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Eightfold way to dark states in SU(3) cold gases with two-body losses
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We study the quantum dynamics of a one-dimensional SU(3)-symmetric system of cold atoms in the presence
of two-body losses. We exploit the representation theory of SU(3), the so-called eightfold way, as a scheme to
organize the dark states of the dissipative dynamics in terms of generalized Dicke states and show how they are
dynamically approached, both in the weakly and strongly interacting and dissipative regimes. Our results are
relevant for a wide class of alkaline-earth(-like) gas experiments, paving the way to the dissipative preparation
and exploitation of generalized Dicke states.
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I. INTRODUCTION

Ultracold atomic gases represent a clean and flexible
playground to study quantum many-body physics, at equilib-
rium or in dynamical settings [1–3]. Cold-atom experiments
usually feature a high degree of control over system pa-
rameters and allow for an almost perfect decoupling from
the surrounding environment. However, despite the tremen-
dous experimental progresses, a perfect isolation has never
been reached, for instance because of particle losses, caus-
ing energy relaxation and decoherence phenomena [4]. On
one hand, this fact introduces a typical timescale determin-
ing for how long a system can be regarded as closed. On
the other hand, on a longer timescale, the interplay between
the coherent unitary evolution and the coupling to the envi-
ronment can lead to a nontrivial dynamics and to stationary
states featuring strong quantum correlations [5–8] and critical
behaviors [9–12].

In general, this latter situation can be achieved through an
active control of the environment and of its coupling to the
system, via the so-called reservoir engineering [13]; however,
in some situations, the dissipative processes that naturally
occur in the system can also be responsible for entangled sta-
tionary states: this is the situation that we want to study in this
Letter [14,15]. Since in these systems decoherence is mainly
due to particle losses, developing a theoretical framework to
describe this open-system dynamics and the emergence of
eventual correlated quantum states represents a huge theo-
retical challenge that attracted increasing attention in recent
years [16–25]. In particular, two-body losses induced by in-
elastic atomic collisions in correlated quantum gases have
been observed experimentally and investigated theoretically
in bosonic [5,6,26–32] and fermionic gases [15,33–37].

In this work we consider the paradigmatic case of
alkaline-earth-like gases in optical lattices, experimentally
realized with ytterbium [14,38–41], which are subject to
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two-body losses due to inelastic two-body collisions in the
metastable state 3P0. The (almost) perfect decoupling between
the nuclear spin I and the electronic angular momentum J
(ensured by the fact that J = 0 for the atomic states involved
in the dynamics) implies that the relevant scattering processes
are independent of I . As a result, this class of systems has
an emergent SU(N) spin symmetry (with N = 2I + 1) whose
dynamics is governed by a SU(N)-symmetric Fermi-Hubbard
model describing alkaline-earth-like atoms in an optical lattice
[42,43]. In the two-spin case (N = 2) the dissipative dynamics
conserves the total spin and the system exhibits stationary
states that are a mixture of highly entangled wave functions
with a Dicke-like spin component [15,35], which could be
exploited for various quantum-technology purposes. The im-
pact of two-body losses for N > 2 has not been theoretically
addressed at present, despite the availability of experimental
data obtained in this regime [14].

In this Letter we study the quantum dynamics of an inter-
acting SU(3)-symmetric one-dimensional fermionic gas in the
presence of two-body losses. We show that the dark states of
the dynamics can be organized via the representation theory of
this group, the so-called eightfold way [44]. This elegant clas-
sification allows us to characterize a family of stationary states
using the notion of generalized Dicke states [45] describing
the spin degrees of freedom of the gas. Next, we discuss the
system dynamics highlighting how the generalized Dicke-like
states represent the unique attractor of the dynamics both in
the weakly dissipative and weakly interacting limit as well as
in the strongly dissipative and strongly interacting quantum
Zeno regime. Finally, we draw our conclusions and discuss
future perspectives.

II. THE MODEL

Introducing the fermionic operators ĉ(†)
j,μ (with j and μ la-

beling the lattice site and the spin, respectively), which satisfy
canonical anticommutation relations, the SU(N)-symmetric
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Fermi-Hubbard Hamiltonian reads

Ĥ = −J
∑
j,μ

(ĉ†
j,μĉ j+1,μ + H.c.) + U

∑
j,μ<μ′

n̂ j,μn̂ j,μ′ . (1)

Here, J is the hopping amplitude, U is the spin-independent
interaction strength, and n̂ j,μ = ĉ†

j,μĉ j,μ is the spin-resolved
on-site lattice-density operator. The spin index can assume N
values that in the following will be labeled with capital letters
in progressive order (μ = A, B,C, . . . ). The Hamiltonian (1)
is invariant under global SU(N) rotations in spin space. As a
consequence, the unitary dynamics conserves the expectation
value of the N (N − 1)/2 SU(2) pseudospin algebra gener-
ators defined in each subspace (here labeled by μμ′ with
μ < μ′) as

�̂α
μμ′ = 1

2

∑
j

(ĉ†
j,μ, ĉ†

j,μ′ )σα

(
ĉ j,μ

ĉ j,μ′

)
, α = 0, x, y, z, (2)

where {σα|α = x, y, z} are the Pauli matrices and σ 0 = I2.
The presence of local two-body losses is accounted for by

the jump operators

L̂ j,μμ′ = √
γ ĉ j,μĉ j,μ′ , (3)

with j = 1, . . . , L and μ < μ′ and γ being the dissipation
rate. The dynamics of the full density matrix ρ(t ) is described
by a Lindblad master equation:

ρ̇(t ) = − i

h̄

[
Ĥ , ρ(t )

] +
∑

j,μ<μ′
D j,μμ′ [ρ(t )], (4)

with D j,μμ′ [ρ(t )] = L̂ j,μμ′ρ(t )L̂†
j,μμ′ − 1

2 {L̂†
j,μμ′ L̂ j,μμ′ , ρ(t )}.

The main difference with respect to the N = 2 case is that
the spin components defined in Eq. (2) are not conserved
quantities of the full dissipative dynamics: the breaking of
these conservation laws is due to the presence of several
spin sectors involved in the dynamics. Thus, in terms of
symmetries, the study of the N = 3 case can be considered
representative for all the N > 2 models, which therefore will
not be explicitly considered.

III. EQUATIONS OF MOTION AND DARK STATES

Let us now focus on the population dynamics and define
the total number of atoms N̂ = ∑

μ N̂μ, where N̂μ = ∑
j n̂ j,μ

is the spin-resolved population. In what follows we will use
the notation O(t ) � 〈Ô〉t � tr[ρ(t )Ô]. The spin-resolved pop-
ulations obey the following equation [46]:

Ṅμ(t ) = −γ
∑

j

∑
μ′ �=μ

〈
n̂ j,μn̂ j,μ′

〉
t
. (5)

First, we will present a construction allowing us to map
out all the possible dark states of the dissipative dynamics
factorizing spin and charge degrees of freedom. Such states
are not affected by the dissipative dynamics and any statisti-
cal mixture of them is stationary with respect to the master
equation (4). Next, we will study the system dynamics show-
ing how the system evolves, because of dissipation, toward
such a dark subspace. We consider the class of states where
orbital and spin degrees of freedom factorize, |�dark〉 =
|�orb〉 ⊗ |�spin〉. If |�orb〉 is constructed as a Slater determi-
nant of a set of appropriate orbital modes, i.e., the eigenstates

|AAA〉

|BBB〉|CCC〉

Λz
AB Λz

AC

Λz
BC

FIG. 1. The eightfold way in a dark state. Triangular irreducible
representation with labels (3,0), which is composed of ten states. The
three arrows allow one to identify each state through the quantum
numbers �z

μμ′ , where μ, μ′ take values in the three components
of the gas, A, B, and C. Note that only two of them are linearly
independent.

of the hopping Hamiltonian in Eq. (1), the state is assured
to commute with the Hamiltonian and never to have a dou-
ble spatial occupation, so that no particle can leak out of
it. Since the full many-body wave function |�dark〉 of the
system must be fully antisymmetric, and one such |�orb〉 is
fully antisymmetric, the spin wave function |�spin〉 must be
fully symmetric. In order to understand the properties of these
states, we make use of group theory.

The irreducible representations of SU(3) are labeled by
two integers (p, q) [44]; according to group theory, the fully
symmetric SU(3) states correspond to the representations with
labels (p, 0) and the states belonging to it can be arranged in
the shape of a triangle turned upside-down with edge length
p + 1 (see Fig. 1 for an example with p = 3). The number of
particles accommodated in the representation is N = p. The
dimension of a representation (p, 0) is (p + 1)(p + 2)/2, and
each state is uniquely determined by the values of �z

μμ′ . In
the case of the figure we have the ten fully symmetric states of
N = 3 particles. At the three vertices of the triangle we always
find the fully polarized states; in this case |AAA〉, |BBB〉, and
|CCC〉. The other states are obtained by repeated application
of the spin-ladder operators �̂±

μμ′ . If we want, for instance,
to construct all the states that stand on the top edge of the
triangle, from left to right we need to apply the operator �̂+

BC ,
that raises the value of �z

BC by one, starting from |CCC〉.
These states are generalized Dicke states [45] since they are

fully symmetric with respect to the exchange of two particles
generalizing the symmetry properties of the stationary states
of the SU(2) lossy dynamics identified in Ref. [15]. Given two
spin sectors μ,μ′, such states satisfy the relation [46]

〈Ŝ2
μμ′ 〉
h̄2 =

〈
N̂μμ′

2

(
N̂μμ′

2
+ 1

)〉
, (6)

where Ŝα
μμ′ = h̄�̂α

μμ′ for α = x, y, z and N̂μμ′ = N̂μ + N̂μ′ =
2�̂0

μμ′ . Conversely, Eq. (6) can be satisfied only by the gener-
alized Dicke states. This can be explicitly seen by considering
the irreducible representations of the SU(3) group with q �= 0.
These representations of the group are not fully symmetric
and, together with the q = 0 case, cover all the possible spin
states that can be constructed within SU(3). By explicit con-
struction of such states it is easy to see that for any q �= 0 we
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get 〈Ŝ2
μμ′ 〉/h̄2 < 〈N̂μμ′/2(N̂μμ′/2 + 1)〉. While via the eight-

fold way we constructed explicitly the dark states for N = 3,
our reasoning is general and generalized Dicke states are dark
states of the master Eq. (4) for any N and regardless of the
specific values of the system parameters.

IV. DYNAMICS

While it is true that such states surely are stationary states
of the dynamics it is not trivial to show that they are unique.
Indeed, our analysis focused on states where the spin and
orbital part of the wave functions factorize while we cannot
exclude a priori that nonfactorizable dark states exist.

To corroborate this scenario, we will make use of Eq. (6)
certifying that the system has flown to a mixture of gen-
eralized Dicke states. In what follows we will consider
two paradigmatic regimes: (i) the weakly dissipative and
weakly interacting regime and (ii) the strongly dissipative and
strongly interacting limit.

Weak dissipation and weak interactions. We start by study-
ing the regime of weak dissipation and weak interactions
h̄γ ,U � J . In this limit we can write the evolution of the
spin-resolved densities as [46]

ṅμ(t ) = γ
∑
μ′ �=μ

	s T
μμ′G	sμμ′, (7)

where we defined the four-component vector 	sμμ′ =
(s0

μμ′, sx
μμ′/h̄, sy

μμ′/h̄, sz
μμ′/h̄) with sα

μμ′ (t ) = 〈Ŝα
μμ′ 〉t/L,

s0
μμ′ = 〈�̂0

μμ′ 〉t/L, nμ = 〈N̂μ〉/L, and G = diag(−1, 1, 1, 1)
being the relativistic Minkowsky tensor.

The fact that the time derivative of spin-resolved pop-
ulations is related to the Minkowski scalar product of a
four-component vector suggests some suggestive analogies
with the theory of special relativity. The structure of Eq. (7)
highlights indeed some of the symmetries of the problem as
the internal rotations of the SU(2) pseudospins (indicating
that the physics does not have a preferred direction in the
internal space) and the analogs of the Lorentz boosts (which
allow for the exchange between populations and coherences).
Furthermore, the analogy with the Minkowski tensor suggests
an effective representation of the dynamics in a population-
spin diagram, where the dynamics is constrained within an
effective light cone, which we dubbed Dicke cone.

Let us start by briefly reviewing the N = 2 case. In this case
we just have two spin sectors labeled as μ = A, B. Therefore,
to determine the fixed points, we ask ṅA = ṅB = 0. From
Eq. (7) we get the following stationarity condition:

	s T
ABG	sAB = 0 ⇒ sAB = h̄

2
nAB, (8)

where sAB = √
(sx

AB)2 + (sy
AB)2 + (sz

AB)2. The condition (8)
holds both for Dicke states (N = 2) and generalized Dicke
states (N > 2) [47] and defines the boundary of the Dicke cone
within which the dynamics must take place because of the
physical requirement sAB � h̄ nAB/2. As a result, the system
dynamics can be effectively visualized in a two-dimensional
parameter space spanned by the variables sAB and nAB con-
strained to the Dicke cone. Finally, since the sAB is a constant
of motion for the N = 2 case sAB(t ) = sAB(0), the dynam-

0 0.2 0.4 0.6 0.8 1

2 sAB / h_
0

0.2

0.4

0.6

0.8

1

n AB

Dicke cone
nC=0
nC=0.05
nC=0.1
nC=0.2
nC=0.3

FIG. 2. SU(3) dynamics in the nAB-sAB plane. In the nC = 0 case
the evolution must follow vertical lines defined by the initial value of
sAB. When nC > 0 the spin conservation does not hold. The dynamics
escapes the vertical line defined by sAB(0) and deviates progres-
sively toward sAB = 0 getting steady when nAB = 2sAB. Here we
set nA = 0.5, nB = 0.4, (sx

AB(0), sy
AB(0), sz

AB(0)) = (0.1, 0.1, 0.05) so
that 2sAB(0) = 0.3.

ics must take place on the line defined by the initial value
of the spin. In the t → ∞ limit, the boundary of the light
cone is touched (i.e., nAB = 2sAB/h̄) and the system reaches
a stable stationary state. The N = 2 case has been discussed
extensively in Ref. [15]. The conservation of the total spin,
even in the presence of dissipative events, plays a crucial
role in constraining the system dynamics. Indeed, given the
initial conditions, it allows one to be predictive about the final
density of the system. Starting from the N = 2 case we want
now to explore the N > 2 case where the dynamics does not
conserve the spin.

Let us consider the N = 3 case where the internal states are
labeled as μ = A, B,C. In this case the spin components are
no longer conserved and in general sμμ′ (t ) �= sμμ′ (0). In Fig. 2
we show the dynamics of spin and number of particles in the
AB subspace for a generic initial condition. When nC = 0 the
dynamics is spin conserving sAB(t ) = sAB(0) and the system
dynamics follows vertical lines. Even if an additional internal
state is now available, there are no physical processes that
populate it. As a result, in this limit the system behaves ef-
fectively as in the N = 2 case. For nC > 0 the spin in the AB
subspace is no longer conserved but shrinks. The trajectory in
the nAB-sAB plane deviates on the left of the sAB(0) line and
evolves until the boundary of the Dicke cone is approached.

We now propose a perturbative solution of the SU(3)
dynamics for different initial conditions considering the ex-
perimentally relevant situation where sx,y

μμ′ = 0, ∀μ < μ′. We
also stress that this approach is well suitable for translationally
invariant states where intensive variables are unambigu-
ously representative of the global state of the system. The
equations of motion for the populations read as

ṅμ = −γ nμ

∑
μ′ �=μ

nμ′ . (9)

The dynamics cannot be analytically solved for a generic
initial condition but only in a few cases that we will now
discuss. When the system is initially prepared with a large
and equal fraction of the total population in the A and
B sectors and only a small amount of particles in the
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2 sAC / h_
0
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0.6

0.8
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n AC nC=0.01
nC=0.05
nC=0.1
nC=0.15
nC=0.175

0 0.2 0.4 0.6 0.8 1

2 sAB / h_
0

0.2

0.4

0.6

0.8

1

n AB

FIG. 3. SU(3) dynamics in the weakly dissipative limit. Top
panel: we set nA(0) = nB(0) = 0.8 and nC (0) is varied. Bottom panel:
we set nA(0) = 0.8 and nB(0) = nC (0) is varied. In both cases the
numerics (filled dots) show a good agreement with the predictions of
Eq. (11) (for the top panel) and Eq. (11) for (the bottom panel), even
beyond the limit nC (0) � 1. In all the panels sx,y

μμ′ = 0, ∀μ < μ′.

C subspace, nC (0) � nA(0) = nB(0) = O(1), the exact solu-
tion at first order in nC (0) reads [46]

nA,B(t ) = nA,B(0)

1 + γ tnA,B(0)
− nC (0) ln[1 + γ tnA,B(0)]

[1 + γ tnA,B(0)]2 ,

nC (t ) = nC (0)

[1 + γ tnA,B(0)]2 . (10)

We found that the system gets empty in the long-time
limit, i.e., limt→∞ nA,B,C = 0. This is expected in the A, B
sector since the initial condition sAB(0) = 0 implies sAB(t ) =
0, ∀t > 0 and the system must evolve toward the origin of
the Dicke cone sAB = nAB = 0. In the A,C (or equivalently
B,C) sectors the situation is quite different since we start
from a large value of the spin sAC = sz

AC = h̄(nA − nC )/2 and
again we flow toward the vacuum. This dynamics is shown
in Fig. 3 (top panel) and the numerics show good agreement
with the perturbative prediction (11). We also note that the
presence of a nonvanishing population in C modifies the 1/t
mean-field-like decay of nA,B and determines a 1/t2 decay
for nC .

We now consider the situation where the system is initially
prepared with a large fraction of the total population in the A
sector and a small (and equal) fraction of particles in the B,C
sectors, i.e., nB(0) = nC (0) � nA(0). At first order in nC (0)
we find [46]

nA(t ) = nA(0) − 2nB(0)(1 − e−γ nA(0)t ),

nB,C (t ) = nB,C (0)e−γ nA(0)t . (11)

0 0.2 0.4 0.6 0.8 1

2 s~AB / h_
0

0.2

0.4

0.6

0.8

1

n~ AB

Generalized Néel
Mott incoherent state

FIG. 4. SU(3) dynamics in the s̃AB-ñAB plane. Orange circles:
dynamics from the generalized Néel state. Green squares: dyanmics
from the Mott incoherent state. The red dashed line represents the
Dicke cone satisfying Eq. (6).

In this case we get a steady state with a nonvanishing particle
density in the A sector, i.e., limt→∞ nA(t ) = nA(0) − 2nB(0),
while the B,C sectors become empty limt→∞ nB,C (t ) = 0.
This determines a nontrivial dynamics in the AB subspace as
shown in Fig. 3 (bottom panel), which is well captured by
Eq. (11) for small values of nC .

We conclude this part considering the case of equally pop-
ulated spin sectors. This state is of particular interest since it
can be easily realized in experiments [14] and corresponds
to a product state in which we have one particle per lat-
tice site with maximally mixed spin degrees of freedom. We
dubbed this state Mott incoherent state. This state has a to-
tal spin that vanishes in the thermodynamic limit as s2

μμ′ ∼
1/L ∀μ �= μ′. In this case Eq. (9) leads to ṅ(t ) = −γ (N −
1)n2(t ), which is solved for n(t )/n(0) = [1 + tγ n(0)(N −
1)]−1. Here, the populations decay as 1/t with a typical rate
given by γ n(0)(N − 1).

Strongly interacting and strongly dissipative limit. Let us
now consider the strongly interacting and dissipative limit in
which h̄γ ,U � J . In this limit states with at most one parti-
cle per lattice site are quasistationary while states with more
than one excitation per lattice site are energetically disfavored
and will be quickly dissipated on a timescale proportional to
1/(h̄γ ). Consequently, the dynamics at long times will mainly
take place in the hard-core fermion subspace with a new
relevant timescale, namely, �eff ∼ 1/γ , which is inversely
proportional to the original dissipation rate, a typical signature
of the Quantum Zeno effect [15,29].

Following a method first proposed in Ref. [6], we
derive an effective Lindblad master equation that gov-
erns the dynamics in this regime [46]. The effective
Hamiltonian Ĥ ′ = −J

∑
j,μ( f̂ †

j,μ f̂ j+1,μ + H.c.) corresponds
to a hopping Hamiltonian of hard-core fermions annihilated
by the operators f̂ j,μ. The effective jump operator takes into
account nearest-neighbor losses L̂′

j,μμ′ = √
�eff [ f̂ jμ( f̂ j−1,μ′ +

f̂ j+1,μ′ ) − f̂ jμ′ ( f̂ j−1,μ + f̂ j+1,μ)], with μ < μ′ and �eff =
4

1+( 2U
h̄γ

)2
J2

h̄2γ
. This effective master equation is a generalization

to the SU(3) case of the one presented in Ref. [33]. We
want now to show that also in this regime the steady state
is a mixture of generalized Dicke states. As a smoking gun
we will study whether the condition (6) holds at long times
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for a generic μ,μ′ subspace. In order to verify this relation
we solve numerically the master equation for open boundary
conditions by means of quantum trajectories [48,49]. In par-
ticular, we consider the dynamics starting from a generalized
Néel state of the form |ψg-Neel〉 = |A B C . . . A B C〉 and the
Mott incoherent state. In Fig. 4 we plot the system evolu-
tion in the AB subspace in the 2s̃AB/h̄ − ñAB plane where we
defined

s̃AB =
√

〈Ŝ2
AB〉

L
, ñAB =

2

√〈
N̂AB

2

( N̂AB
2 + 1

)〉

L
. (12)

Again, in the long-time limit the curves asymptotically col-
lapse on the Dicke cone where Eq. (6) holds. The latter
statement is true for any of the subspaces; for what concerns
the Mott incoherent state, given its particular structure and
symmetry, we have that the dynamics is the same in each of
the subspaces [46].

V. CONCLUSIONS

In this Letter we studied the dynamics and steady-state
properties of a SU(3)-symmetric cold-atom system in the
presence of two-body losses. While we explicitly considered
the N = 3 case, our results are qualitatively valid for any
N > 2, including N = 6 for which experiments have been per-
formed [14]. This work also paves the way to future intriguing
research directions. Among them we mention the study of
inhomogeneous situations where the tensor G(x) acquires a
spatial dependence allowing the exploration of analogies with
general relativity and the implementation of experimentally
friendly protocols for the certification and exploitation of gen-
eralized Dicke states.
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