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Universal spin-mixing oscillations in a strongly interacting one-dimensional Fermi gas
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We study the spin-mixing dynamics of a one-dimensional strongly repulsive Fermi gas under harmonic
confinement. By employing a mapping onto an inhomogeneous isotropic Heisenberg model and the symmetries
under particle exchange, we follow the dynamics until very long times. Starting from an initial spin-separated
state, we observe superdiffusion, spin-dipolar large amplitude oscillations, and thermalization. We report a
universal scaling of the oscillations with particle number N1/4. Our Letter puts forward one-dimensional
correlated fermions as a different system to observe the emergence of nonequilibrium universal features.

DOI: 10.1103/PhysRevA.105.L051303

I. INTRODUCTION

Elucidating the dynamics of interacting Fermi gases is
important for understanding a large variety of physical phe-
nomena, from condensed matter to plasmas and astrophysical
objects as neutron stars. The strongly out-of-equilibrium dy-
namics of interacting quantum systems is currently one of the
most challenging open problems.

In this context, the spin dynamics deserves a specific focus.
Spin currents can be easily damped by interparticle colli-
sions [1] and the continuity equation for the spin density
includes both orbital current and spin torque contributions [2].
Spin drag is another manifestation of interactions among the
spin species, inducing spin-diffusive or nondissipative dynam-
ics depending on the interaction regimes [1,3–7]. Ultracold
atomic gases provide an ideal platform for exploring in iso-
lated conditions the out-of-equilibrium spin dynamics [8–10].
In a three-dimensional geometry, the oscillatory dynamics of
a strongly interacting Fermi gas with initially spatially sep-
arated spin components was studied in Ref. [11]. The spin
drag, spin diffusivity, and spin susceptibility were obtained,
and a universal limit for spin diffusivity at low temperature
was reported for the unitary Fermi gas.

A relevant question is what happens to the above quan-
tities when reducing the dimensionality of the system to
quasi-one-dimensional (1D), and what type of universality
emerges. One-dimensional systems display specific features,
as the enhancement of quantum fluctuations and correlations,
and they can be described by a wealth of theoretical and
numerical methods [12–15]. The quantum dynamics may be
strongly affected by the geometrical constraints, as well as
by the presence of a large number of conserved quantities, as
demonstrated, e.g., in the quantum Newton cradle experiment
[16].

We address this question by following the dynamics
of strongly repulsive fermions subjected to a longitudinal
harmonic confinement in a tight waveguide. As in the three-
dimensional case of Ref. [11], we start from an initially

imbalanced state with all spin up on the left and all spin down
on the right of the harmonic trap, and we follow the damped
oscillations of the magnetization. While the fully quantum
dynamics at arbitrary interactions can be followed only at
short times with a classical simulator, we focus here on the
strongly correlated regime of very large interactions, close
to the integrable point at infinite repulsions [17–23]. In this
regime, the dynamics of the charge and spin decouple, and the
spin dynamics can be followed exactly until very long times
by means of a mapping onto the one of an inhomogeneous,
isotropic Heisenberg model [24,25] with site-dependent cou-
plings [26,27].

An overview of the full spin dynamics is provided in
Fig. 1, where three main dynamical regimes arise. At short
times, we predict the emergence of a superdiffusive behavior,
compatible with Kardar-Parisi-Zhang (KPZ) universality, in
striking difference from the diffusive one found in the three-
dimensional counterpart [11]. We thus identify 1D correlated
fermions as a different system to observe the emergence of
nonequilibrium universality, largely explored in homogeneous
Heisenberg models [28–35] and experimentally evidenced
in quantum magnets and in ultracold atoms on a lattice
[36–39]. At intermediate times, we observe large-amplitude
spin-dipole oscillations and we obtain the spin drag decay
rate. We unveil a N1/4 scaling in the oscillation frequency,
implying a slowdown of the motion and the decrease of the
zero-temperature spin drag rate as the particle number grows.

At long times, the oscillations are damped out and the
system thermalizes to the diagonal ensemble [40]. From the
analysis of the energy levels’ distribution we find that the
system is weakly nonintegrable. The proposed setup allows
us to explore the conditions for emergence of nonequilibrium
universal behavior in relation to the breaking of its integrabil-
ity in one dimension.

II. MODEL AND DYNAMICS

We consider a one-dimensional SU (2) interacting Fermi
gas confined in a harmonic trap. The Hamiltonian for such
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FIG. 1. Left panel: Spin up ρ↑ in orange (light gray) and down
ρ↓ in violet (dark gray) spatial densities (in units of the inverse
harmonic oscillator length �−1, with � = √

h̄/mω0) as a function of
position in the trap (in units of �) at times ω0t = 0, 33, 200 from top
to bottom. The two initially separated clouds start oscillating in the
trap and eventually fully mix, approaching to a zero-magnetization
state. Right panel: Magnetization as a function of x (in units of �) and
t (in units of ω−1

0 ) for N = 12 fermions. The green line corresponds
to center of mass d (t ) of the magnetization.

system reads

H =
N∑

i=1

( p2
i

2m
+ mω2

0x2
i

2

)
+ g

∑
i �= j

δ(xi − x j ), (1)

where N = N↑ + N↓ is the total number of particles and we
take N↑ = N↓, ω0 is the frequency of the harmonic trap, and
we model the interspecies interaction using a delta potential of
strength g. Hamiltonian (1) is characterized by the symmetry
under exchange of particles having the same spin. For SU (2)
fermions, the eigenstates can be classified by the irreducible
representations of the permutation group (see, e.g., Ref. [20]).

We focus on the strongly repulsive limit g → ∞: in this
regime the model is exactly solvable [18] and the wave func-
tion is given by

� =
∑

P

θ (xP(1) < · · · < xP(N ) ) aP�A(x1, . . . , xN ), (2)

where θ (x1 < x2 < x3 < . . . xN ) is the characteristic function
of the coordinate sector {x1 < x2 < x3 < · · · < xN }, aP are
phases depending on the spin ordering of the corresponding
coordinate sector, and the summation is performed over all
the possible permutations P of N elements. The function �A

is the wave function of a N-particle noninteracting Fermi gas
in the same external potential, i.e., the antisymmetric product
of N eigenfunctions of the harmonic oscillator. Remarkably,
in the g → ∞ limit the spin and spatial (“charge”) degrees of
freedom are decoupled in the wave function.

We determine the phases ap in Eq. (2) to first order in 1/g
by mapping the Hamiltonian (1) into an effective spin chain:

Hs =
(

EF −
N−1∑

i

Ji

)
1 +

N−1∑
i=1

JiPi,i+1, (3)

where Pi,i+1 is the transposition operator on the chain of N
sites and EF = N2h̄ω0/2 is the Fermi energy. The coeffi-
cients Ji are site-dependent hopping parameters of the chain,
carrying information on the external potential and on the

atom-atom interaction of the original fermionic problem (see
Supplemental Material [41]). The explicit expression reads
[42]

Ji = 1

g

∫ ∞

−∞
dx1 . . . dxN δ(xi − xi+1) θ (x1 < · · · < xN )

∣∣∣∂�A

∂xi

∣∣∣2
.

(4)
We classify the basis vectors of the Hilbert space associated

to (3) according to the spin ordering on the chain (the so-called
snippet basis [19]). For example, for N↑ = N↓ = 2 the vector
|↑↑↓↓〉 indicates that all the spins ↑ are placed in the left
half of the chain. Therefore, the dimension of the Hilbert
space is s = N!

N↑!N↓! . The diagonalization of Eq. (3) allows us
to calculate the aP and thus several observables such as the
spin densities ρ↑,↓(x, t ). This allows us to study the dynamics
of the trapped system with an arbitrary initial state.

In this Letter we follow the fermion dynamics starting
from the initially strongly out-of-equilibrium state |χ (t =
0)〉 = |↑↑↑ . . . ↓↓↓〉, as in Ref. [11], where the spins up
and down are separated in the two opposite sides of the trap.
Since the harmonic trap is unchanged, the spatial part of the
wave function (2) is constant during the motion, hence Ji are
constant in time. The time evolution involves only the spin
degrees of freedom and can be obtained using the effective
spin chain Hamiltonian (3). Recalling that the spin opera-
tors are related to the permutation operator by the relation
Pk,k+1 = 1

2 (1 + σkσk+1), Hamiltonian (1) can be mapped to
the one of an inhomogeneous isotropic Heisenberg model
HH = ∑N−1

j=1 Jj 	σ j · 	σ j+1, but in particle space, i.e., each lattice
site is associated to a particle index. The equation of motion
for the spin operator 	S j = 1

2 (σ x
j , σ

y
j , σ

z
j ) for the jth particle

reads

dSμ
j

dt
= i

[
Hs, Sμ

j

] = (	τ j × 	S j )
μ, (5)

where μ = x, y, z and 	τ j = Jj−1 	σ j−1 + Jj 	σ j+1 is the torque
acting on a fixed particle due to the coupling with the neigh-
boring ones [41]. As a result of Eq. (5) we conclude that in
our case the spin dynamics is entirely due to spin torque [41].

The experimentally accessible component of such spin
vector is Sz

j , associated to the local magnetization

m(x, t ) =
N∑

j=1

mj (t )ρ j (x), (6)

where ρ j (x) is the spatial density of the jth particle in the trap
[26,41], mj (t ) = 〈χ (t )|Sz

j |χ (t )〉, and |χ (t )〉 = e−iHst |χ (0)〉 is
the time-evolved spin state, obtained from the diagonalization
of Hs by exploiting all its symmetries. The magnetization is
experimentally accessible by recording the population imbal-
ance among ↑ and ↓ fermions, m(x, t ) = ρ↑(x, t ) − ρ↓(x, t ).

Another important observable for the dynamics is the spin
current density

j(x, t ) = 1

2

N−1∑
j=1

j j (t )[ρ j (x) + ρ j+1(x)], (7)

where j j (t ) are obtained from the z component of Eq. (5),
j j (t ) = Jj (σ x

j σ
y
j+1 − σ

y
j σ

x
j+1). We detail in the following the

spin-mixing dynamics in the various relevant time regimes.
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FIG. 2. (a) Early-time magnetization dynamics m(x, t ) from ex-
act solution for N = 12 as a function of space (x in units of �) and
time t (in units of ω−1

0 ). (b) Integrated current δ j(t ) in units of �−1

from the density-matrix renormalization group, as a function of time
t (in units of ω−1

0 ) evaluated in the center of the trap x = 0 (solid
lines), together with ballistic δ j ∼ t , KPZ δ j ∼ t2/3, and diffusive be-
havior δ j ∼ t1/2 (dashed straight lines). A larger number of particles
are associated with increasingly darker colors. (c) KPZ scaling of
the magnetization mn(t ), shown as a function of y = n/(ω0t )2/3. We
show the comparison with the derivative of the suitably renormalized
1D KPZ scaling function g(y) [45].

Systems up to N = 12 particles have been analyzed us-
ing exact diagonalization, while we used truncated Taylor
series approximation of the time evolution operator [43]
and the time-dependent density-matrix renormalization group
(tDMRG) [44] to study larger systems.

III. SHORT TIMES

The short-time dynamics, before the first spin oscillation,
is shown in Fig. 2. We show the magnetization as a function of
space and time, showing that the initially sharp magnetization
interface spreads with time, until it starts feeling the effect of
the confining potential. To identify the nature of the magneti-
zation spreading, it is useful to study the time-integrated spin
current density as in Ref. [28], δ j(t ) = ∫ t

0 dt ′ j(0, t ′), where
j(x, t ) is defined in Eq. (7) and it is calculated at the center
of the trap. We see that the integrated spin current displays a
superdiffusive behavior δ j(t ) ∼ tη, with power-law exponent
η ∼ 0.638(1). This is compatible with the value η = 2/3 pre-
dicted for the homogeneous spin chain and clearly not ballistic
or diffusive. Remarkably, low-energy dynamics described by
Luttinger liquid predicts ballistic behavior [1]: the deviation
from this prediction discloses the marked out-of-equilibrium
features of the physical system that are described in an ex-
act way by our model. Using DMRG calculations we have
checked that the KPZ region persists for larger numbers of
particles (see Fig. 2) The deviation at later times from KPZ
behavior is due to onset of the oscillatory dynamics associated
to the presence of the external trap. Within the KPZ region, we
find that the magnetization profiles collapse onto each other if
plotted as a function of xn/(ω0t )1/z, z = 3/2 being the KPZ
value for the dynamical critical exponent.

IV. INTERMEDIATE TIMES

We next focus on the intermediate-time regime, when the
particles undergo large-amplitude spin-dipole oscillations in
the trap. We follow the center-of-mass oscillations of the

magnetization:

d (t ) = 1

N

∫ ∞

−∞
dx x m(x, t ). (8)

The time evolution of d (t ) is shown in Fig. 3(a) for vari-
ous values of the number of particles. We observe damped
oscillations tending to a plateau corresponding to zero magne-
tization. At later times (not shown in the figure), the dynamics
undergoes several partial revivals, as expected since we de-
scribe a closed quantum system. Quite remarkably, we find
that the various curves for different particle numbers col-
lapse one to another if we scale the time axis by a factor
Nα with α = 0.25. Using DMRG simulations up to N = 60
particles [41], we have tested that the scaling is robust at in-
creasing particle numbers. The magnetization oscillations are
well approximated by a damped harmonic oscillator F (t ) =
f0e−γ t cos(�t ) [see Fig. 3(b)]. This allows us to obtain the
oscillation frequency � for the various N values. We find
that the damping rate γ does not depend on the number of
particles. Combining the two values, we obtain the spin drag
rate as �SD = �2/γ [3,4,11,46].

We also perform a spectral analysis of d (t ) by introducing
the spectral function A(ω) = ∫ ∞

0 dt d (t )eiωt . In Fig. 3(c) we
show |A(ω)| and the Fourier transform of the fitted signal
F̃ (ω) = ∫ ∞

0 dt F (t )eiωt as a function of the rescaled frequen-
cies. The spectral function shows two main peaks centered
around ±�univ. Several excitation frequencies contribute to
the overall shape and the linewidth of F̃ (ω) [41]. To estimate
the scaling exponent α we evaluate the position PN (α) =
ωPNα of the maximum of F̃ (ωNα ) at positive frequencies,
such that F̃ (ωPNα ) = maxω>0 F̃ (ωNα ), as a function of a
scaling exponent α. As we show in Fig. 3(d), the universal
scaling is reached for α = 0.25.

The universal scaling observed in Fig. 3 allows us to esti-
mate the spin-dipole oscillation frequency at larger N as �N 
�univ/N1/4, with �univ  0.19 ω0. Correspondingly, we find
that the spin drag scales as �SD = �2

univ/(γ N1/2), hence van-
ishing at large particle numbers, as also predicted in Ref. [1]
for low-energy excitations of the spectrum.

V. LONG TIMES

Finally, we study the long-time regime at which the
damped dynamics becomes dominant and the system ap-
proaches to a zero-magnetization state. Since the Hamiltonian
(1) is not integrable at finite interaction strength, we expect
some traces of chaoticity to emerge during the dynamics
[40,47,48]. In this case the system thermalizes to a state de-
scribed by the diagonal ensemble, coinciding in our case with
the microcanonical ensemble [49]. We verify this by calculat-
ing the distance R(t ) = ∫

dx |ρ↑(x, t ) − ρ↑,MC(x)|2 between
the spin-up density and its value in the microcanonical ensem-
ble ρ↑,MC(x). The results are presented in Fig. 4(a). At times
corresponding to the zero-magnetization plateau in Fig. 4,
R(t ) vanishes and the spin density approaches to the steady-
state value. At later times, revivals occur and the system
deviates from this configuration.

To further provide evidence for chaotic behavior, we
analyze the level-spacing distribution W (�ε) [50–52], con-
structed using the unfolded dimensionless energy levels
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FIG. 3. (a) Center of mass of the magnetization d (t ), in units of �, as a function of time, in units of ω−1
0 , and scaled by a factor N1/4

to evidence the universal behavior of the oscillations. (b) d (t ) for N = 12 fitted with a damped harmonic oscillator F (t ) = f0e−γ t cos(�t ).
(c) Modulus of A(ω), in units of �/ω0, for different numbers of particles as a function of the universal frequencies ωN1/4/ω0, compared to the
modulus of the Fourier transform F̃ (ω) of the fit F (t ) (dotted violet line). Color codes are the same as in panel (a). (d) Position PN (α) of the
peaks of F̃ (ωNα ), in units of ω0, as a function of the scaling parameter α.

[48,53–55]. The spectrum of an integrable system follows
a Poissonian distribution WP(�ε) = e−�ε , while a chaotic
system is described by a Wigner-Dyson one WWD(�ε) =
π
2 �ε e− π

4 �ε2
. We interpolate between the two regimes, thus

quantifying the level of chaoticity encoded in the spectrum,
through the Brody distribution [56]:

WB(�ε) = (β + 1)b�εβe−b�εβ+1
, (9)

where b = {�[(β + 2)/(β + 1)]}β+1 and � is the Euler
Gamma function. The Brody distribution reduces to the Pois-
son or Wigner-Dyson ones for β = 0 or 1, respectively.

To obtain the level-spacing distribution it is important to
take into account the symmetries of the system [57], which
in our case are the spatial parity and the symmetry under
particle exchange. Our choice of basis vectors allows us to
readily check the parity of the eigenstates. In order to iden-
tify the symmetry under particle exchange associated to a

FIG. 4. (a) Distance R(t ) (in units of �−1) as a function of time
(in units of ω−1

0 ). The inset shows a zoom of the area indicated
by the rectangle. (b) Level-spacing distribution W (�ε) for the un-
folded spectrum in a sector at fixed symmetry. The orange and the
blue curves show, respectively, the Wigner-Dyson WW D(�ε) and
the Brody distribution WB(�ε) with β = 0.22. The inset shows the
level-spacing distribution of the whole unfolded spectrum and the
Poisson distribution WP(�ε) (green line). In all the panels, N = 14.

given Young tableau, we diagonalize the Heisenberg Hamil-
tonian in the basis of the permutational symmetry [20,58].
We then partition the energy levels according to the quan-
tum numbers of the corresponding eigenstates. In the inset
in Fig. 4(b) we show the distribution of all the unfolded level
spacings, irrespective of the symmetry constraints. In this case
the chaoticity is hidden and the distribution is Poissonian.
The level-spacing distribution of the largest subspace at fixed
symmetry is shown in the main panel of Fig. 4(b). We find
that the level-spacing distribution is well described by the
Brody distribution with parameter β = 0.22. This shows that
large interactions destroy only partially the integrability of the
infinite-repulsion model. A moderately chaotic behavior also
emerges from the study of the localization properties of the
eigenstates of the Hamiltonian (1) [41]. Such intermediate
regime is typical of integrable systems subjected to small
perturbations [48,51,59].

VI. CONCLUSIONS

We have studied the strongly out-of-equilibrium spin-
mixing dynamics of repulsive 1D fermions under harmonic
confinement, starting from an initial spatially separated spin
configuration. Thanks to the mapping to an inhomogeneous
Heisenberg model on an effective lattice in particle space, we
have followed the real-space magnetization dynamics until
very long times. At short times, specific to one-dimensional
systems and different from the three-dimensional strongly
interacting Fermi gas, we observe superdiffusive behavior of
the magnetization profile in time. The system here consid-
ered is weakly not integrable and hence equivalent to the
case where KPZ universality was reported in the short-time
dynamics [35,60,61]. Our observations call for the explo-
ration of the universal properties of the corresponding spin
model. At intermediate times, we have obtained damped
spin-dipole oscillations characterized by a universal scaling
of the oscillation time with N1/4, thus predicting a slow-
down of the oscillation and decrease of spin drag at large
particle numbers. At long times, we find that the system
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thermalizes to a diagonal ensemble state thanks to its mod-
erately chaotic behavior. All our conclusions hold exactly for
strongly repulsive interactions to order 1/g. A study of itiner-
ant fermions at arbitrary interactions and long times remains
an open challenge. Our results show that harmonically trapped
strongly interacting fermions are a promising platform for
exploring the many facets of the nonequilibrium quantum
dynamics.
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