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Clifford algebra from quantum automata and unitary Wilson fermions

Pablo Arnault *

Université Paris-Saclay, CNRS, ENS Paris-Saclay, INRIA, Laboratoire Méthodes Formelles, 91190 Gif-sur-Yvette, France

(Received 25 May 2021; revised 7 March 2022; accepted 6 June 2022; published 5 July 2022)

We introduce a spacetime discretization of the Dirac equation that has the form of a quantum automaton and
that is invariant upon changing the representation of the Clifford algebra, like the Dirac equation itself. Our
derivation follows Dirac’s original one: We required that the square of the discrete Dirac scheme be what we
define as an acceptable discretization of the Klein-Gordon equation. In contrast to standard lattice gauge theory
in discrete time, in which unitarity needs to be proven, we show that the quantum automaton delivers naturally
unitary Wilson fermions for any choice of Wilson’s parameter.

DOI: 10.1103/PhysRevA.106.012201

I. INTRODUCTION

The Dirac equation (DE) is the law of motion of relativis-
tic quantum particles of matter (more precisely, of so-called
fermionic particles) and is one of the main equations of the
standard model of particle physics. The gamma matrices are
objects needed to write down the DE. These gamma matrices
have to satisfy the so-called Clifford algebra. Any family of
matrices that satisfy the Clifford algebra is a good candidate
to write down the DE; more precisely, the DE is invariant upon
changing the Clifford-algebra representation. This symmetry
is fundamental: The physics is captured by the Clifford alge-
bra, and not by a single, particular family of gamma matrices
chosen. Moreover, the Clifford algebra is at the grounding of
modern geometric algebra [1], which shows its fundamental
character beyond the DE, for understanding the geometry of
our world.

It is well known that numerically simulating real-time
dynamics of quantum multiparticle systems is exponentially
hard and that quantum computers could overcome this dif-
ficulty. The DE is a central ingredient of these quantum
multiparticle systems in the relativistic regime. In order to per-
form simulations involving the DE, one starts by discretizing
it on a spacetime grid [2,3]. However, if one does so without
care, one breaks certain symmetries satisfied by the DE. Now,
discrete-time quantum walks (DQWs) are quantum transport
schemes in discrete spacetime that have been the subject of
much attention in the last 30 years, in particular, because of
their success as discretizations of the DE that preserve various
of its symmetries [4–6], also when coupled to the fundamental
force fields of nature [7–14]. There are two main such sym-
metries that DQWs preserve: The first is unitarity; the second,
which is actually rather a property, is relativistic locality, i.e.,
the group velocity in a vacuum cannot overcome the speed of
light. We call a DQW corresponding to a discretization of the
DE that exhibits the two aforementioned properties a Dirac
DQW.
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To our knowledge, no existing Dirac DQW has yet man-
aged to preserve the invariance of the DE upon changing the
Clifford-algebra representation. More precisely, the represen-
tation chosen when discretizing the DE with a Dirac DQW
is actually always the same, e.g., in 1 + 1 dimensions, the
first alpha matrix always equals the third Pauli matrix. If one
chooses initially a different representation, one will need a dif-
ferent discretization method. So, not only the structure of the
resulting discretization but also the method used to discretize
the equation depend on the Clifford-algebra representation,
which is strongly unsatisfying.

In this paper, we give a solution to this issue, by introducing
a Dirac-DQW-based discretization method of the DE that can
be carried out whatever the Clifford-algebra representation.
More precisely, we make possible the emergence of the Clif-
ford algebra out of the operators defining the Dirac DQW.
This is achieved by choosing such operators that are appro-
priate but still independent of any choice of basis; they only
need to satisfy the above-mentioned Clifford algebra. This
Clifford algebra is obtained, following Dirac’s own procedure
in continuous spacetime, by requiring that the Dirac DQW
squares a spacetime-discretized version of the Klein-Gordon
equation that we consider valid, i.e., it must not only deliver
the correct Klein-Gordon equation in the continuum limit but
also (i) be applicable to scalar state sequences at the discrete
level and (ii) satisfy an extra condition, namely, the vanishing
of the crossed term at the discrete level. We then show that
DQWs also contain, “naturally” (provided we make certain
appropriate choices), a Wilson term that allows fermion dou-
bling to be avoided, which is well known in lattice gauge
theory (LGT). Unitarity is maintained at each step of the
derivation, and this is the case for any choice r ∈ R of Wilson’s
parameter.

II. DISCRETE-TIME QUANTUM WALKS

A DQW is a unitary automaton with an ultralocal evolu-
tion operator. The system is called a walker, and its state at
time j ∈ N is given by a sequence � j : ( j, p) �→ � j,p de-
fined over a lattice with sites labeled by p ∈ Z; the lattice

2469-9926/2022/106(1)/012201(12) 012201-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2928-162X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.012201&domain=pdf&date_stamp=2022-07-05
https://doi.org/10.1103/PhysRevA.106.012201


PABLO ARNAULT PHYSICAL REVIEW A 106, 012201 (2022)

is considered one dimensional (1D) for simplicity. The dy-
namics of this system is called a walk, written � j+1 = U� j ,
where U is the unitary one-step evolution walk operator. That
U is ultralocal means, by definition, that the internal state
� j+1,p solely depends on internal states � j,p′ that belong to a
bounded spatial-lattice neighborhood around p. In the context
of automata, ultralocality of U is often implicit. In quantum
computation it is frequent that U is not ultralocal: This can
be either because we purposely apply, in discrete time, a
gate which is nonlocal [15] or because we are in continuous
time and evolve a system via a nearest-neighbors Hamiltonian
which yields approximate but not exact ultralocality via Lieb-
Robinson bounds [16].

To specify the nature of � j , it is useful to invoke Meyer’s
no-go result [5,17]: No nontrivial ultralocal unitary automaton
with a one-step evolution operator that is homogeneous in
space (i.e., translationally invariant) can have a scalar walker;
the minimum number of internal components for � j,p is thus
2. Hence we consider � j,p ∈ H2, a complex Hilbert space
of dimension 2. In a formal parallel with classical random
walks [18], in which a coin is tossed to determine the direction
taken by the walker, the internal state � j,p is called the coin
state, and H2 is called the coin space.

III. TRANSPORT COIN OPERATORS OF A DQW

Consider the DQW defined initially,

� j+1 = U� j . (1)

The one-step evolution operator U can be given under a mul-
tiplicative [19,20] or an additive form [5,6]. We here give U
under the generic additive form U := W−1T −1

1 + W1T1 + W0.
In this equation, (i) T1 is the translation operator by one
lattice site in the direction of growing p’s [that is, (T1�) j,p :=
� j,p−1], and (ii) the Wi’s, i = −1, 0, 1, are operators acting
solely on the coin space, which we call jump coin operators.
While one may view the Wi’s as 2 × 2 complex matrices,
viewing them abstractly is actually the purpose of this paper,
and we will not introduce any basis of H2. The translation op-
erator is by construction related to the momentum operator, K,
via T1 = e−iaK, where a ∈ R+,∗ will be identified further on
with the spatial-lattice spacing. In Appendix A, we derive the
constraints that the unitarity of U imposes on the Wi’s [5,6].

We define the following coin operators, which we call
transport coin operators:

B := W1 − W−1, (2a)

V := W1 + W−1, (2b)

M :=
∑

i=−1,0,1

Wi = V + W0. (2c)

In terms of these operators, U reads U = 1
2 (V − B)T −1

1 +
1
2 (V + B)T1 + M − V . In Appendix A, we translate on the
transport coin operators the constraints imposed on the jump
coin operators by the unitarity of U .

IV. LOCAL HAMILTONIAN OF A DQW

From the one-step dynamics � j+1 = U� j , one can con-
ceive a dynamics i(� j+1 − � j−1)/2 = H� j determined by

the Hermitian operator H := i
2 (U − U†), which is (ultra)local

since U is ultralocal, and that we call the local Hamiltonian of
the DQW. This dynamics is “two step,” meaning that while the
one-step dynamics takes as the initial condition � j=0, the two-
step one takes as the initial condition both � j=0 and � j=1. The
two-step dynamics is equivalent to the one-step one provided
that �1 = U�0. That the Hamiltonian H is (ultra)local is in
contrast with the case of the well-known effective Hamilto-
nian of the DQW. Note that both Hamiltonians are related by
a proportionality constant in Fourier space [21].

The operator H can be written in terms of the transport coin
operators as

H = H′
Q := A1(−iD1) + r

2
Q(−L) + εmA0, (3)

where m ∈ R+ and r ∈ R are two parameters that we force
to appear (we also force ε to appear in εm). In Eq. (3), we
have introduced the following: (i) operators acting on the
position space solely, D1 := 1

2 (T −1
1 − T1) and L := T −1

1 +
T1 − 2, and (ii) coin operators made out of the transport
coin operators, A1 := (B + B†)/2, Q := − i

r (V − V †)/2, and
A0 := i

εm (M − M†)/2. We have used the notation H = H′
Q

because we are going to consider both the case in which Q = 0
and the case in which Q �= 0.

V. DIRAC-CONTINUUM-LIMIT REQUIREMENT

The two-step dynamics can be written

i(D0�) j = H� j, (4)

where D0 := (T −1
0 − T0)/2, with T0 being the shift by one

lattice site forward in time, i.e., (T0�) j := � j−1. We wish that
the two-step dynamics deliver the (1 + 1)D DE in the contin-
uum limit. In order to take the continuum limit, we introduce
continuous time and space coordinates t and x, as well as
a function of these continuous coordinates, �(·, ·) : (t, x) �→
�(t, x), which is as smooth as wished and which coincides
at coordinates (t j := jε, xp := pa) with the “value” taken by
the coin state at point ( j, p), that is, �(t j, xp) := � j,p. We then
consider the ballistic scaling ε = a [22] and Taylor-expand the
two-step dynamics in time and space around the point (t j, xp),
at second order in ε.

For the continuum limit of the two-step dynamics, Eq. (4)
[divide Eq. (4) by ε and let ε → 0 after the Taylor ex-
pansion at second order], to coincide with the (1 + 1)D
DE, it is sufficient that the two following Dirac-continuum-
limit constraints be satisfied: A1 := B+B†

2 ∼
ε→0

α1 and εmA0 :=
i M−M†

2 ∼
ε→0

εmα0, where α1 and α0 must satisfy (α0)2 =
(α1)2 = 1 and α0α1 + α1α0 = 0, in order for them to corre-
spond to the well-known α operators of the DE.

Note that no continuum-limit constraint is imposed on Q
and thus neither is any imposed on V (apart from Q not scaling
as εδ with δ � −1, i.e., we must have δ > −1), because as
ε → 0, we have that L ∼ ε2∂2

x while D1 ∼ ε∂x, so that the
term r

2 Q(−L) in Eq. (3) vanishes in the continuum (again,
provided δ > −1); we call this term the Wilson Q term. The
Wilson Q term can be chosen to be nonvanishing, and the
scheme still delivers the DE. This observation will be useful
further on, but for now let us consider that Q = 0. At this

012201-2



CLIFFORD ALGEBRA FROM QUANTUM AUTOMATA AND … PHYSICAL REVIEW A 106, 012201 (2022)

point, one may be tempted to make the trivial choice V = 0
to obtain Q = 0, but this is unlikely to be possible due to
the unitarity constraints (see Appendix A). The constraint we
have in order to obtain Q = 0 is V = V †. We will see below
what choice we finally make for V .

VI. KLEIN-GORDON-SQUARE REQUIREMENT AND
CLIFFORD ALGEBRA FROM QUANTUM AUTOMATA

Squaring the equation iD0�| j = H′
Q=0� j delivers

D2
0�| j = −(H′

Q=0)2� j , with (H′
Q=0)2 = −(A1)2D2

1 +
(εm)2(A0)2 + εm[A0A1 + A1A0](−iD1). Thanks to the
Dirac-continuum-limit constraints, we obtain the correct
Klein-Gordon equation in the continuum limit (divide by ε2

and let ε → 0 after a Taylor expansion at second order).
Now, we wish that the discrete scheme obtained by squar-

ing Eq. (4) be a valid discretization of the Klein-Gordon
equation, and by “valid” we mean not only that it delivers
the correct continuum limit but also that it be applicable, at
the discrete level, to scalar state sequences (as is the case
in the continuum setting), and for this we need to impose
(A0) ∝ 1 and (A1)2 ∝ 1, i.e., not operator valued [23], as
well as A0A1 + A1A0 ∝ 1 or = 0. We choose to impose that
the A operators A0 and A1 satisfy A0A1 + A1A0 = 0, i.e., we
impose that the crossed term vanishes (which may be taken
as part of the definition of what we consider a valid discrete
Klein-Gordon scheme). To sum up, what we impose is that the
A operators satisfy the same algebra as that of the α operators
of the DE up to multiplicative factors; that is, we impose

(A0)2 ∝ 1, (5a)

(A1)2 ∝ 1, (5b)

A0A1 + A1A0 = 0. (5c)

We now have to find A operators which satisfy (i) this
algebra, (ii) the Dirac-continuum-limit constraints, and (iii)
the unitarity constraints. Can we find such operators? We are
going to see that the answer is “yes,” a result which is a priori
not trivial at all. The trivial choice A1 ∝ α1, more concretely,
B ∝ α1, is going to allow us to reach our purpose, so we make
this choice. What is untrivial is the proportionality constant,
as well as the choice of M (which determines A0). Indeed,
a standard choice for the mass term εmA0 in the literature
is e−iεmα0

, but this term together with A1 ∝ α1 means that
constraint (5c) is unsatisfied. The term that is going to allow
us to reach our purpose is a suggestion from both Feynman’s
original scheme [24] and Succi’s quantum lattice Boltzmann
schemes [25,26] (whereas e−iεmα0

is a suggestion from mul-
tiplicative constructions, here our construction is additive):
We choose M = με (1 − iεmα0), where με is a factor that
is imposed on us by one of the unitarity constraints (see
Appendix A), namely, M†M = 1, so that με := 1√

1+ε2m2 . This
με is also the proportionality factor evoked above: We choose
B := μεα

1. The algebra (5a)–(5c) is thus now satisfied, since
A0 = μεα

0 and A1 = μεα
1, and this algebra is equivalent to

the following Clifford algebra: {�μ, �ν} = 2η̃μν , where {·, ·}
is the anticommutator and where we have introduced the mod-
ified Minkowski metric η̃ := diag(1/μ2

ε ,−1), as well as the
� operators �0 := (A0)−1 = α0/με and �1 := (A0)−1A1 :=

α0α1 := γ 1. One can check that the other and last unitarity
constraint involving M but not V , namely, B†M = M†B, is
satisfied.

Let us recap how M is built: The “α0” in M is both for
the unitarity constraint B†M = M†B to be satisfied and so
that A0A1 + A1A0 = 0; the “εm” in front of the α0 is for
the continuum limit to be a good one; the “i” is because
A0 ∝ i(M − M†); and finally, the additional term “1” is for
the unitarity constraint M†M = 1 to be satisfied. Now, finally,
for the unitarity constraints on V to be satisfied, we can choose
V := με . With these choices for B, M, and V , our DQW with
Q = 0 is invariant under unitary transformations of the coin
state, in such a way that the algebra (5a)–(5c) is preserved, in
exact parallel with the continuum situation.

Note that the operators A0 and A1 depend on the mass,
while in the continuum limit none of the α operators do. Note
also that H′

Q=0 = με[α1(−iD1) + εmα0] (and (H′
Q=0)2 =

μ2
ε[−D2

1 + (εm)2]), with με �= 1 if εm �= 0 (although με → 1
as εm → 0), which is the price one has to pay to obtain
a unitary discretization while nevertheless discretizing the
transport term naively, by a symmetric finite difference D1.
Finally, let us mention the following: In Appendix A, we have
only written the unitarity constraints ensuing from U†U = 1,
but one can check that the unitarity constraints ensuing from
UU† = 1 are also satisfied with our choices for B, M, and V .

VII. TOWARDS AVOIDING FERMION DOUBLING
WITH THE WILSON Q TERM

Consider the two-step Hamiltonian of Eq. (3) for a nonva-
nishing Wilson Q term; it is convenient, in order to further
take a continuum limit, to rather consider the Hamiltonian
h := H/ε (from the continuum point of view, this is actu-
ally the correct Hamiltonian dimensionally). The reason we
have referred to the Wilson Q term that way is because its
spatial-operator part, −L, is that of the well-known Wilson
term of LGT, namely, (rε/2)α0(−L/ε2) [27], i.e., the same
as ours but with α0 instead of Q. In LGT, this term enables
one to avoid the so-called fermion doubling problem, which
appears when discretizing the DE naively; these facts are
recalled in Appendix B. It is remarkable that such a Wilson
term is naturally contained in the decomposition of a generic
DQW. What Q can we take in order for fermion doubling to
be avoided, while satisfying the unitarity constraints? Is this
even possible? We are going to see that the answer to the last
question is “yes,” a result that is a priori not trivial at all.

VIII. KLEIN-GORDON-SQUARE REQUIREMENT
WITH THE WILSON Q TERM

Assuming A0A1+A1A0 = 0, we have that h2=−(A1)2 D2
1

ε2 +
m2(A0)2 + r2

4ε2 Q2L2 + m r
2ε2 [QA0 + A0Q](−L) + r

2ε2 [QA1 +
A1Q](−L)(−iD1). Notice that the last three terms vanish in
the continuum limit, so that we recover the Klein-Gordon
equation. Now, the validity of the discrete Klein-Gordon
scheme, which we define, as before, as the possibility of
applying the scheme to scalar state sequences, can be obtained
if we require, in addition to the previous Clifford-algebra
requirement, Eqs. (5a)–(5c), that as ε → 0, (i) Q2 ∼ 1 and (ii)
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each of the two anticommutators involving Q either vanishes
or is proportional to the identity; these requirements suggest
that we use for the choice of V the same trick as was used for
the choice of M.

Hence we choose the ansatz V = νε (1 + iερrαλ), where
(i) αλ is an α operator satisfying the usual algebra of the α

operators of the DE, (ii) νε is a normalization factor to be
determined, and (iii) ρ is an exponent to be determined. Since
we are in one spatial dimension, λ should only take two pos-
sible values, λ = 0 and λ = 1 (since αλ has been defined as
an α operator of the DE and we are in one spatial dimension).
That being said, and we mention this since it is going to be
used further down, in general terms: Let us say that we are in
n spatial dimensions (so that λ can take values from 0 to n)
with a given representation of the Clifford algebra; then λ can
take an additional value n + 1 provided that in n + 1 spatial
dimensions one can still find a representation of the Clifford
algebra which has the same dimension as the representation
found in dimension n [28]. We know that this is precisely
the case when going from one spatial dimension to two: For
example, if α0 and α1 are represented by two Pauli matrices,
then we can choose an α2 that is represented by the last Pauli
matrix. Hence we consider that λ = 0, 1, or 2.

The unitarity constraint B†V = V †B requires λ �= 1, which
we assume, so that the anticommutator QA1 + A1Q vanishes.
We do not change our choice of M or its normalization fac-
tor (the latter enables us to satisfy M†M = 1). Now, both
λ = 0 and λ = 2 are compatible with the unitarity constraint
2V †V = V †M + M†V , which determines the following asso-
ciated normalization factors: νλ=0

ε := με
1−ε1+ρmr
1+(ερr)2 and νλ=2

ε :=
με

1+(ερr)2 . Finally, for the unitarity constraint V †V = B†B to be
satisfied, we need to change the normalization factor for B:
We choose B := ηλ

ε α
1, and ηλ

ε is determined by the constraint
just mentioned, yielding ηλ

ε := νλ
ε

√
1 + (ερr)2. All unitarity

constraints are now satisfied, including those coming from
UU† = 1. Now, since με goes to 1 in the continuum limit,
we see that for both νλ

ε and ηλ
ε to go to 1 in the continuum

limit, we must choose ρ > 0: This finally yields Q = νεε
ραλ,

which in the continuum limit goes as εραλ—that is, in the case
of λ = 0, as ερα0 and not as α0 as in standard LGT. We finally
have

hλ = ηλ
ε α

1

(−iD1

ε

)
+ μεmα0 + νλ

ε ερ r

2ε
(−L)αλ. (6)

We will keep working with both models λ = 0 and λ = 2 and
see whether one performs better than the other at avoiding
fermion doubling (avoidance which for now is not a given; we
are precisely going to explain further down at which condition
fermion doubling is avoided).

IX. AVOIDING FERMION DOUBLING

To find solutions of our two-step scheme, Eq. (4), we
consider a superposition-of-plane-waves ansatz (since the
solution of the DE, which we seek to simulate, has this form):
�(t, x) = 1

2πN

∑
i=+,−

∫ +∞
−∞ dk �̃i(0, k)e−i(ωi (k)t−kx), where

(t, x) = (t j, xp). Inserting the plane-wave ansatz into Eq. (4)
with h = H/ε given by Eq. (6) leads, after squaring, to a

dispersion relation

sin2[ωi(k)ε]

ε2
= F DQW,λ(k), (7)

where

F DQW,λ=0(k) := (
η0

ε

)2 sin2(kε)

ε2

+
[
μεm + ν0

ε ε
ρ r

ε
(1 − cos(kε))

]2

, (8a)

F DQW,λ=2(k) := (
η2

ε

)2 sin2(kε)

ε2
+ (μεm)2

+
[
ν2

ε ε
ρ r

ε
(1 − cos(kε))

]2

. (8b)

Now, discrete-time LGT is usually formulated in a
Lagrangian way [29,30], whereas we formulated our discrete-
time scheme in a Hamiltonian one. In Lagrangian LGT, a
term is naturally added to the action to remove the temporal
doublers along with the term added to remove the spatial
doublers. Here, this is not the case, and we only treat spatial
doublers. Considering a low-frequency limit, ωi(k) � 1, of
the dispersion relation finally leads to the solutions

ω
DQW,λ
± (k) = ±

√
F DQW,λ(k). (9)

Expressions (8a) and (8b) are to be compared with the disper-
sion relation of standard LGT,

F LGT(k) := sin2(kε)

ε2
+

[
m + r

ε
(1 − cos(kε))

]2

. (10)

The difference between F DQW,λ=0(k) and F DQW,λ=2(k) is,
apart from the normalization factors νλ

ε and ηλ
ε , the crossed

term of the square of the sum in F DQW,λ=0(k). In standard
LGT, this crossed term is also present. Since the upcoming
discussion is the same whether there is a crossed term or not,
let us forget about the latter for now; we will come back to
it later. Here comes the discussion. In standard LGT, what
allows fermion doubling to be avoided is that the function
1 − cos(kε) raises the value of the dispersion relation at the
edges of the Brillouin zone, i.e., at ±π/ε. More precisely,
if the amplitude by which this dispersion relation is raised,
which we call the raising amplitude, does not go to zero
with ε, then for sure fermion doubling is avoided, and this is
indeed the case in standard LGT since the associated raising
amplitude is (r/ε)2; see Eq. (10). In our model, the raising
amplitude is (νλ

ε rερ−1)2; see Eqs. (8a) and (8b). Since νλ
ε goes

to 1 in the continuum limit, we are fine as long as

ρ < 1; (11)

that is, this condition ensures that fermion doubling is
avoided, both for λ = 0 and λ = 2.

X. INITIAL SLOPES

The limit to the continuum is obtained by letting ε go to
zero. Let us consider the gapless frequencies

f M(k) :=
√

[ωM± (k)]2 − MM =
√

F M(k) − MM, (12)
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where “M” is the considered model and takes for now the “val-
ues” M = (DQW, λ = 0) or M = (DQW, λ = 2) and where
MM is the central (k = 0) gap of the model. Let us consider
the Taylor expansion of the dispersion relations ( f M(k))2 at
next-to-lowest order in ε. A priori, the two Taylor-expanded
dispersion relations (one for λ = 0 and one for λ = 2) are
different: More precisely, there are a priori more terms in the
case of λ = 0, namely, the crossed terms. Now, it turns out
that these additional terms actually cancel each other, at least
at next-to-lowest order in ε, so that both the model λ = 0 and
the model λ = 2 have, at next-to-lowest order in ε, the same
Taylor expansion in ε, namely,

( f DQW,λ=0(k))2 
 ( f DQW,λ=2(k))2 

(

1 − 1

2
r2ε2ρ

)
k2. (13)

Actually, even if these above-mentioned additional terms had
not canceled each other, they would be of higher order because
ρ < 1, so both model λ = 0 and model λ = 2 would still have
the same small-ε expansion; we leave the verification of this
observation to the reader. Moreover, the criterion ρ < 1 for
the avoidance of fermion doubling in our model is the same
whether there is a crossed term or not. Hence we consider
both model λ = 0 and model λ = 2 equivalently good for our
task of avoiding fermion doubling and converging as fast as
possible to the continuum limit. We choose λ = 0, in order
for comparisons to LGT to be simpler, and from now on
we call this model M = DQW. At this point the reader may
wonder why we have kept the discussion about λ = 0 and
λ = 2 if in the end we consider both models equivalently
good and choose, e.g., λ = 0: Apart from a mere informative
reason, this discussion is going to be useful just below in the
next paragraph, to understand the role of the crossed term
in the LGT model at small ε, and the subsequent interest of
getting rid of this crossed term by choosing λ = 2 in this
LGT model.

We call the factor in front of k2 in Eq. (13) the (squared)
initial slope of the model. In standard LGT, the lowest-order
modification of the initial slope comes, this time, from the
crossed term (this is detailed in Appendix B): At next-to-
lowest order in ε we have that

( f LGT(k))2 
 (1 + εmr)k2. (14)

Hence, for the initial slope of our model to converge faster to
the continuum limit than that of the LGT model, we need to
choose

ρ > 0.5. (15)

In the end, we have, in addition to in-built unitarity, a model
that performs better at reaching the continuum limit than that
of LGT if we choose ρ ∈ ]0.5, 1[. That being said, if we
choose in the LGT model λ = 2, then the initial slope is ex-
actly that of the continuum, that is, 1 (we leave the verification
of this to the reader), and in that case the LGT model performs
better than ours at reaching the continuum limit, whatever
value we choose for ρ.

FIG. 1. Gapless frequency f M(k) of model “M”, for
“M” = “Dirac” (blue, solid curve), “naive” (gold, dashed
curve), “LGT” (green, dotted curve), and “DQW” (red,
dot-dashed curve), where f Dirac(k) = |k|, f naive(k) = | sin(kε)|

ε
,

f LGT(k) =
√

sin2 (kε)
ε2 + [m + r

ε
(1 − cos(kε))]

2 − m2, and f DQW(k) =√
(η0

ε )2 sin2(kε)
ε2 + [μεm + ν0

ε ε
ρ r

ε
(1 − cos(kε))]

2− (μεm)2, for ε= 0.1,
m = 1, r = 1 (Wilson’s choice), and ρ = 0.6.

XI. GAPLESS FREQUENCIES OF
THE DIFFERENT MODELS

In Fig. 1, we plot the gapless frequencies defined above in
Eq. (12), where this time the model M takes the “values” M =
Dirac, naive, LGT, DQW. We see that the naive discretization
of the DE leads to two extra poles in the gapless frequency
(gold curve), which causes the fermion doubling problem (see
Appendix B), while the LGT (green curve) and DQW (red
curve) models avoid it by creating gaps at the edges. In-built
unitarity for any r ∈ R is an important advantage of our model
with respect to LGT.

Take a closer look at the initial slopes (i.e., around k = 0).
One can appreciate, though weakly, the fact that the initial
slope of the DQW (LGT) model is a bit smaller (bigger)—see
Eq. (13) [Eq. (14)]—than that of Dirac fermions (although
the two former slopes obviously converge to the latter in the
continuum limit, i.e., for ε going to 0). We could have made
this fact more visible in Fig. 1; however, if we had done so, the
curves would not have given the impression (which is anyway
of course a truth, as shown above) that in the continuum
limit one does get the correct initial slope, while in Fig. 1 as
presented this impression is given.

Let us make a final remark. In Fig. 1, we have chosen
r = 1 because it is a standard choice. That being said, let
us mention that for r = 1 the discrete-time LGT model of
Wilson fermions (which is a Lagrangian model) can actually
be proven to be unitary. This proof does, however, not hold
for r �= 1 [30], while our model has in-built unitarity for any
r. Pay attention that if we choose, for r = 1, λ = 2 in the
discrete-time LGT model, unitarity would again have to be
proven, and it may actually not hold.

XII. CONCLUSION

We showed that a Clifford algebra emerges out of the
internal-state operators defining a quantum-automaton dis-
cretization of the Dirac equation. This discretization, which
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is a DQW, is unitary by construction, while discrete-time
versions of lattice gauge theory are usually Lagrangian so that
unitarity is not in-built. Our DQW is invariant under repre-
sentation changes of the above-mentioned Clifford algebra,
which parallels exactly the continuum situation. Moreover,
we show that DQWs naturally contain a Wilson term that
allows spatial fermion doubling to be avoided, and this is the
case without breaking unitarity and for any choice r ∈ R of
Wilson’s parameter.

The (3 + 1)D extension of the present work should be
investigated. Let us give some guidelines on this matter. The
reader can check that the present DQW, Eq. (1)—with the
operators finally chosen for W−1, W0, and W1—can almost be
seen as a generalization, for an arbitrary representation of the
Clifford algebra, of the automaton presented in Refs. [6,31].
Hence one could look for (3 + 1)D generalizations of the
automaton presented in Ref. [6]: Such a generalization is
presented in Refs. [32,33]. One question would then be, Can
we go from the (3 + 1)D DQW of Refs. [32,33] to a gener-
alization for an arbitrary Clifford algebra, exactly as we go
from the (1 + 1)D DQW of Ref. [6] to the generalization
presented in this paper? The idea just suggested here is to
look for (3 + 1)D schemes which are additive [32,33], rather
than multiplicative [8,34]. That being said, maybe combining
(1 + 1)D additive schemes (one such scheme for each spatial
dimension) in a multiplicative way can (also?) do the job.

Regarding the coupling to gauge fields, the author of this
paper is carrying out work on this matter, based on Ref. [35]:
It appears that a natural gauging (i.e., via the procedure de-
scribed in Ref. [35]) of the one-step scheme, Eq. (1), is not
fully equivalent to a natural gauging (i.e., via the procedure
standardly followed in LGT, which actually seems to be the
same as that of Ref. [35]) of the two-step scheme, so some
care is in order regarding this matter. In other words, gauging
a one-step scheme is not fully equivalent to gauging a two-step
scheme.
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APPENDIX A: UNITARITY CONSTRAINTS

In this Appendix, we translate, on the transport coin op-
erators B, V , and M, the unitarity constraints imposed on the
jump coin operators Wi, i = −1, 0, 1, by the unitarity of the
one-step evolution operator U .

We impose the unitarity of U , that is, U†U = 1. A couple
of computation lines lead to the following conditions on the

jump coin operators Wi, i = −1, 0, 1, which we call unitarity
constraints on the jump coin operators:

W †
−1W−1 + W †

1 W1 + W †
0 W0 = 1, (A1a)

W †
−1W0 + W †

0 W1 = 0, (A1b)

W †
−1W1 = 0. (A1c)

Let us translate these constraints on the transport coin op-
erators B, V , and M. We start with constraint (A1c), which is
the simplest to translate in the sense that it does not involve M
while both constraints (A1a) and (A1b) do. Constraint (A1c)
yields

0 = (V † − B†)(V + B) (A2a)

= V †V − B†B − B†V + V †B. (A2b)

Computing the sum and the difference, (A2b)†+
and (A2b)†−(A2b), yields

V †V = B†B,

B†V = V †B,

(A3a)
(A3b)

respectively. Conversely, it is trivial to check that these two
constraints imply constraint (A1c).

We now proceed with translating constraint (A1b), because
we will use one of the two resulting constraints to translate
constraint (A1a). Constraint (A1b) yields

0 = (V † − B†)(M − V ) + (M† − V †)(V + B) (A4a)

= V †M − B†M − V †V + B†V + M†V − V †V

+ M†B − V †B. (A4b)

Computing the sum and the difference, (A4b)†+(A4b)
and (A4b)†−(A4b), and using Eq. (A3b) in the difference,
yields

2V †V = V †M + M†V,

B†M = M†B,

(A5a)
(A5b)

respectively. Conversely, it is trivial to check that these
two constraints together with constraint (A3b) imply con-
straint (A1b).

We finally proceed with translating constraint (A1a), which
can be written

4 = (V † − B†)(V − B) + (V † + B†)(V + B) + 4W †
0 W0

(A6a)

= V †V + B†B − B†V − V †B + V †V + B†B + B†V

+V †B + 4W †
0 W0. (A6b)

Inserting both constraint (A3a) and constraint (A3b) into the
preceding one, constraint (A6b), delivers

1 = V †V + W †
0 W0 (A7a)

= V †V + (M† − V †)(M − V ) (A7b)

= 2V †V + M†M − M†V − V †M. (A7c)

Finally, inserting constraint (A5a) into the preceding one,
constraint (A7c), results in

M†M = 1. (A8)
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APPENDIX B: FERMION DOUBLING AND WILSON
FERMIONS IN CONTINUOUS AND DISCRETE TIME

In this Appendix, we explain the fermion doubling problem
of lattice gauge theory and present Wilson’s method to solve
it, with so-called Wilson fermions.

1. The Schrödinger equation for translationally
invariant systems

a. The generic Schrödinger equation and its spectral solution

The generic Schrödinger equation is a partial differential
equation (PDE) of the form

i∂0�|t = h�(t ), (B1)

where h is a Hermitian linear operator acting on the function
�(t ) : x �→ �(t, x), where here we choose x ∈ R. Since this
equation is linear, we solve it spectrally, i.e., by finding the
eigenelements (ωσ ,�σ )σ∈� of h, where � is a certain index-
ing space; by definition, these eigenelements satisfy

h�σ = ωσ�σ , (B2)

where the eigenvalues ωσ are real since h is Hermitian.
The method is the following. Assume we have determined

the eigenelements of h. Since �(t ) belongs to a Hilbert space,
we can decompose it on the eigenbasis (�σ )σ∈� at an arbitrary
time t :

�(t ) =
∑
σ∈�

Cσ (t )�σ , (B3)

where the Cσ (t )’s are the coefficients of �(t ) on the eigenba-
sis. Now, using Eq. (B2), the generic Schrödinger equation on
�, Eq. (B1), which is a PDE, can be translated into a family
of ordinary differential equations (ODEs)–indexed by σ—for
the coefficients Cσ , that is,

i∂0Cσ |t = ωσCσ (t ), (B4)

whose solution is well known:

Cσ (t ) = Cσ (0)e−iωσ t . (B5)

Hence the solution sought is

�(t ) =
∑
σ∈�

Cσ (0)e−iωσ t�σ . (B6)

Because they intervene in the periodic functions t �→ e−iωσ t ,
the ωσ are called frequencies; more precisely, they are the
eigenfrequencies of h. To be more definite, one should ac-
tually use the denomination “angular frequency” rather than
“frequency.”

b. Fourier analysis

We will use the more definite notation �(t, ·) for �(t )
when needed. Let us take the Fourier transform of �(t, ·) at a
given time t :

�̃(t, k) := 1√
2π

∫
R

dx �(t, x)e−ikx. (B7)

Inverting this equation, we obtain the decomposition of �(t )
into its Fourier components:

�(t, x) = 1√
2π

∫
R

dk �̃(t, k)eikx. (B8)

To be precise, the function x �→ �̃(t, k)eikx is the Fourier
component of �(t, ·) associated with the value k of the Fourier
variable, and �̃(t, k) is the Fourier coefficient, or Fourier
amplitude of �(t, ·) associated with the value k. Because x is
a spatial position, the Fourier variable k is a spatial frequency;
again, as in the case of ωσ above, to be more definite, one
should use the denomination “angular pulsation” rather than
“frequency.”

c. Case of translationally invariant systems

If h does not depend on the point x, i.e., if h is transla-
tionally invariant, then one can check by considering Eq. (B1)
for expression (B8) that each Fourier coefficient satisfies the
equation

i∂0�̃(·, k)|t = h̃(k)�̃(t, k), (B9)

where h̃(k) is the expression obtained when replacing, in h,
the operator −i∂1 by the real number k.

Hence, if h does not depend on the point x, each Fourier
coefficient evolves independently of the others, while this is
not the case if h does depend on x. Moreover, the “Schrödinger
equation in Fourier space,” Eq. (B9), is simpler to solve than
the original Schrödinger equation, (B1), because the operator
−i∂1 has been replaced by a real number k, so that Eq. (B9)
is not a PDE, like the original Schrödinger equation, but a
family of ODEs indexed by k. Let us now make the link
with Appendix B 1a: One can actually mathematically show
(via, e.g., “mere” constructive proofs) for a large class of
operators h, that there exists an indexing space � such that
k is one of the indices, i.e., k ∈ σ [36]. In the language of
quantum mechanics, an index i ∈ σ is referred to as a good
quantum number; it is an eigenvalue of an operator whose
diagonalization serves as a partial diagonalization of h, i.e.,
h is codiagonalizable with that operator.

We often speak of Fourier modes for the Fourier compo-
nents: The term “mode” refers, in its most general acceptation,
to one of the terms of a particularly relevant decomposition of
an object; take, e.g., the Fourier decomposition of a function.
In the case of an x-independent h, the Fourier modes are
actually proper modes, because by considering the Fourier
version h̃(k) of h we have (at least partially) “diagonalized”
h (which is summed up by writing k ∈ σ ).

2. The solution of the Schrödinger equation for translationally
invariant systems: A superposition of plane waves

a. No internal structure for �(t, x)

i. Final solution. If �(t, x) has no internal structure, i.e.,
if �(t, x) ∈ C, then we simply have that k = σ , and the
eigenvalues are ωσ = ω(k) := h̃(k) ∈ R; the sum over σ in
Eq. (B6) is an integral over k, and the eigenbasis is the fol-
lowing family of functions of x: (�(·, k))k∈R, with

�(x, k) := eikx

√
2π

. (B10)
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Therefore the solution given in Eq. (B6) here reads

�(t, x) = 1√
2π

∫
R

dk C(0, k) e−i(ω(k)t−kx). (B11)

By taking t = 0 in this equation we realize by identification
(they are unique) that the C(0, k) are the Fourier coefficients
of x �→ �(0, x), i.e.,

C(0, k) ≡ �̃(0, k). (B12)

The value ω(k) is the eigenfrequency associated with the
spatial frequency k. Now, an important remark is that �(t, ·)
is actually a superposition of plane waves, with weights being
the Fourier coefficients of the initial condition. Because of
this (plane-)wave structure, the spatial frequency k is called a
wave vector [37]. The fact that the frequency of the wave ω(k)
depends on the wave vector k is called dispersion, and the
expression ω(k) is called the dispersion relation. Notice that
the fact that we have a dispersion phenomenon while we are
in a vacuum is specific to quantum mechanics, more precisely,
to the quantum mechanics of massive bodies.

In quantum mechanics, the use of the word “wave vector”
is actually extended to non-translationally-invariant systems,
because this wave vector is, due to the wave-particle duality,
in one-to-one correspondence with the momentum of the free
particle associated with the wave in question, the solution
of a free (i.e., with x-independent h) Schrödinger equation:
More precisely, k is the de Broglie wave vector of a particle
of momentum p = k (with h̄ = 1). There is also an analog
relation for the eigenfrequencies, referred to as Einstein’s
relation: The frequency ωσ is the frequency associated with
an energy Eσ = ωσ (with h̄ = 1) for the particle in question.

ii. Final solution rederived by focusing on the linear alge-
braic structure. One has the opportunity to rederive the above
solution, Eq. (B11), by focusing on the linear algebraic struc-
ture of the computations. This will make gentler the above
replacement of σ by k. We first rewrite Eq. (B6) with a bra-ket
notation, which emphasizes the linear algebraic structure,

|�(t )〉 =
∑
σ∈�

〈�σ |�(0)〉︸ ︷︷ ︸
≡Cσ (0)

e−iωσ t |�σ 〉 . (B13)

By taking t = 0 in this equation, we see that we have simply
applied the closure relation

∑
σ∈� |�σ 〉〈�σ | to |�(0)〉 and

then evolved the eigenstates up to time t . We then consider
the present case σ = k, so that �σ = �(·, k), which means
that the eigenbasis is the basis made up of the |k〉 := |�(·, k)〉
with k ∈ R,

|�(t )〉 =
∫
R

dk 〈k|�(0)〉︸ ︷︷ ︸
≡ �̃(0,k)

e−iωσ t |k〉 . (B14)

We then apply the bra 〈x| to have the value at point x,

〈x|�(t )〉 =
∫
R

dk �̃(0, k)e−iωσ t 〈x|�(·, k)〉, (B15)

which is, using Eq. (B10), exactly Eq. (B11),

�(t, x) = 1√
2π

∫
R

dk �̃(0, k)e−i(ω(k)t−kx). (B16)

b. Internal structure for �(t, x)

Now, if �(t, x) has an internal structure, then k � σ [38],
and h̃(k) can be seen as a matrix indexed by k, which one
has to diagonalize to finally find the eigenvalues of h. The
eigenvalues of h̃(k) can be denoted ωσ = ωi(k), where i =
1, . . . , d , with d being the dimension of the matrix h̃(k) [some
eigenvalues may be equal, e.g., ωia (k) = ωib (k)]. The final
solution is then

�(t, x) =
d∑

i=1

1√
2πN

∫
R

dk �̃i(0, k)e−i(ωi (k)t−kx), (B17)

where N is a normalization factor, needed if we want the
eigenvectors �̃i(0, ·) of h̃(k) to be normalized. We see that
the solution is still a superposition of plane waves, and there
are d dispersion relations ωi(k), i = 1, . . . , d .

3. Dirac fermions (continuous spacetime)

The Dirac Hamiltonian in 1 + 1 dimensions is

ĥDirac := α1k̂ + mα0, (B18)

where k̂ is the momentum operator, i.e., the abstract ver-
sion of the operator −i∂1, and the alpha matrices satisfy
(α0)2 = (α1)2 = 1 and α0α1 + α1α0 = 0. We see that ĥDirac

is Hermitian, and so it is a valid Hamiltonian for the generic
Schrödinger equation considered in Appendixes B 1 and B 2
above. Moreover, it is translationally invariant.

We consider the “Hamiltonian in momentum space,”

h̃Dirac(k) := α1k + mα0. (B19)

The eigenvalue equation with unknowns being the eigenele-
ments (ωi(k),Vi(k))i=1,...,d;k∈R of h̃Dirac(k) is, in matrix
notation,

h̃Dirac(k)Vi(k) = ωi(k)Vi(k). (B20)

Now, to find the eigenvalues of h̃Dirac(k), there is actually
a “trick,” related to the fact that the square of the Dirac
equation is, by (historical) construction of the Dirac equation,
the Klein-Gordon equation and hence applicable to scalar
state functions: The square (h̃Dirac(k))2 is proportional to the
identity matrix. By squaring Eq. (B20), we arrive at

ω(k)2 = k2 + m2, (B21)

so that the eigenvalues are

ωDirac
± (k) := ±√

k2 + m2. (B22)

4. The doubling problem when discretizing space but keeping
time continuous: Spatial doublers

To discretize space, we can simply perform the naive re-
placement of the partial derivative ∂1 by a finite difference on
a 1D lattice that we introduce, with sites labeled by p ∈ Z and
lattice spacing a. The finite difference has to be symmetric
if we want the resulting Hamiltonian to be Hermitian. Since
the translation operator in the direction of growing p’s is, in
abstract space, T̂ = e−ik̂a [39], the substitution of ∂1 = iK,
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FIG. 2. Illustration of the fermion doubling problem in discrete
space but continuous time. The lattice dispersion relation under the
form fnaive(k) (in gold) has three poles, −π/a, 0, and π/a, whereas
there is a single one, 0, for the continuum dispersion relation (in
blue), so that for each target value φ0 of the gapless frequency, we
have two extra momentum solutions on the lattice with respect to the
continuum situation.

where K := −i∂x, by the announced symmetric finite differ-
ence,

D1 := 1
2 (T −1

1 − T1), (B23)

corresponds to the following substitution in the “Dirac Hamil-
tonian in momentum space” h̃Dirac, as well as in the dispersion
relation, Eq. (B22):

k → (−i)
eika − e−ika

2a
= sin(ka)

a
. (B24)

To explain the doubling problem, it is customary to con-
sider the following function of k:

f naive(k) :=
√

[ωnaive± (k)]2 − m2 ≡
∣∣∣∣ sin(ka)

a

∣∣∣∣, (B25)

to be compared with

f Dirac(k) :=
√

[ωDirac± (k)]2 − m2 ≡ |k|. (B26)

Notice first that the spatial discretization implies that now
k ∈ [−π/a, π/a). Second, notice that we of course recover
the continuum situation for ka � 1, because sin(ka) = ka +
O((ka)3). We call the function f M(k) the gapless frequency of
model M.

In Fig. 2, we plot both f Dirac(k) and f naive(k) over the
Brillouin zone [−π/a, π/a). The doubling problem is the

following. For a given target value φ0 :=
√

ω2
0 + m2 of the

gapless frequency, there are, in the naive discretization, not
two possibilities for the momentum as in the continuum sit-
uation, k0 and −k0 such that f Dirac(k0) = ω0, i.e., k0 = ω0,
but four solutions, two corresponding to the low-momentum
modes that we seek to simulate with the discretization, which
have k′

0 
 k0 and −k′
0 such that f naive(k′

0) = φ0, and two
additional, high-momentum modes, namely, π/a − k′

0 and
−(π/a − k′

0), so that frequencies and momenta are not in one-
to-one correspondence anymore. In a noninteracting model,
i.e., if h does not depend on x, this is actually not a problem

because the Fourier modes are independent of each other, and
so the one-to-one correspondence between frequency and mo-
mentum can be tracked, e.g., fundamentally, as time evolves.
More precisely and concretely, in a noninteracting model, the
momentum distribution is unchanged by the dynamics; that
is, in other words, the states of fixed momentum are station-
ary states. In an interacting model, the Fourier modes will
not evolve independently of each other, and the interaction
term will cause the production of high-momentum modes
from low-momentum ones—because of the two extra poles
of f naive(k) with respect to f Dirac(k)—which can be proved
rigorously in, e.g., perturbative studies of interacting models
having as zeroth order f naive(k) [29,40].

As a conclusion, in discrete space (but keeping time con-
tinuous), we will have extra, spurious modes when looking for
superpositions of plane waves as Eq. (B17) for the solutions.
These spurious modes are called spatial doublers, where the
specification “spatial” is due to the fact that what is spurious in
these modes is the spatial part (high momenta, not compatible
with a continuum description, even if the temporal part is—
i.e., low frequencies).

5. The doubling problem in discrete spacetime: Temporal
doublers in addition to the spatial doublers

We start from the discrete-space-but-continuous-time situ-
ation described just above in Appendix B 4, that is,

i∂0�(·, x)|t = hnaive�(t, ·)|x. (B27)

As we did for space in Appendix B 4, we discretize time
naively, with a symmetric finite difference, in order to treat
time on the same footing as space (for which we have indeed
used a symmetric finite difference), which yields (replacing
hnaive by its expression)

i

2ε
(�(t + ε) − �(t − ε))

=
[−i

2a
(eiKa − e−iKa)α1 + mα0

]
�(t, ·)|x. (B28)

Notice right away that this scheme takes two initial conditions,
exactly like the two-step scheme we present in this paper;
the only difference compared with the two-step scheme we
present is that in the latter there is a factor μ(ε) in front of
mα0, but this is enough to make that scheme unitary, while the
present, naive one, is not [41]. We consider an ansatz which is
a superposition of plane waves with internal components; that
is, we look for solutions of the form of Eq. (B17). If we insert
Eq. (B17) into Eq. (B28), we obtain after a few computation
lines the following equation in momentum space:

sin[ωi(k)ε]

ε
�̃i(0, k) =

[
sin(ka)

a
α1 + mα0

]
�̃i(0, k). (B29)

This equation, squared, and choosing the ballistic scaling ε =
a, finally yields the following dispersion relation:

sin2[ωi(k)ε] = sin2(kε) + ε2m2. (B30)

First of all, notice that for low frequencies ωi(k)ε � 1
in Eq. (B30), we recover the discrete-space-but-continuous-
time situation, with gapless frequency given by Eq. (B25) in
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FIG. 3. Gapless frequency f M(k) of model “M” (left panel) and absolute difference f M(k) − f Dirac(k) (right panel), for “M” = “Dirac”
(blue, solid curve), “naive” (gold, dashed curve), “LGT” (green, dotted curve), and “LGT noncrossed” (purple, dot-dashed curve), where

f Dirac(k) = |k|, f naive(k) = | sin(ka)|
a , f LGT(k) =

√
sin2(ka)

a2 + [m + r
a (1 − cos(ka))]

2 − m2, and f LGT noncrossed(k) =
√

sin2 (ka)
a2 + r2

a2 (1 − cos(ka))2,
for a = 1, m = 0.1, and r = 1 (Wilson’s choice).

Appendix B 4. Now, there are solutions ωi(k) to Eq. (B30) if
and only if | sin2(kε) + ε2m2| � 1, which leads to

ε2m2 � cos2(kε). (B31)

Replacing in the dispersion relation, Eq. (B30), sin2(A) by
(1 − cos(2A))/2, we obtain the two following solutions:

ω
temporal
± (k) := ±2

ε
arccos[1 − 2 sin2(kε) − 2ε2m2]. (B32)

For small enough k and m, i.e., kε � 1 and εm � 1, we have
that |ωtemporal

± (k)ε| < π/2, and actually that |ωtemporal
± (k)ε| �

1, and these two solutions approach the low frequencies
ωDirac

± (k) of the continuum model.
Now, in addition to these two solutions, Eq. (B32), we also

have the solutions

�
temporal
± (k) := ±

[
π

ε
− ω

temporal
± (k)

]
, (B33)

which are high-frequency solutions when |ωtemporal
± (k)ε| <

π/2. These two extra solutions are spurious because they are
not compatible with a continuum description, but they will in-
tervene in the dynamics in interacting models, and the modes
associated with these solutions are called temporal doublers.
As we have seen, these temporal doublers arise even for low
momenta [42] (the only ones compatible with a continuum
description), and this is best seen as follows. Consider low
momenta in Eq. (B30); this yields, replacing k by the notation
κ (w) and replacing ωi(k) by the variable w,

gnaive(w) :=
√

κ (w)2 + m2 =
∣∣∣∣ sin2(wε)

ε

∣∣∣∣, (B34)

an expression which, apart from the fact that there is a +m2

instead of a −m2, corresponds exactly to the expression of
the gapless frequency, Eq. (B25), but having exchanged in it
the roles of ω(k) and k, i.e., replaced the latter by κ (w) and
w, respectively, so that one can derive the same explanations
for the temporal doublers as for the spatial doublers. Notice

that, in this low-momentum context, the condition (B31) for a
solution ωi(k) to exist is

ε2m2 � 1 − 1
2 (kε)2. (B35)

6. Removing the doublers with Wilson fermions

a. We limit ourselves to spatial doublers

In Appendix B 5, we have illustrated the problem of tem-
poral doublers starting from a continuous-time description.
A framework which is more appropriate to further remove
temporal doublers is that of Lagrangian LGT, which starts
from a Lagrangian continuum description rather than a Hamil-
tonian one. This leads to a modification of the action rather
than the Hamiltonian to solve the problem of fermion dou-
bling, with a Wilson term, and this procedure removes the
spatial doublers as well as the the temporal ones for Wilson’s

FIG. 4. The blue, solid curve shows ( f Dirac(k))2, the gold, dashed
curve shows ( f naive(k))2, the black, dotted curve shows the non-
crossed term gnoncrossed(k), and the brown, dot-dashed curve shows
the crossed term gcrossed(k). We see that the biggest contribution to
the fixing of the fermion doubling comes from the noncrossed term
(with respect to the crossed term). That being said, any of the two
terms is actually sufficient on its own to fix the doubling problem.
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choice, r = 1 [30]. Here, however, we will stick to a Hamil-
tonian formulation and treat only spatial doublers. This is
because in this paper the scheme is formulated in a Hamil-

tonian way. To treat temporal doublers in the two-step scheme
of this paper, one would have to modify the original, DQW
scheme.

b. Treatment of spatial doublers in the naive continuous-time scheme, via Wilson fermions

In order to treat the problem of spatial doublers in continuous time, described in Appendix B 4, we consider the following
Hamiltonian [27]:

hLGT := hnaive + hSchrö., (B36)

where

hnaive := α1

(
−i

D1

a

)
+ mα0 (B37)

is the naive-discretization Hamiltonian considered in Appendix B 4 and

hSchrö. := α0 r

a
(−L) (B38)

is the Wilson term, whose spatial operator, L/a, is a discrete Laplacian [43],

L = T −1
1 + T1 − 2. (B39)

Let us notice that the Laplacian is the spatial operator that intervenes in the nonrelativistic Schrödinger equation, hence the
superscript “Schrö.”.

The dispersion relation is now, plotted under the form of a gapless frequency,

f LGT(k) :=
√

(ωLGT± )2 − m2 =
√

sin2(ka)

a2
+

[
m + r

a
(1 − cos(ka))

]2
− m2. (B40)

In the left panel of Fig. 3, we see that the doubling problem is fixed with this expression, since there are no more poles at −π/a
and π/a. To develop explanations, it is practical to consider the square of the previous expression,

( f LGT(k))2 = gnaive(k) + gnoncrossed(k) + gcrossed(k), (B41)

where

gnaive(k) := sin2(ka)

a2
= ( f naive(k))2, (B42a)

gnoncrossed(k) := r2

a2
(1 − cos(ka))2, (B42b)

gcrossed(k) := 2m
r

a
(1 − cos(ka)). (B42c)

Let us develop this expression, Eq. (B41), at next-to-next-to-lowest order in a,

( f LGT(k))2 = (1 + amr)k2 +
(

1

4
a2r2 − 2

3!
a2

)
k4. (B43)

In Fig. 4, we see that the biggest contribution in fixing the doubling problem comes from the noncrossed term; this is actually
also visible in the left panel of Fig. 3. That being said, any of the two terms is actually sufficient on its own to fix the doubling
problem. Moreover, we see in Eq. (B43) that the crossed term unfortunately adds a first-order correction (in the lattice spacing)
to the initial slope, that is, the latter becomes 1 + amr instead of 1, which is visible in the right panel of Fig. 3. Now, one can
actually make this crossed term disappear, by choosing in the Wilson term hSchrö., Eq. (B38), the operator α2 instead of α0. While
in continuous time this has no impact on the unitarity of the scheme, it will a priori have an impact in discrete time [30], so this
replacement cannot be made carelessly.
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