this can be done only by taking into account, be-
sides the information content within the open system itself,
the global system-environment degrees of freedom where the
information can be stored and accessed subsequently in the
course of the open-system evolution. We proceed in two steps.
In Sec. II A we introduce the properties fixing the class of
quantifiers of information we refer to, taking into account their
action on the pairs of open-system states and on their behavior
under CPTP maps. The connection with a CPTP open-system
dynamics, under the assumption of an initial product state,
is then presented in Sec. II B, where the defining properties
are linked to a precise characterization of the information
exchanges between the open system and the environment.

A. Defining properties

The basic idea is that the changes in the information con-
tent of a physical system can be quantified by looking at how

the distinguishability among the states of the system varies in
time [4,6,7]. A decrease of the distinguishability indicates a
leak of information from the system at hand to some other
degrees of freedom. Conversely, an increase of the distin-
guishability means that some information has been recovered
by the system, leading to those memory effects that are at the
core of the notion of non-Markovian quantum dynamics.

The picture now recalled can be formulated in a general
and consistent way by quantifying the distinguishability of
any couple of states ρ and σ via a quantity S(ρ, σ ) that
satisfies the following properties.

(I) The boundedness, normalization, and indistinguishabil-
ity of identical states, which are expressed as

0 � S(ρ, σ ) � 1 ∀ρ, σ, (1)

with

S(ρ, σ ) = 1 ⇔ ρ ⊥supp σ , (2)

where ρ ⊥supp σ means that the two states have orthogonal
support (e.g., they are orthogonal if they are pure) and

S(ρ, σ ) = 0 ⇔ ρ = σ. (3)

The information stored within a system or exchanged between
different degrees of freedom is finite and the corresponding
quantifier is normalized to one. Such a normalization guaran-
tees a fair comparison among different quantifiers, as we will
see for the relevant example of the Holevo quantity in the next
section. In addition, the requirement that two identical states
cannot be distinguished, while all others can be at least to a
certain extent, immediately translates into Eq. (3).

(II) Contractivity under CPTP maps, which is expressed as

S(�[ρ],�[σ ]) � S(ρ, σ ) ∀ρ, σ ∀CPTP �. (4)

The distinguishability between the states of a quantum system
cannot be increased by acting locally on the system; as we
will see, distinguishability can be instead increased if the
system is correlated with other degrees of freedom. Indeed,
this property is strictly related to the quantum data-processing
inequalities, stating that the information content of a quantum
system cannot be enhanced via local data processing on that
system [8].

(III) Trianglelike inequalities, which are expressed as

S(ρ, σ ) − S(ρ, τ ) � φ(S(σ, τ )) ∀ρ, σ, τ, (5)

S(σ, ρ) − S(τ, ρ) � φ(S(σ, τ )) ∀ρ, σ, τ, (6)

with φ a concave function that is strictly positive for a positive
argument, while φ(0) = 0. This property generalizes the trian-
gle inequality and it allows us to take into account quantifiers
of information that are not necessarily distances. As we will
show in Sec. II B, the trianglelike inequalities are the key
identities that relate the changes in the information about a
system to the information content within other degrees of
freedom.

Broadly speaking, we insist on two classes of objects that
satisfy properties I–III: distances and entropic quantifiers.
To include both of them and to stress that we are referring
to quantifiers of state distinguishability that are not neces-
sarily distances, releasing therefore symmetry and triangle
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inequality, we call any quantity satisfying I–III a quantum
divergence [23]. We stress that both properties I and III set
nontrivial constraints for the case of entropic quantifiers, as
it is immediately clear considering the unboundedness of the
standard quantum relative entropy. On the contrary, while
property III is satisfied by any distance [indeed, in the form
of a proper triangle inequality, with φ(x) = x], note that the
same is not true for properties I and II, as can be seen by
considering, for example, the Hilbert-Schmidt distance.

B. Information exchange between an open system
and its environment

We now show how any quantum divergence with the
above-mentioned properties leads to a consistent character-
ization of the information flow from and toward an open
quantum system, i.e., a quantum system that is interacting
with an environment. We assume that the open system S and
the environment E are uncorrelated at the initial time t0 = 0,
i.e., ρSE (0) = ρS (0) ⊗ ρE (0), with a fixed environmental state
ρE (0). The evolution of the open system is thus characterized
by a family of CPTP maps �(t ), according to [1]

ρS (t ) = �(t )[ρS (0)] = trE {U (t )[ρS (0) ⊗ ρE (0)]U †(t )}, (7)

where trE is the partial trace over the environmental degrees of
freedom and U (t ) fixes the unitary global system-environment
dynamics. As said, we want to follow the evolution in time
of the distinguishability for the different degrees of free-
dom involved, both within and outside the open system. To
do so, we consider two different initial conditions ρSE (0) =
ρS (0) ⊗ ρE (0) and σSE (0) = σS (0) ⊗ σE (0), with ρE (0) =
σE (0), so the reduced dynamics is given in both cases by the
same family of CPTP maps ρS (t ) = �(t )[ρS (0)] and σS (t ) =
�(t )[σS (0)]. Taking two instants of time s and t � s and using
a generic quantum divergence S to quantify distinguishabil-
ity, the difference

�SS(t, s) := S(ρS (t ), σS (t )) − S(ρS (s), σS (s)) (8)

tells us the variation in the information content within the
open system from time s to time t . Furthermore, S can
be used to quantify the information within the environment,
looking at S(ρE (t ), σE (t )) [where ρE (t ) = trS{ρSE (t )} is the
environmental state at time t], or the information that is
shared by the system and the environment, contained in their
correlations and expressed by S(ρSE (t ), ρS (t ) ⊗ ρE (t )) and
S(σSE (t ), σS (t ) ⊗ σE (t )). The defining properties II and III
of quantum divergences imply that the information variation
can always be bounded by

�SS(t, s) � φ ◦ φ(S(ρE (s), σE (s)))

+φ(S(ρSE (s), ρS (s) ⊗ ρE (s)))

+φ(S(σSE (s), σS (s) ⊗ σE (s))), (9)

where ◦ denotes the composition of functions. This relation
provides us with a complete physical interpretation of the
changes in the information flow from and toward the open
system, along with their microscopic origin. Any backflow of
information to the open system from time s to time t , leading
to the revival �SS(t, s) > 0, is due to some information con-
tained at time s within the environmental degrees of freedom

or the system-environment correlations. In fact, since φ(0) =
0 and due to the indistinguishability of identical states in (3),
the right-hand side (rhs) of Eq. (9) can be different from zero
only if at least one of the following occurs: (i) ρE (s) �= σE (s),
(ii) ρSE (s) �= ρS (s) ⊗ ρE (s), and (iii) σSE (s) �= σS (s) ⊗ σE (s).
The seemingly trivial fact that a proper information-flow
quantifier S(ρ, σ ) takes the minimum value equal to zero if
and only if ρ = σ thus plays quite an important role in our
framework. In fact, this condition allows us to conclude that
a revival �SS(t, s) > 0 is necessarily due to the presence at
time s of system-environment correlations or changes in the
environmental state. Indeed, this generalizes the correspond-
ing results for the trace distance [9–12], recently extended to a
proper entropic quantifier in [27] (see also Sec. IV). By sum-
ming the revivals �SS (t, s) along the whole time evolution
(and possibly maximizing over the couple of initial system
states), we can define a quantifier of the non-Markovianity
of quantum dynamics for any quantum divergence S exactly
in the same spirit as the one based on trace distance [6,7].
By virtue of Eq. (9), memory effects are thus traced back
unambiguously to a twofold exchange of information, from
the open system to the environment and their correlations:
A finite amount of information is stored in external physical
degrees of freedom and later retrieved.

To prove Eq. (9), we first note that the contractivity of S
under CPTP maps implies its invariance under unitary maps,

S(UρU †,UσU †) = S(ρ, σ ) ∀ρ, σ ∀ unitary U, (10)

as well as under the tensor product with a fixed state,

S(ρ, σ ) = S(ρ ⊗ τ, σ ⊗ τ ) ∀ρ, σ, τ ; (11)

the former invariance holds since both U · U † and its inverse
U † · U are CPTP maps, while the latter holds since both the
partial trace and the tensor product with a fixed state are CPTP
maps [27]. We thus have

�SS(t, s) � S(ρSE (t ), σSE (t )) − S(ρS (s), σS (s))

= S(ρSE (s), σSE (s)) − S(ρS (s), σS (s)), (12)

where in the first line we used Eq. (4) (with respect to the
CPTP map trE ) and in the second line Eq. (10) [with respect
to the unitary map U (s)U †(t )]. Now we sum and subtract
S(ρS (s) ⊗ ρE (s), σSE (s)) and replace S(ρS (s), σS (s)) with
S(ρS (s) ⊗ ρE (s), σS (s) ⊗ ρE (s)) by virtue of Eq. (11), thus
getting.

�SS(t, s) � S(ρSE (s), σSE (s))

− S(ρS (s) ⊗ ρE (s), σSE (s))

+ S(ρS (s) ⊗ ρE (s), σSE (s))

− S(ρS (s) ⊗ ρE (s), σS (s) ⊗ ρE (s)). (13)

Applying the trianglelike inequalities (6) to the first two terms
on the rhs of the expression (13) and (5) to the last two terms,
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we get

�SS(t, s) � φ(S(ρSE (s), ρS (s) ⊗ ρE (s)))

+ φ(S(σSE (s), σS (s) ⊗ ρE (s))). (14)

Using once again Eq. (5), we have

S(σSE (s), σS (s) ⊗ ρE (s)) � S(σSE (s), σS (s) ⊗ σE (s))

+ φ(S(σS (s) ⊗ ρE (s), σS (s) ⊗ σE (s)))

= S(σSE (s), σS (s) ⊗ σE (s)) + φ(S(ρE (s), σE (s))),

(15)

where in the equality we used Eq. (11). The last step of the
proof follows from the fact that since φ is a concave non-
negative function of non-negative real numbers (S � 0 due to
property I) such that φ(0) = 0, then φ is also monotonically
nondecreasing and subadditive [32], so Eq. (15) implies

φ(S(σSE (s), σS (s) ⊗ ρE (s)))

� φ(S(σSE (s), σS (s) ⊗ σE (s)))+φ ◦ φ(S(ρE (s), σE (s))),

(16)

which substituted in Eq. (14) directly leads us to the desired
result, Eq. (9).

Note that Eq. (9) only depends on the defining properties
I–III, yet it may be possible to derive alternative bounds to
�SS (t, s) depending on specific choices of S, as will be
exemplified in the following. As we will see in the following
sections, in the considered cases the trianglelike inequalities
build upon the validity of inequalities of the form

D2(ρ, σ ) � kS(ρ, σ ), (17)

with k a positive coefficient and D(ρ, σ ) the trace distance
between ρ and σ , defined as

D(ρ, σ ) = 1

2
‖ρ − σ‖1 = 1

2

∑
i

|�i|, (18)

where ‖ · ‖1 is the 1-norm, so that the �i are the eigenvalues of
the traceless operator ρ − σ .

In the remainder of the paper, we give significant ex-
amples of distinguishability quantifiers representing specific
instances of the general framework defined here.

III. HOLEVO SKEW DIVERGENCE

Let us first introduce a quantum divergence directly de-
rived from the Holevo quantity, thus establishing a clear link
between non-Markovianity in terms of information backflow
and a quantity of central interest in quantum information,
communication, and computation [8]. The Holevo quantity
associated with an ensemble of quantum states, each prepared
with a certain probability, tells us how much the von Neumann
entropy of the ensemble is reduced on average when we know
which state of the ensemble has been prepared. If we now
consider in particular an ensemble of two states, representing
two possible initial conditions of an open-system dynamics,
and we follow the evolution of the corresponding Holevo
quantity, any increase in a given time interval means that the
information gained, on average, by knowing which initial state
has been prepared would actually increase during that time

interval. Thus, the Holevo quantity is a natural candidate to
identify non-Markovianity with the presence of time intervals
of the dynamics of the open system during which the system
recovers some information that previously flowed to the envi-
ronment. As we are now going to show, this picture can be put
on a firm ground within the theoretical framework described
in Sec. II.

Given two states ρ and σ and a mixing parameter μ,
with 0 < μ < 1, the Holevo quantity restricted to a two-state
ensemble {μ, ρ; 1 − μ, σ } takes the form

χμ(ρ, σ ) = S(μρ + (1 − μ)σ ) − μS(ρ) − (1 − μ)S(σ ),

(19)

with S(ρ) = −tr{ρ ln ρ} the von Neumann entropy (note that
we excluded the values μ = 0, 1 which would lead to the null
quantity). Now, since 0 � χμ(ρ, σ ) � h(μ), where

h(μ) = −μ ln μ − (1 − μ) ln(1 − μ) (20)

is the Shannon entropy of the probability distribution {μ, 1 −
μ}, we define the quantity

Kμ(ρ, σ ) = χμ(ρ, σ )

h(μ)
, (21)

which is bounded between 0 and 1 and is equal to 0 if and
only if ρ = σ , while it is equal to 1 if and only if ρ and σ

have orthogonal support.
Hence, Kμ(ρ, σ ) satisfies property I and we will see that it

also satisfies properties II and III, thus being a quantum diver-
gence according to our definition. We thus name Kμ Holevo
skew divergence, where the word skew refers to the fact that
μ can be seen as a skewing parameter that fixes the mixing of
the two states ρ and σ defining the divergence, while the term
divergence stresses the fact that the quantity only depends on
two states and can therefore be taken as a distinguishability
quantifier, though it is not a distance. Finally, we note that
the factor [h(μ)]−1 in the expression of the Holevo skew
divergence, besides ensuring normalization, makes Kμ(ρ, σ )
independent of the base of the logarithm used in its definition.

A. Contractivity and Pinsker-like inequality

The Holevo skew divergence inherits several important
properties from its connection with the quantum relative en-
tropy. The quantum relative entropy is generally defined for a
pair of non-negative operators A and B as

S(A, B) = tr{A ln A} − tr{A ln B} + tr(B − A), (22)

which is a positive and finite quantity, provided the support of
B includes the support of A [where the convention 0 ln(0) =
0 is used], while it is defined to be infinity otherwise. For a
pair of statistical operators it therefore takes the more familiar
form [23]

S(ρ, σ ) = tr{ρ ln ρ} − tr{ρ ln σ }, (23)

so we have in fact

Kμ(ρ, σ ) = μ

h(μ)
S(ρ,μρ + (1 − μ)σ )

+ 1 − μ

h(1 − μ)
S(σ, (1 − μ)σ + μρ). (24)
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Indeed, the quantum relative entropy diverges whenever ρ

and σ have orthogonal support; the Holevo skew divergence
can thus be seen as a way to regularize the quantum rela-
tive entropy to ensure boundedness and obtain an entropic
distinguishability quantifier. Importantly, in accordance with
this interpretation, the Holevo skew divergence is symmetric
under permutation of the elements of the ensemble, as it
immediately appears in Eq. (24), so

Kμ(ρ, σ ) = K1−μ(σ, ρ). (25)

In particular, the contractivity of the quantum relative entropy,
S(�[ρ],�[σ ]) � S(ρ, σ ) for any CPTP map, directly implies
the contractivity of the Holevo skew divergence for any pa-
rameter μ

Kμ(�[ρ],�[σ ]) � Kμ(ρ, σ ), (26)

as can be readily seen by Eq. (24) and the linearity of the map
�; in other terms, Kμ satisfies also property II expressed by
Eq. (4). Actually, the quantum relative entropy, and thus the
Holevo skew divergence as well, is contractive under maps
that are simply positive and trace preserving, but not neces-
sarily CPTP [33].

Another property that the Holevo skew divergence inherits
from the quantum relative entropy and that will be crucial
for our purposes is the possibility to lower bound it with the
square of the trace distance, by means of an inequality as in
Eq. (17). Starting from the Pinsker inequality for the quantum
relative entropy [23,34,35]

D2(ρ, σ ) � 1
2 S(ρ, σ ) (27)

and using Eq. (24), along with

D(ρ,μρ + (1 − μ)σ ) = (1 − μ)D(ρ, σ ),

D(σ, (1 − μ)σ + μρ) = μD(ρ, σ ), (28)

we find

D2(ρ, σ ) � h(μ)

2μ(1 − μ)
Kμ(ρ, σ ). (29)

This relation represents an application of the Pinsker inequal-
ity to a different entropic quantifier of state distinguishability
and we will thus refer to it as Pinsker-like inequality. Most
importantly, it allows us to show that the Holevo skew diver-
gence satisfies also property III and then to conclude that it
is a proper quantifier of the information exchange between an
open quantum system and its environment.

B. Quantifier of information flow

To prove the trianglelike inequalities in Eqs. (5) and (6)
for the Holevo skew divergence, we can exploit once again its
connection with the quantum relative entropy, along with the
following property of the quantum relative entropy. Given any
three positive operators W , X , and Y , we have [36,37]

0 � S(W,W + X ) − S(W,W + X + Y )

� trW ln

(
1 + trY

trW

)
, (30)

0 � S(X, X + W ) − S(X + Y, X + Y + W )

� trY ln

(
1 + trW

trY

)
. (31)

As shown in Appendix A, these inequalities imply that given
two quantum relative entropies, each involving one of the two
distinct states ρ1 and ρ2 together with the mixture with the
same state σ via the same mixing parameter μ, which takes a
value in (0,1), their difference is bounded by

S(σ,μσ + (1 − μ)ρ1) − S(σ,μσ + (1 − μ)ρ2)

� ln

(
1 + 1 − μ

μ
D(ρ1, ρ2)

)
; (32)

analogously, it also holds that

S(ρ1, μρ1 + (1 − μ)σ ) − S(ρ2, μρ2 + (1 − μ)σ )

� D(ρ1, ρ2) ln

(
1 + 1 − μ

μ

1

D(ρ1, ρ2)

)
. (33)

The terms on the left-hand side (lhs) of the inequalities (32)
and (33) are precisely of the form of the terms connecting the
Holevo skew divergence and the quantum relative entropy in
Eq. (24), so we immediately get

Kμ(ρ, σ ) − Kμ(ρ, τ ) � gμ(D(σ, τ )), (34)

where we introduced the function

gμ(x) = μ

h(μ)
ln

(
1 + 1 − μ

μ
x

)

+1 − μ

h(μ)
x ln

(
1 + μ

1 − μ

1

x

)
. (35)

Further, using

gμ(x) �
√

4μ(1 − μ)

h(μ)

√
x, (36)

which follows from the approximation ln(1 + x) � √
x, and

the Pinsker-like inequality in Eq. (29), we finally get the
inequality

Kμ(ρ, σ ) − Kμ(ρ, τ ) � κμ
4
√

Kμ(σ, τ ), (37)

with

κμ = 4

√
8μ(1 − μ)

h3(μ)
. (38)

This is indeed a trianglelike inequality as in Eq. (5), for the
concave function

φμ(x) = κμ
4
√

x (39)

satisfying φμ(x) > 0 for x > 0 and φ(0) = 0. In addition, due
to Eq. (25) and κμ = κ1−μ, we have that Eq. (34) implies also

Kμ(σ, ρ) − Kμ(τ, ρ) � κμ
4
√

Kμ(σ, τ ), (40)

which is the trianglelike inequality in Eq. (6) with respect to
the given concave function φμ(x).

We have thus shown that the Holevo skew divergence does
satisfy all the required properties I–III. We can therefore apply
to it the general picture introduced in Sec. II B to characterize
the information flow in open quantum system dynamics. Ex-
plicitly, the changes of information within the open system
are quantified by the variation of the Holevo skew divergence
according to Eq. (9) with S → Kμ and φ given by Eq. (39).
As shown in Appendix B, this result can be improved by
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exploiting directly the triangle inequality for the trace distance
in Eq. (34) together with subadditivity of the square root
approximation of gμ given by Eq. (39), thus arriving at

�SKμ(t, s) � κμ

(
4
√

Kμ(ρE (s), σE (s))

+ 4
√

Kμ(ρSE (s), ρS (s) ⊗ ρE (s))

+ 4
√

Kμ(σSE (s), σS (s) ⊗ σE (s))
)
. (41)

The information contained at time s within the environment
and in the system-environment correlations here quantified
via the Holevo skew divergence is thus responsible for
any possible subsequent enhancement of the open-system
state distinguishability, in turn quantified via �SKμ(t, s). In-
terestingly, in this expression all the contributions to the
information content within the environment and the system-
environment correlations are equally weighted by the same
fourth root function and the same constant factor κμ, which
takes its minimum value for μ = 1/2.

IV. DISTANCES AND DIVERGENCES

Besides accounting for the Holevo skew divergence, our
approach connects within a common framework several dis-
tinct witnesses of quantum non-Markovianity, based on both
distance- and divergence-based quantifiers of state distin-
guishability.

A. Helstrom norm and trace distance

Given two quantum states ρ and σ , the Helstrom norm
Dμ(ρ, σ ) is the ‖ · ‖1-norm of the Hermitian operator given
by the difference of the two states, weighted by μ and 1 − μ,
respectively, i.e.,

Dμ(ρ, σ ) = ‖μρ − (1 − μ)σ‖1; (42)

note that Dμ(ρ, σ ) satisfies the symmetry property

Dμ(ρ, σ ) = D1−μ(σ, ρ) (43)

as in Eq. (25). This quantity fixes the maximum success prob-
ability in discriminating between ρ and σ , if they have been
prepared with probabilities μ and 1 − μ [38]. Relying on this,
the Helstrom norm has been used to quantify the information
flow in open quantum system dynamics and to define ac-
cordingly a measure of quantum non-Markovianity [4,31,39].
Quite interestingly, the definition of quantum Markovian
dynamics expressed via the Helstrom norm under the assump-
tion that the dynamical maps are invertible turns out to be
equivalent to the P divisibility of the dynamics [29,31,40,41],
i.e., the possibility to decompose the dynamical maps �(t ) as

�(t ) = �(t, s)�(s) ∀t � s � 0, (44)

where �(t, s) are positive (but not necessarily completely
positive) maps. The trace distance [see Eq. (18)] represents
the specific instance of the Helstrom norm for μ = 1/2,
D(ρ, σ ) = D1/2(ρ, σ ), which is associated with the unbi-
ased discrimination scenario where the two states ρ and
σ have been prepared with equal probability. The trace-
distance-based definition of quantum Markovianity [6,7] is
the prototypical definition relying on the notion of in-
formation flow and, more in general, the corresponding

non-Markovianity measure is one of the most significant
quantifiers of quantum non-Markovianity [4]. The approach
via this generalized trace distance, just due to this relation to P
divisibility, further allows us to make a connection to classical
Markovian stochastic processes [31]. It moreover allows us
to overcome one of the criticism against the trace-distance
approach, which is not sensitive to the action of nonunital
maps [42].

The trace norm immediately satisfies the properties I–III
defining a quantum divergence and allowing us to apply the
general framework introduced in Sec. II, since it is a distance
contractive under CPTP maps; actually, also the trace distance
is contractive under the weaker assumption of positivity. Mov-
ing to the general Helstrom norm in Eq. (42), it is convenient
to consider its corresponding symmetrized version, that is,

Hμ(ρ, σ ) = 1
2 [Dμ(ρ, σ ) + Dμ(σ, ρ)]. (45)

Clearly Hμ(ρ, σ ) inherits the contractivity under (C)PTP
maps from the Helstrom norm [4,31], while using the triangle
inequality and its reverse for the ‖ · ‖1-norm ‖A‖1 − ‖B‖1 �
‖A ± B‖1 � ‖A‖1 + ‖B‖1, it is easy to see that Hμ(ρ, σ ) is
lower bounded by the trace distance D(ρ, σ ) � Hμ(ρ, σ ),
while

Dμ(ρ, σ ) − Dμ(ρ, τ ) � 2(1 − μ)D(σ, τ ),

Dμ(σ, ρ) − Dμ(τ, ρ) � 2μD(σ, τ ), (46)

which combined together lead to the triangle inequality

Hμ(ρ, σ ) − Hμ(ρ, τ ) � Hμ(σ, τ ) (47)

and therefore to Eq. (9) with φ(x) = x. By direct inspection,
as shown in [39], one also has the bound

�SDμ(t, s) � 2 min{μ, 1 − μ}D(ρE (s), σE (s))

+ 2μD(ρSE (s), ρS (s) ⊗ ρE (s))

+ 2(1 − μ)D(σSE (s), σS (s) ⊗ σE (s)). (48)

B. Quantum skew divergence

More recently [27], it has been shown that a full char-
acterization of quantum non-Markovianity in terms of a
bidirectional exchange of information between the open sys-
tem and the environment can be given in terms of entropic
quantities, which, in particular, do not satisfy the triangle in-
equality. We now show that also these quantities are included
in the general framework introduced here.

Let us define the quantum skew divergence as

Sμ(ρ, σ ) = μ

ln(1/μ)
S(ρ,μρ + (1 − μ)σ )

+ 1 − μ

ln[1/(1 − μ)]
S(σ, (1 − μ)σ + μρ), (49)

with skewing parameter μ ∈ (0, 1). Note that each term is
finite for arbitrary μ and an arbitrary pair of quantum states
ρ and σ , pure or mixed, at variance with the quantum relative
entropy. This quantity is based on the telescopic relative en-
tropy or quantum skew divergence introduced in [27,28,36],
albeit with a symmetrization with respect to the simultaneous
exchange μ ↔ 1 − μ and ρ ↔ σ , so that

Sμ(ρ, σ ) = S1−μ(σ, ρ), (50)
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which makes it a natural distinguishability quantifier. In fact,
Sμ(ρ, σ ) provides us with a regularized and symmetrized
version of the relative entropy, which is a fundamental quan-
tifier of the distinguishability of quantum states and has
been studied as a possible identifier of memory effects since
the very beginning of the investigations on quantum non-
Markovianity [7]. The general framework presented in Sec. II
allows us to provide also the regularized and symmetrized
relative entropy with a complete interpretation in terms of
a quantifier of the information exchange between the open
system and the environment.

The quantum skew divergence defined in Eq. (49) satisfies
property I of quantum divergences, i.e., 0 � Sμ(ρ, σ ) � 1,
with the lower and upper bounds being saturated if and only
if ρ = σ and ρ ⊥supp σ , respectively; indeed, Sμ(ρ, σ ) is
independent of the base of the logarithm in its definition
by virtue of the normalizing prefactor inversely proportional
to the logarithm. In addition, the quantum skew divergence
satisfies a Pinsker-like inequality [see Eq. (17) and compare
with Eq. (29)], which reads

D2(ρ, σ ) � ln(μ) ln(1 − μ)

2μ(1 − μ)h(μ)
Sμ(ρ, σ ). (51)

Using this inequality, along with Eqs. (32) and (33) leading to

Sμ(ρ, σ ) − Sμ(ρ, τ ) � fμ(D(σ, τ )), (52)

where we introduced the function

fμ(x) = μ

ln(1/μ)
ln

(
1 + 1 − μ

μ
x

)

+ 1 − μ

ln[1/(1 − μ)]
x ln

(
1 + μ

1 − μ

1

x

)
, (53)

and using again the approximation ln(1 + x) � √
x, we obtain

Sμ(ρ, σ ) − Sμ(ρ, τ ) � ςμ
4
√

Sμ(σ, τ ), (54)

Sμ(σ, ρ) − Sμ(τ, ρ) � ςμ
4
√

Sμ(σ, τ ), (55)

with

ςμ = ln

(
1

μ(1 − μ)

)
4

√
μ(1 − μ)

2 h(μ) ln3(μ) ln3(1 − μ)
; (56)

these are indeed trianglelike inequalities as in Eqs. (5) and (6)
for the concave function ςμ

4
√

x. As for the Holevo skew diver-
gence, the inequalities are fixed by the concave function given
by the fourth root, which is however multiplied by a different
factor [compare with Eqs. (37), (38), and (40)]. Both κμ and
ςμ due to the symmetric choice reach their minimum value for
μ = 1/2, corresponding to 4

√
2/ ln3(2) ≈ 1.565.

Finally, the quantum skew divergence inherits the contrac-
tivity under (C)PTP maps from the quantum relative entropy,
thus satisfying all the defining properties of quantum diver-
gences. Applying Eq. (9), we thus arrive at the upper bound
with the usual interpretation in terms of information flow
from and toward the open system, linked to the information
within the environment and the system-environment correla-
tions, now quantified via the quantum skew divergence. Also
in this case, a different and tighter bound can be derived by

using the Pinsker-like inequality (51) at a different stage of the
derivation, in close analogy to the calculations in Appendix B,
thus obtaining

�SSμ(t, s) � ςμ( 4
√

Sμ(ρE (s), σE (s))

+ 4
√

Sμ(ρSE (s), ρS (s) ⊗ ρE (s))

+ 4
√

Sμ(σSE (s), σS (s) ⊗ σE (s))), (57)

which confirms the result obtained in [27], albeit with a
different symmetrization of the entropic distinguishability
quantifier as given by Eq. (49).

C. Jensen-Shannon divergence

As it immediately appears from the previous results, an-
other significant quantifier of state distinguishability and
information flow is the Jensen-Shannon divergence, which is
defined starting from the quantum relative entropy as

J(ρ, σ ) = 1

2 ln 2

[
S

(
ρ,

ρ + σ

2

)
+ S

(
σ,

ρ + σ

2

)]
, (58)

where at variance with the usual definition [23] we have
considered a normalization factor such that the expression is
independent of the chosen base of the logarithm and moreover
it lies within the range 0 � J(ρ, σ ) � 1. Quite interestingly,
with the considered normalization, the Jensen-Shannon diver-
gence can be seen as the special instance of the Holevo skew
divergence as defined in Eq. (24) for μ = 1/2,

J(ρ, σ ) = K1/2(ρ, σ ). (59)

Equivalently, we can also recover the Jensen-Shannon di-
vergence from the quantum skew divergence as defined in
Eq. (49), again setting μ = 1/2,

J(ρ, σ ) = S1/2(ρ, σ ). (60)

As a consequence, we can directly see that the
Jensen-Shannon divergence is a quantum divergence
according to our definition, and a bound on �SJ(t, s) can be
readily derived from Eq. (9) [or simply setting μ = 1/2 in
either Eq. (41) or (57)].

On the other hand, the square root of the Jensen-Shannon
divergence

√
J(ρ, σ ) has been recently proven to be a dis-

tance [43,44], satisfying in particular the triangle inequalities,
i.e., Eqs. (5) and (6) for φ(x) = x. The square root of the
Jensen-Shannon divergence indeed still satisfies boundedness,
normalization, and indistinguishability of identical states, as
well as the contractivity under (C)PTP maps, due to the mono-
tonicity of the square root, thus providing us with a further
example of quantum divergence. Besides the inequality (9),
the revival of the square root of the Jensen-Shannon diver-
gence can be bounded by the tighter inequality [27]

�S

√
J(t, s) �

√
J(ρE (s), σE (s))

+
√

J(ρSE (s), ρS (s) ⊗ ρE (s))

+
√

J(σSE (s), σS (s) ⊗ σE (s)). (61)

As shown in the following example, the evolution of the
square root of the Jensen-Shannon divergence typically
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follows the evolution of the trace distance, with respect to
both the revivals of the open-system distinguishability and
the information content outside the open system, more closely
than the other quantifiers that are quantum divergences but not
distances.

D. Role of skewing

In Secs. III and IV we have introduced different dis-
tinguishability quantifiers which further qualify as non-
Markovianity quantifiers according to properties I–III. These
properties allow for an interpretation of memory effects as
related to storage and retrieval of information, in quantum de-
grees of freedom not accessible by performing measurements
on the system alone. All these quantifiers are characterized by
a skewing parameter μ. For the case of entropic quantifiers,
the introduction of this skewing parameter is necessary to
introduce well-defined quantities and avoid the divergences
which plague the standard definition of quantum relative en-
tropy also in a finite-dimensional setting. As shown by the
present analysis, different quantifiers can be introduced that
all point to a distinguished role of the value 1/2 for the
mixing parameter. This choice in particular allows us to obtain
a distance from such entropic quantifiers, which however is
sensitive also to nonunital evolutions [27]. The question re-
mains open whether for these quantifiers a connection with P
divisibility can also be established. For the case of the gener-
alized trace distance or Helstrom norm the value μ = 1/2 for
the skewing parameter still plays a distinguished role, leading
to the recovery of the trace distance, but it fails in dealing
with nonunital dynamics. Moreover, it no longer allows us
to identify contractivity and P divisibility for invertible time
evolutions.

V. EXAMPLES

A. Spin-star configuration

In order to exemplify the behavior of the different dis-
tinguishability quantifiers, suitable for the description of
non-Markovianity according to properties I–III of Sec. II, we
first consider a model of N qubits coupled to a reference qubit
in the so-called spin-star configuration [45,46], according to
the Hamiltonian

H = ωSσz +
N∑

k=1

gkσz ⊗ σ k
z +

N∑
k=1

ωk
Eσ k

z , (62)

which describes a pure dephasing interaction; such a model
characterizes, for example, the reduced evolution of an
electronic spin qubit in a diamond nitrogen-vacancy cen-
ter [47,48]. Here ωS and ωk

E denote the frequencies of the
system and of the environmental qubits, respectively, σz is the
Pauli matrix, and the superscript k labels the environmental
units coupled with different strengths gk .

For the considered choice of environment which starts
in the maximally mixed state, corresponding to a high-
temperature reservoir, the environment is left unchanged also
for a non-Markovian dynamics and the only relevant contri-
bution to the exchange of information between the system
and environment is to be traced back to the establishment

of correlations. For this model a natural choice of initial
pair of states is given by the orthogonal pure superposition
states (|1〉 + |0〉)/

√
2 and (|1〉 − |0〉)/

√
2, where {|1〉, |0〉}

denote the eigenstates of the σz operator, corresponding to the
reduced density matrices ρ+ and ρ−, respectively. For later
times the reduced states take the form

ρ±(t ) = 1

2

(
1 ±∏N

k=1 cos(2gkt )

±∏N
k=1 cos(2gkt ) 1

)
, (63)

where the index k is running over all environmental units.
Note that such a special choice of the initial reduced and envi-
ronmental states does not influence the qualitative features of
the left- and right-hand sides of inequalities (41), (48), (57),
and (61), depicted in Fig. 1, associated with the Holevo
skew divergence, symmetrized Helstrom norm, quantum skew
divergence, and square root of Jensen-Shannon divergence,
respectively. In Fig. 1(a) we have plotted the quantities for
a skewing parameter μ = 1/2, in which case the Holevo and
the quantum skew divergence coincide. We can strengthen the
findings from [27] and observe that though all of the quantities
provide the same qualitative picture, the two distances differ
also quantitatively very little from each other. Remarkably, the
two solid lines corresponding to the lhs of the associated in-
equality almost overlap. On the other hand, the upper bounds
given by proper quantum divergences (i.e., not distances) are
much looser. For completeness, we have plotted in Fig. 1(b)
the Holevo and the quantum skew divergence for a skewing
parameter μ = 1/4, where the quantities, albeit now differ-
ent, tightly follow each other; this is especially visible for
the variations of the reduced quantities (solid lines). Besides
illustrating the different tightness of the bounds for the distinct
distinguishability quantifiers, Fig. 1 shows that the bounds
follow qualitatively the evolution of the corresponding quanti-
fiers, reproducing in particular the subsequently enhanced and
suppressed revivals of the information that is accessed by the
open system in the course of time.

B. Jaynes-Cummings model

As second case study, we consider another model of
physical interest, with ubiquitous applications, for exam-
ple, in quantum optical systems, i.e., the Jaynes-Cummings
model [49]. Here the open system is a two-level system with
transition frequency ωS , while the environment consists of
a single bosonic mode of frequency ωE , with corresponding
annihilation and creation operators denoted by b and b†. The
global Hamiltonian is

H = ωSσ+σ− ⊗ 1E + ωE1S ⊗ b†b + g
(
σ+ ⊗ b + σ− ⊗ b†),

(64)

with σ+ = |1〉 〈0| and σ− = |0〉 〈1| raising and lowering oper-
ators of the two-level system so that the interaction between
the two-level system and the mode preserves the total number
of excitations. The global unitary operator can be obtained
exactly [50] and thus the reduced dynamics can be derived ex-
plicitly for fully general initial conditions [51,52]. Introducing
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FIG. 1. Revivals of distance and entropic distinguishability quantifiers versus their bounds for the two models considered in Sec. V,
namely, (a) and (b) the spin-star dephasing model with N = 5 environmental qubits and random coupling strengths and (c) and (d) the
Jaynes-Cummings model. (a) and (c) Behavior of the Helstrom norm D [orange (light gray) lines] and the square root of the Jensen-Shannon
divergence

√
J [green (gray) lines], together with the Holevo (K) and quantum (S) skew divergence evaluated for μ = 1/2 [black (dark gray)

lines] so that the latter two coincide. The solid lines represent the lhs of Eq. (48), Eq. (61), and Eqs. (41) and (57) evaluated for μ = 1/2
and t = T , respectively. The dotted lines denote the sum of the corresponding contributions on the rhs. (b) and (d) Behavior of Holevo skew
divergence K [green (gray) lines] and quantum S [black (dark gray) lines] skew divergence for μ = 1/4. Again, solid lines correspond to the lhs
of Eqs. (41) and (57), respectively, while the dotted lines reproduce the rhs. Despite the quite different nature of the two models, which describe,
for a two-level system, decoherence and excitation exchanges with a bosonic mode, respectively, the overall behavior of distinguishability
quantifiers and related bounds is strikingly similar. In particular, it clearly appears that distance quantifiers provide tighter bounds. For the
spin-star model the reference time T is equal to 5 in inverse units of the average coupling strength, while for the Jaynes-Cummings model T
is 8.9 in inverse units of the coupling strength g, while the detuning frequency � is equal to 0.5 in units of g.

the functions of the number operator n̂ = b†b,

c(n̂, t ) = ei�t/2

[
cos

(
f (n̂)

t

2

)
− i�

sin
[

f (n̂) t
2

]
f (n̂)

]
,

d (n̂, t ) = −2iei�t/2g
sin

[
f (n̂) t

2

]
f (n̂)

, (65)

with � = ωS − ωE and

f (n̂) =
√

�2 + 4g2n̂, (66)

the global unitary operator can be written in fact as

U (t ) = |1〉 〈1| ⊗ c(n̂ + 1, t ) + |1〉 〈0| ⊗ d (n̂ + 1, t )b

− |0〉 〈1| ⊗ b†d†(n̂ + 1, t ) + |0〉 〈0| ⊗ c†(n̂, t ). (67)

In particular, for any initial product state ρSE (0) = ρS (0) ⊗
ρE (0) with stationary initial environmental state (i.e.,
[ρE (0), n̂] = 0), the open-system state at time t reads

ρS (t )=
(

ρ00[1−α(t )]+ρ11β(t ) ρ10γ (t )
ρ01γ

∗(t ) ρ00α(t )+ρ11[1−β(t )]

)
,

(68)

where ρi j , i, j = 0, 1, denote indeed the initial reduced-state
elements ρi j = 〈i| ρS (0) | j〉 and we introduced the time-
dependent functions

α(t ) = 〈c†(n̂, t )c(n̂, t )〉E ,

β(t ) = 〈c†(n̂ + 1, t )c(n̂ + 1, t )〉E ,

γ (t ) = 〈c(n̂, t )c(n̂ + 1, t )〉E , (69)

with 〈A〉E = tr{AρE (0)}. Then Eq. (68) fully characterizes
the open two-level system evolution and in particular it
determines the degree of non-Markovianity of the reduced
dynamics; Eq. (67), on the other hand, allows us to eval-
uate explicitly quantities referred to as the global system,
thus getting a complete description of the information ex-
change between the open system and the environment, via the
quantifiers introduced in Sec. IV. The behavior of distance
and entropic distinguishability quantifiers for the Jaynes-
Cummings model is considered in Figs. 1(c) and 1(d),
considering as initial states of the qubit the excited state and
a balanced superposition of the excited and the ground state,
while the environment starts in a thermal state with βωE = 1,
and essentially the same considerations made for the spin-star
model apply. We stress that again the distance quantifiers
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almost overlap and exhibit tighter bounds with respect to the
entropic quantifiers.

VI. CONCLUSION

In this paper we have have provided a general framework
to relate distinguishability quantifiers with the information
exchange between an open system and its environment. In
particular, besides normalization, indistinguishability of iden-
tical states, and contractivity under the action of CPTP maps,
one needs trianglelike inequalities. Importantly, since the tri-
anglelike inequalities are weaker than the standard triangle
inequality, we could include in our analysis not only dis-
tances, but also quantum divergences that are not necessarily
distances. The mentioned properties directly lead to an up-
per bound of the distinguishability variations, which traces
non-Markovianity back to a flow of information from the
system-environment correlations and the environment to the
open system.

The general framework includes the Holevo skew diver-
gence, which is a normalized version of the Holevo quantity,
as a special instance. For this quantity we also derived a
tighter upper bound while keeping the same physical inter-
pretation. Moreover, we have compared our approach with
the quantification of distinguishability via the Helstrom norm
of the weighted difference of two quantum states and we
have shown that a regularized and symmetrized version of
the relative entropy, i.e., the quantum skew divergence, sat-
isfies the defining properties of our general framework as
well. Both the Holevo skew divergence and the quantum skew
divergence are reduced for the case of equal weights to the
Jensen-Shannon divergence, whose square root is a distance
contractive under CPTP maps, thus also being part of the
formalism defined here. All of these quantifiers are sensitive

to nonunital dynamics for any value of the skewing parameter.
On the other hand, the Helstrom norm for the case of equal
weights recovers the trace distance, which is left unaltered by
all nonunital dynamics.

It remains to be clarified whether this approach can provide
further insight into the relationship between the notion of
non-Markovianity as due to information exchange, consid-
ered in this paper, and P divisibility of the time evolution
map. In addition, it would be worth investigating whether the
class of system-environment information quantifiers can be
further extended, possibly leading to other upper bounds to
the information revivals. Finally, we expect that our work can
shed some light also on the investigations of the relevance of
different distinguishability quantifiers used in connection with
the detection of initial correlations as considered in [53,54].
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APPENDIX A: PROOF OF THE BOUNDS
IN EQS. (32) AND (33)

To prove Eq. (32) let us express the difference of quantum
relative entropies of interest exploiting their definition as in
Eq. (23),

S(σ,μσ + (1 − μ)ρ1) − S(σ,μσ + (1 − μ)ρ2) = tr {σ {ln[μσ + (1 − μ)ρ2] − ln[μσ + (1 − μ)ρ1]}}
= tr

{
σ

[
ln

(
σ + 1 − μ

μ
ρ2

)
− ln

(
σ + 1 − μ

μ
ρ1

)]}
. (A1)

Denoting by T+ (T−) the positive (negative) part of a self-adjoint operator T so that

T = T+ − T−, (A2)

we can consider the simple inequality

ρ2 = ρ1 + (ρ2 − ρ1) = ρ1 + (ρ2 − ρ1)+ − (ρ2 − ρ1)− � ρ1 + (ρ2 − ρ1)+. (A3)

Exploiting Eq. (A3) together with the operator monotonicity of the logarithm and the inequality Eq. (30), we obtain

S(σ,μσ + (1 − μ)ρ1) − S(σ,μσ + (1 − μ)ρ2) � tr

{
σ

[
ln

(
σ + 1 − μ

μ
ρ1 + 1 − μ

μ
(ρ2 − ρ1)+

)
− ln

(
σ + 1 − μ

μ
ρ1

)]}

� ln

(
1 + 1 − μ

μ
tr(ρ2 − ρ1)+

)
, (A4)

so that finally exploiting

D(ρ1, ρ2) = 1
2‖ρ1 − ρ2‖ = tr(ρ2 − ρ1)+ = tr(ρ2 − ρ1)−, (A5)

we have the desired bound, Eq. (32).
In a similar way, using Eq. (23) we have

S(ρ1, μρ1 + (1 − μ)σ ) − S(ρ2, μρ2 + (1 − μ)σ ) = S

(
ρ1, ρ1 + 1 − μ

μ
σ

)
− S

(
ρ2, ρ2 + 1 − μ

μ
σ

)
, (A6)
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so making use of the fact that (ρ2 − ρ1)− is a positive operator together with

S(ρ + w, σ + w) � S(ρ, σ ) (A7)

for positive w, we arrive at

S(ρ1, μρ1 + (1 − μ)σ ) − S(ρ2, μρ2 + (1 − μ)σ ) � S

(
ρ1, ρ1 + 1 − μ

μ
σ

)

−S

(
ρ2 + (ρ2 − ρ1)−, ρ2 + (ρ2 − ρ1)− + 1 − μ

μ
σ

)
. (A8)

Finally, using Eq. (31) so that

S

(
ρ2 + (ρ2 − ρ1)−, ρ2 + (ρ2 − ρ1)− + 1 − μ

μ
σ

)
� S

(
ρ1, ρ1 + 1 − μ

μ
σ

)
− tr{(ρ2 − ρ1)−} ln

(
1 +

tr
{ 1−μ

μ
σ
}

tr{(ρ2 − ρ1)−}

)
, (A9)

we obtain further, exploiting Eq. (A5), the final result,
Eq. (33).

APPENDIX B: PROOF OF THE BOUND IN EQ. (41)
ON THE INFORMATION FLOW VIA HOLEVO

SKEW DIVERGENCE

As discussed in the main text, a direct application of the
general framework for the establishment of the connection be-
tween non-Markovianity and information exchange between
the system and environment presented in Sec. II would lead
directly to the bound

�SKμ(t, s) � κ2
μ

16
√

Kμ(ρE (s), σE (s))

+ κμ
4
√

Kμ(ρSE (s), ρS (s) ⊗ ρE (s))

+ κμ
4
√

Kμ(σSE (s), σS (s) ⊗ σE (s)). (B1)

It is actually possible to derive a different tighter upper
bound to the variation of the Holevo skew divergence, namely,
Eq. (41), for which the same physical interpretation as the one
above indeed applies. To this aim, let us start from Eq. (34)
and combine it with the upper bound (36) so that we have

Kμ(ρ, σ ) − Kμ(ρ, τ ) �
√

4μ(1 − μ)

h(μ)

√
D(σ, τ ). (B2)

Starting from this inequality and adding and subtracting
terms, as in Eq. (14), we arrive at

�SKμ(t, s) �
√

4μ(1 − μ)

h(μ)
[
√

D(ρSE (s), ρS (s) ⊗ ρE (s))

+
√

D(σSE (s), σS (s) ⊗ ρE (s))]. (B3)

We can now exploit the fact that the trace distance obeys the
triangle inequality so that

D(σSE (s), σS (s) ⊗ ρE (s)) � D(σSE (s), σS (s) ⊗ σE (s))

+ D(σE (s), ρE (s)), (B4)

together with subadditivity of the square root, thus obtaining

�SKμ(t, s) �
√

4μ(1 − μ)

h(μ)
[
√

D(ρSE (s), ρS (s) ⊗ ρE (s))

+
√

D(σSE (s), σS (s) ⊗ σE (s))

+
√

D(σE (s), ρE (s))]. (B5)

At this stage we can apply the Pinsker-like inequality (29) to
finally obtain Eq. (41).
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[16] P. Štelmachovič and V. Bužek, Dynamics of open quantum
systems initially entangled with environment: Beyond the Kraus
representation, Phys. Rev. A 64, 062106 (2001).

[17] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M.
Paternostro, and K. Modi, Operational Markov Condition for
Quantum Processes, Phys. Rev. Lett. 120, 040405 (2018).

[18] A. A. Budini, Quantum non-Markovian Processes Break Condi-
tional Past-Future Independence, Phys. Rev. Lett. 121, 240401
(2018).

[19] A. A. Budini, Conditional past-future correlation induced by
non-Markovian dephasing reservoirs, Phys. Rev. A 99, 052125
(2019).

[20] S. Yu, A. A. Budini, Y.-T. Wang, Z.-J. Ke, Y. Meng, W. Liu,
Z.-P. Li, Q. Li, Z.-H. Liu, J.-S. Xu, J.-S. Tang, C.-F. Li, and
G.-C. Guo, Experimental observation of conditional past-future
correlations, Phys. Rev. A 100, 050301(R) (2019).

[21] A. A. Budini, Quantum non-Markovian “casual bystander” en-
vironments, Phys. Rev. A 104, 062216 (2021).

[22] A. A. Budini, Quantum non-Markovian environment-to-system
backflows of information: Nonoperational vs. operational ap-
proaches, Entropy 24, 649 (2022).
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