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High-precision solution of the Dirac equation for the hydrogen molecular ion by an iterative method
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The Dirac equation for H2
+ is solved numerically using an iterative method proposed by Kutzelnigg

[Z. Phys. D 11, 15 (1989)]. The four-component wave function is expanded in a newly introduced kinetically
balanced exponential basis set. The ground-state relativistic energy is obtained with an accuracy of 10−20, which
represents an improvement by several orders of magnitude, and is shown to be in good agreement with results
obtained from perturbation theory. Highly accurate relativistic wave functions are obtained, which is a first step
towards nonperturbative calculations of the one-loop self-energy correction in hydrogen molecular ions.
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The determination of quantum states of an electron in the
field of two charged nuclei is one of the most fundamental
problems of quantum chemistry. At the nonrelativistic level,
the two-center Schrödinger equation has been known for a
long time to lend itself to a separation of variables using
spheroidal (elliptic) coordinates, and can be solved with es-
sentially arbitrary accuracy (see, e.g., Refs. [1,2]). However,
the relativistic Dirac equation in a two-center potential [3]
poses more serious difficulties. For example, the best accu-
racy reported so far for the ground-state energy of the H2

+
molecular ion is about 10−13 [4,5].

Interest in this problem has been fueled by the perspective
of testing molecular QED effects in the strong-field regime
through collisions between highly charged ions, which are
planned to be studied in new-generation experiments at future
heavy-ion research facilities [6,7]. Of special interest is the
phenomenon of spontaneous positron emission predicted to
occur when the total charge of the nuclei is larger than the
critical value Zcr ≈ 173 [8], experimental signatures of which
are being actively sought [9].

Another field of applications has recently emerged in
connection with the precision spectroscopy of hydrogen
molecular ions. Three rovibrational transitions in HD+ have
been measured with relative uncertainties in the 10−11–10−12

range [10–12], approaching or exceeding the current precision
of theoretical predictions [13,14]. Comparison between theory
and experiment has led to an improved determination of the
proton-electron mass ratio [14] and improved constraints on
a “fifth force” between hadrons [15]. These results, and the
fact that the experimental precision may be pushed further
in the future [16,17], strongly motivate further improvement
of the theoretical precision. The latter is currently limited to
7-8×10−12 by the one-loop self-energy of the bound elec-
tron, which has been calculated in the nonrelativistic QED
(NRQED) approach up to the mα(Zα)6 order. One way to
overcome this limit would be to perform a full relativistic cal-
culation of the one-loop self-energy, i.e., without performing

the expansion in Zα, as done for the hydrogen atom [18,19]. A
7–8 digit precision for this quantity would improve theoretical
rovibrational transition frequencies by about a factor of 2. To
achieve this, the required precision in the relativistic wave
functions is actually much higher than the aforementioned 7–8
digits, because the self-energy is a residual effect obtained
after subtraction of renormalization counterterms, leading to
a serious loss of precision [19]. This brings an important
motivation to solve Dirac’s equation with the highest possible
accuracy.

This problem may be approached in two different ways.
One can attempt a direct resolution of the two-center Dirac
equation, for which the most accurate results so far have
been obtained by the finite-element method [4,20] and by the
Dirac-Fock-Sturm method [5]. Alternatively, one can use a
perturbative approach where the energy and wave function
are expanded in powers of c−2. The first-order correction for
H2

+ has been obtained with high numerical accuracy using the
Breit-Pauli effective Hamiltonian [21]. Higher-order effective
Hamiltonians can also be derived using Foldy-Wouthuysen
transformations [22,23] or in the NRQED framework [24].
This has allowed the second-order (c−4) correction to be
evaluated [25]. However, it would be difficult to extend this
method to higher orders, in particular due to the increas-
ingly singular behavior of the effective operators. The direct
perturbation theory (DPT) [26–28], expressed in terms of
4-component spinors, has been shown to avoid this problem
and does not require a controlled cancellation of divergences.
This method has been used to calculate the third-order (c−6)
correction in H2

+ [26,29]. An iterative method based on the
principles of DPT was also derived in Ref. [27] and later
applied to high-Z hydrogenlike ions [30].

A perturbative approach such as DPT is especially well
suited for weakly relativistic systems such as H2

+; moreover,
the zero-order wave function, which is a solution of the two-
center Schrödinger equation, can be obtained with extremely
high accuracy. For the aim of extending calculations to higher
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orders, the iterative method of Ref. [27] is especially attractive
because no tedious algebraic manipulations are required to
express relativistic corrections at any order. Previous appli-
cations of this method have been performed using Gaussian
basis sets [29,30]. In this Letter, we introduce a basis set of
pure two-center exponentials, which have so far only been
used in nonrelativistic calculations [21]. A key advantage of
exponential functions is that they allow a better representation
of the singular behavior of the solutions in the vicinity of
the nuclei. This allows us to improve the accuracy of the
relativistic energy and wave function of H2

+ by several orders
of magnitude.

The atomic unit system (h̄ = m = e = 1) is used through-
out. In these units, the velocity of light is c regarded as
dimensionless and has the value α−1 ≈ 137. The Dirac equa-
tion can be written as

HDψ = Eψ, ψ =
(

ϕ

χ

)
, (1a)

HD = (β − I4)c2 + cαp + V =
(

V cσp
cσp V − 2c2

)
, (1b)

where ψ is a Dirac spinor, and ϕ, χ are two-component
objects representing respectively the large and small com-
ponents. β and α are Dirac matrices, σ the Pauli matrices,
and I4 the 4×4 identity matrix. The rest mass energy c2 has
been subtracted from the energy. Finally, V is the two-center
Coulomb potential given by

V = −Z1

r1
− Z2

r2
, (2)

where Z1 and Z2 are the charges of the nuclei, and r1, r2 the
distances from the electron to both nuclei. The starting idea
of DPT is to perform the following metric transformation in
order to obtain the nonrelativistic limit of the Dirac equa-
tion [27]: (

ϕ

χ

)
=

(
I2 0
0 c−1I2

)(
ϕ

χ̃

)
. (3)

The Dirac equation can then be rewritten as(
V σp
σp −2 + V

c2

)(
ϕ

χ̃

)
= E

(
I2 0
0 c−2I2

)(
ϕ

χ̃

)
. (4)

Solving the second line for χ̃ , one obtains

χ̃ = σp
2

ϕ + V − E

2c2
χ̃ , (5)

and injecting this result into the first line yields

(E − H0)ϕ = σp
2c2

(V − E )χ̃ , (6)

where H0 = p2/2 + V is the Schrödinger Hamiltonian.
Kutzelnigg [27] proposed an iterative solution based on
Eqs. (5) and (6). The first iteration step is the solution of the
Schrödinger equation

H0ϕ
(1)
0 = E0ϕ

(1)
0 , (7)

where ϕ
(1)
0 represents the first component of ϕ0. The second

component ϕ
(2)
0 is set to zero, which corresponds to taking

the zero-order solution in a spin state Sz = 1/2. The small

components are given by χ̃0 = σp
2 ϕ0. One then iterates over

Eqs. (8a)–(8c),

Ei+1 = E0 + 1

c2
〈χ̃0|(V − Ei )|χ̃i〉, (8a)

(Ei+1 − H0)�ϕi+1 = 1

2c2
Q σp(V − Ei+1)χ̃i, (8b)

χ̃i+1 = σp
2

ϕi+1 + 1

2c2
(V − Ei+1)χ̃i, (8c)

where the subscript i refers to the iteration step, ϕi = ϕ0 +
�ϕi, and Q = 1 − |ϕ0〉〈ϕ0| is a projector onto a subspace
orthogonal to |ϕ0〉. Note that Eq. (8a) can be obtained by
multiplying Eq. (6) on the left by ϕ∗

0 followed by space in-
tegration. This method converges faster than the perturbative
expansion in powers of c−2, especially in highly relativistic
(high-Z) systems [30].

Let us now describe our implementation of the iterative
method. The large components of the wave function are ex-
panded in an exponential basis set [21,25],

ϕ( j) =
N∑

i=1

c( j)
i f ( j)

i , (9a)

f ( j)
i (r) = eim( j)φr|m( j)|(e−αir1−βir2 ± e−βir1−αir2 ), (9b)

where j = 1, 2 indicates the component, φ is the angle around
the internuclear axis z, and r the distance from the electron to
the internuclear axis. m( j) is an eigenvalue of Lz, the projection
of the orbital angular momentum on the z axis. The sign in
Eq. (9b) is equal to (−1)m( j)

for gerade states and −(−1)m( j)

for ungerade states. Since the total angular momentum projec-
tion Jz = Lz + Sz is a good quantum number, for the ground
(1sσg) electronic state and Jz = 1/2 one has m(1) = 0 and
m(2) = 1; this also applies to the small components χ̃ ( j) [31].

The small components of the wave function are expanded
in the kinetically balanced basis [32]

χ̃ ( j) =
N∑

i=1

d ( j)
i g( j)

i , (10a)

(
g(1)

i

g(2)
i

)
= σp

2

(
f (1)
i

f (2)
i

)
. (10b)

TABLE I. Basis set used in numerical calculations for R = 2.0.
[A1, A2] ([B1, B2]) are intervals in which the exponents αi (βi) are
generated. ni is the number of basis functions in each subset. The
total basis size is N = 498.

A1 A2 B1 B2 ni

0.0 1.5 0.0 0.4 100
1.0 6.0 0.2 2.0 100
2.0 10.0 0.0 2.0 100

1.0×101 3.0×101 0.0 2.0 41
3.0×101 3.0×102 0.0 2.0 38
3.0×102 4.0×103 0.0 2.0 34
4.0×103 6.0×104 0.0 2.0 31
6.0×104 8.0×105 0.0 2.0 28
8.0×105 1.0×107 0.0 2.0 26
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TABLE II. Energy of the 1sσg ground state for R = 2.0 obtained
using the iterative method, as a function of total size Nreg = n1 +
n2 + n3 of the regular basis (i.e., the first three subsets in Table I). The
sizes of the regular subsets are n1 = n2 = n3 = Nreg/3. The singular
part of the basis is the same as shown in Table I. Bold figures are
converged.

Nreg E

225 −1.102 641 581 032 577 164 139 937
240 −1.102 641 581 032 577 164 133 856
255 −1.102 641 581 032 577 164 132 196
270 −1.102 641 581 032 577 164 131 380
285 −1.102 641 581 032 577 164 127 416
300 −1.102 641 581 032 577 164 126 607
Extrap. −1.102 641 581 032 577 164 12(1)

Kinetic balance is a key ingredient for the numerical calcu-
lations, as discussed in Ref. [30]. In particular, it allows for
efficient cancellation of singularities in the right-hand side of
Eq. (8c) [27].

The matrix elements appearing in Eqs. (8a)–(8c) are
calculated analytically using the methods described in
Refs. [21,25]. In particular, those of σp

2 (V − E ) σp
2 , which are

needed in all three equations, can be obtained from the identity

σp
2

(V − E )
σp
2

= 1

8
(p2V + V p2) − 1

4
E p2

+ π

2
[Z1δ(r1) + Z2δ(r2)] + HSO,

HSO =
(

Z1
[r1 × p]

4r3
1

+ Z2
[r2 × p]

4r3
2

)
· σ, (11)

where δ is the Dirac delta function, and HSO the spin-orbit
Hamiltonian.

The basis set is constructed in the following way. It con-
sists of several subsets, each subset being defined by a pair
of intervals in which the exponents αi, βi in Eq. (9b) are
generated in a pseudorandom way [21,25]. The subsets are
separated into two groups (see Table I for an illustrative
example): a “regular” part made of two or three intervals
(depending on the internuclear distance R) containing small
exponents (typically αi, βi < 10), and a “singular” part made
of five or six intervals (also depending on R) containing large
exponents (up to 107). The latter part is required to accurately
represent the singular behavior of the Dirac wave function

in the vicinity of the Coulomb centers. The parameters of
the basis (the interval bounds for each subset, and the rela-
tive sizes of the subsets) can be optimized by varying each
parameter and selecting the values that provide the fastest
convergence as a function of the basis size. In view of the large
number of parameters, only a coarse optimization has been
performed.

Numerical calculations are performed in octuple precision
arithmetic. Unless otherwise noted, the CODATA-2018 value
of the fine-structure constant, i.e., c = 137.035 999 084, is
used [33]. The convergence of our results for the equilibrium
internuclear distance R = 2 a.u. is shown in Table II, and in
more detail in Table III where energies obtained after the first
four iterations are shown. Results are much more sensitive to
the size of the regular basis, whereas by adding more functions
the singular basis results in negligibly small changes in the
energy; this is why the convergence is analyzed by varying
the size of the regular basis, Nreg, while leaving the singular
basis unchanged. Inspection of Table III shows that the preci-
sion is progressively degraded as the iteration order increases.
Results of the fifth iteration (and beyond) are not converged;
the corresponding energy correction is smaller than 10−22 a.u.
and thus insignificant with respect to the achieved precision
of 1×10−20 a.u. on the Dirac energy. The precision is mainly
limited by the second iteration and to a lesser extent by the
third iteration. It could in principle be improved by increasing
the basis size beyond Nreg = 300, but this results in numerical
instabilities in the resolution of the linear system in Eq. (8c).
These instabilities are likely to be linked to the improper
behavior of basis functions in the vicinity of the nuclei in the
case of the function χ̃ (2). Indeed, the kinetic balance relation-
ship, Eq. (10), yields basis functions that have a finite value at
the nuclei, whereas Dirac solutions for m = 1 (π ) components
tend to zero.

As a cross check of our results, we have also implemented
DPT up to third order in the same basis set. To the best of our
knowledge, finite expressions for the fourth-order correction
are lacking. Energy corrections at successive orders in c−2 are
expressed as [26,27]

E p
1 = 〈χ̃0|(V − E0)|χ̃0〉,

E p
2 = 〈χ̃0|(V − E0)

∣∣χ̃ p
1

〉 − E p
1 〈χ̃0|χ̃0〉,

E p
3 = 〈

χ̃
p
1

∣∣(V − E0)
∣∣χ̃ p

1

〉 − E p
1

{〈
χ̃0

∣∣χ̃ p
1

〉
+ 〈

χ̃
p
1

∣∣χ̃0
〉 + 〈

ϕ
p
1

∣∣ϕp
1

〉} − E p
2 〈χ̃0|χ̃0〉, (12)

TABLE III. Corrections to the ground-state energy during the first four iterations for the results shown in Table II. Bold figures are
converged. The zero-order (nonrelativistic) energy E0 (not shown here) is converged to more than 30 digits, and its value can be found in
Table IV.

Nreg (E1 − E0)×106 (E2 − E1)×1010 (E3 − E2)×1015 (E4 − E3)×1019

225 −7.366 419 298 336 650 496 815 914 28 −1.183 246 223 379 −7.743 321 61 −3.208 476
240 −7.366 419 298 336 650 496 815 908 66 −1.183 246 223 317 −7.743 321 72 −3.208 461
255 −7.366 419 298 336 650 496 815 908 88 −1.183 246 223 299 −7.743 321 90 −3.208 436
270 −7.366 419 298 336 650 496 815 908 64 −1.183 246 223 290 −7.743 321 94 −3.208 431
285 −7.366 419 298 336 650 496 815 908 56 −1.183 246 223 249 −7.743 322 13 −3.208 404
300 −7.366 419 298 336 650 496 815 908 58 −1.183 246 223 242 −7.743 321 97 −3.208 424
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TABLE IV. Comparison of the Dirac energy obtained in this
work for the ground state at R = 2.0 with previous results, and with
results from DPT. The same value of c as in earlier works [4,5],
c = 137.035 989 5, has been used. Energy corrections E p

i are given
in units of c−2iEh, where Eh is the Hartree energy. An estimate of the
Dirac energy from DPT is obtained as E p = E0 + ∑3

i=1 c−2iE p
i . In

the results of “This work,” all digits are converged unless otherwise
noted.

Dirac energy Ref.

E −1.102 641 581 033 607 580 05(1) This work
−1.102 641 581 033 58 [4]
−1.102 641 581 033 0 [5]

Direct perturbation theory Ref.

E0 −1.102 634 214 494 946 461 508 968 945 318 This work
−1.102 634 214 494 946 461 50 [25]
−1.102 634 214 494 946 462 [2]

E p
1 −0.138 332 993 867 979 584 653 9 This work

−0.138 332 993 9 [25]
−0.138 332 984 8 [29]

E p
2 −0.041 727 900 54(1) This work

−0.041 711 [25]
−0.041 727 79 [29]

E p
3 −0.028 318 426 48 This work

−0.028 32 [29]
−0.028(2) [26]

E p −1.102 641 581 033 607 579 88 This work

where the first-order perturbation wave functions ϕ
p
1 and χ̃

p
1

are given by

(H0 − E0)ϕp
1 = −σp

2
(V − E0)χ̃0, (13a)

χ̃
p
1 = σp

2
ϕ

p
1 + 1

2
(V − E0)χ̃0. (13b)

For DPT calculations, we varied the basis size up to Nreg =
240; it was not useful to increase it further because the preci-
sion of the Dirac energy value obtained from DPT is limited
by the unevaluated fourth-order correction. Table IV shows a
summary of our results and comparison with previous works.
Satisfactory agreement is obtained [34], and the precision is
improved by several orders of magnitude both for the Dirac
energy and for DPT results. The difference between results
obtained from the iterative method and from DPT amounts to
1.6×10−19 a.u., which is consistent with the expected magni-

TABLE V. Ground-state energies for different values of R ob-
tained using the iterative method.

R E

0.2 −1.928 696 929 923 044 907 800(3)
0.5 −1.735 028 271 055 552 023 828 5(9)
1.0 −1.451 804 005 087 137 677 811(2)
2.0 −1.102 641 581 032 577 164 12(1)
3.0 −0.910 901 679 231 133 022 10(2)
5.0 −0.724 425 920 325 466 271 964(3)
7.0 −0.648 457 452 933 341 174 206 2(2)

tude of the fourth-order correction. From this difference one
may deduce the estimate E p

4 ∼ −0.020c−8Eh.
Finally, we have applied the iterative method for other

values of the internuclear distance R. Results are shown in
Table V. The general behavior of the method is similar, with
the first four iterations being well converged, but the achieved
precision is higher at small (R � 1 a.u.) and large (R � 5 a.u.)
internuclear distances. This observation supports the hypoth-
esis that the precision is limited by imperfect representation
of the component χ (2). Indeed, the m = 1 (π ) components
appear as a result of the spin-orbit coupling between m = 0
(σ ) and m = 1 (π ) states, which vanishes in the atomic limit,
both at small and large R.

In conclusion, we have introduced a pure exponential basis
set, in conjunction with restricted kinetic balance conditions,
and shown that it allows for efficient iterative resolution of the
Dirac equation for the hydrogen molecular ion. The accuracy
of the ground-state energy is improved by about seven orders
of magnitude with respect to previous works. The iterative
method furthermore avoids cumbersome algebraic manipu-
lations that are typically required in perturbation theory to
regularize divergent expressions. The fact that the energy
correction at the fourth iteration is well converged implies
that the relativistic wave function is accurate up to the third
iteration, i.e., at least up to an order of c−6. This is an impor-
tant step towards nonperturbative calculations of the one-loop
self-energy correction in hydrogen molecular ions.
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