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Dissipative quantum dynamics, phase transitions, and non-Hermitian random matrices
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We explore the connections between dissipative quantum phase transitions and non-Hermitian random matrix
theory. For this, we work in the framework of the dissipative Dicke model which is archetypal of symmetry-
breaking phase transitions in open quantum systems. We establish that the Liouvillian describing the quantum
dynamics exhibits distinct spectral features of integrable and chaotic character on the two sides of the critical
point. We follow the distribution of the spacings of the complex Liouvillian eigenvalues across the critical point.
In the normal and superradiant phases, the distributions are two-dimensional Poisson and that of the Ginibre
unitary random matrix ensemble, respectively. Our results are corroborated by computing a recently introduced
complex-plane generalization of the consecutive level-spacing ratio distribution. Our approach can be readily
adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum
systems.

DOI: 10.1103/PhysRevA.105.L050201

Introduction. The notions of integrability and chaos are
well formulated for classical interacting (nonlinear) systems
[1–10]. Similar concepts for quantum mechanical systems
have not reached the same level of maturity. Classically, in-
tegrable versus chaotic features are typically diagnosed by
computing Lyapunov exponents [5,9,11–13] or by establish-
ing the existence of an extensive number of independent
conserved quantities (Liouville integrability) [7,14–18]. At-
tempts to generalize these diagnostics to the quantum realm
have led, on the one hand, to the definition of Lyapunov
exponents from the exponential growth of out-of-time-order
correlators [19,20] and, on the other hand, to identifying sets
of commuting operators. The presence, or lack thereof, of an
extensive number of these operators manifests itself in the sta-
tistical features of the spectrum of the Hamiltonian [1,21–26].

The spectra of quantum Hamiltonians were conjectured to
typically exhibit two distinct behaviors depending on whether
their corresponding classical limits are integrable or chaotic.
Initially, Berry, Tabor [27] speculated that typical quantum
Hamiltonians with an integrable classical limit (except for
a few pathological cases) have consecutive level spacings
distributed according to the Poisson distribution. Later, Bo-
higas, Giannoni, and Schmit [28] further conjectured that
those Hamiltonians with a chaotic classical limit have spectra
exhibiting strong level repulsion and the consecutive level
spacings are distributed according to Hermitian random ma-
trix theory (RMT). Subsequent works have shown that these
conjectures are also applicable to those quantum systems that
do not have a well-defined classical limit [29–38].
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These ideas were later extended to the case of Markovian
open quantum systems. Instead of studying the spectrum of
the isolated Hamiltonian H , i.e., the generator of closed quan-
tum dynamics, one may study the spectrum of the Liouvillian
L, i.e., the generator of the evolution of the density matrix
ρ, ∂tρ = Lρ. Here, L accounts for both the unitary evolu-
tion and for the driven-dissipative processes induced by the
coupling to the environment [39]. Generically, Liouvillians
are non-Hermitian operators with complex spectra. Grobe,
Haake, and Sommers [40] conjectured that those Liouvil-
lians whose corresponding classical dynamics are integrable
have complex level spacings distributed according to the two-
dimensional (2D) Poisson distribution. On the contrary, those
whose classical limits are chaotic follow the predictions from
non-Hermitian RMT, specifically from the Ginibre ensembles
[21,41,42]. More recently, these conjectures were also found
to be valid for systems without a well-defined classical limit
[43–45].

The simple intuition behind those successful conjectures
goes as follows. For integrable dynamics with an extensive
number of commuting conserved quantities, the spectrum of
the Hamiltonian or the Liouvillian is expected to be the direct
sum of extensively many independent sectors of the theory.
This independence guarantees that levels within different sec-
tors can overlap. On the other hand, for chaotic dynamics,
only a few conserved quantities exist and level repulsion is
expected in each symmetry sector. In turn, this presence or
lack thereof of an extensive number of conserved quantities is
expected to be reflected in the nearest-level spacing statistics
of the spectra.

Studies on spectral properties of dissipative quantum evo-
lutions have also focused on features of the eigenvalue density
[46]. In particular, the Weyl law for isolated quantum systems
[47] was generalized to open quantum systems [48–51].

In this work, we study the spectral properties of the Li-
ouvillian of a dissipative version of the paradigmatic Dicke
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model [52,53]. In the thermodynamic limit, the isolated Dicke
model displays a Z2-symmetry-breaking quantum phase tran-
sition between a normal and a superradiant phase [54–56].
Studies of the spectral statistics of the Dicke Hamiltonian
[57,58] revealed that the level spacings are Poisson dis-
tributed in the normal phase, reflective of integrable dynamics,
whereas they are distributed according to the Gaussian orthog-
onal ensemble in the superradiant phase, indicating chaotic
dynamics. Here, via exact diagonalization of the Liouvillian,
we discuss whether and how these connections with RMT
can be generalized to the context of phase transitions in open
quantum systems. More precisely, we address the robustness
of the signatures of integrability as the system is driven
through a phase transition by turning on an integrability-
breaking perturbation.

Dissipative Dicke model. The dissipative Dicke model
describes the coupling of an ensemble of closely packed
quantum emitters to a single leaky cavity mode [52,53]. In
the Markovian approximation, the evolution of the density
matrix ρ is governed by a Lindblad master equation where
the Liouvillian superoperator reads

L � = −i[H, �] + κ[2a � a† − {a†a, �}], (1)

where κ > 0 is the cavity decay rate and � stands for operators
on the Hilbert space. The Dicke Hamiltonian is given by

H = ωca†a + ωsS
z + 2λ√

S
(a† + a)Sx, (2)

where a (a†) is the bosonic annihilation (creation) operator of
a cavity mode with energy ωc; Sα , α = x, y, and z, are the
spin angular momentum operators built from the totally sym-
metric representation of S identical two-level systems with
energy splitting ωs; and λ is the cavity-spin coupling which is
rescaled by 1/

√
S to ensure a nontrivial thermodynamic limit

(S → ∞). The Dicke Hamiltonian is Z2 symmetric: [H,	] =
0, where the operator 	 = exp[iπ (a†a + Sz + S/2)] gives the
parity of the total number of excitations. As a consequence
of the specific structure of the dissipator in Eq. (1), the Li-
ouvillian inherits a so-called weak Z2 symmetry: [L,Π ] =
0, where Π � = 	 � 	† gives the parity of the difference
of the number of excitations between the left and right
sides of the states in Liouville space [59–61] (see also the
Appendixes). In the thermodynamic limit, this weak Z2 sym-
metry is spontaneously broken in the steady state at λ = λ∗ =
1
2

√
ωcωs

√
1 + κ2/ω2

c , corresponding to a second-order dissi-
pative phase transition [56,62,63]. In the normal phase, i.e.,
λ < λ∗, the boson expectation value vanishes: 〈a〉 = 0. In the
superradiant phase, i.e., λ > λ∗, it acquires a finite expectation
value: 〈a〉 �= 0. At λ = 0, the model is trivially integrable.
The counterrotating terms, a†S+ and aS−, break the quantum
integrability of the model.

Complex spectra. We analyze the statistical properties of
the complex eigenvalues {Ei} of the Liouvillian operator L
by means of extensive numerical computations. We work in
the even-parity sector of the Liouville space to avoid possible
spurious overlaps of eigenvalues from the different symmetry
sectors [64]. Throughout the paper, we consider the strongly
dissipative regime, ωc = ωs = κ = 1, for which the critical
point is located at λ∗ = 1/

√
2 ≈ 0.71.

FIG. 1. Scatter plot of the complex spectrum of the Liouvillian
L of the dissipative Dicke model for S = 10 and ωc = ωs = κ = 1
for which λ∗ = 1/

√
2. (a) Normal phase, λ = 0.2. (b) Superradiant

phase, λ = 1.0. A stark difference in the structure of the spectrum
above and below the critical point can be observed.

In practice, the numerical approach comes with two inher-
ent limitations.

(i) The infinitely large bosonic Hilbert space of the cavity
has to be truncated to a finite number of excitations, ncutoff =
40.

(ii) Numerical errors during the diagonalization process
can propagate dangerously, yielding an accuracy of the results
far worse than machine precision.

Consequently, we truncate our spectra to an energy window
Re Ei ∈ [−ακ ncuttoff , 0], where we make sure that statistics
are converged with respect to ncutoff . Although its precise
value is of little consequence to our findings, we choose α =
2/3. This amounts to analyzing the statistical properties of
those eigenvalues which correspond to intermediate to long-
lived dynamics. We work with 128-bit complex double float
precision.

The overall aspect of the spectrum is illustrated in Fig. 1
for different values of the cavity-spin coupling λ and for
fixed spin size S = 10. The symmetry about the real axis
is a generic feature of Liouvillians of Lindblad master
equations [24]. The unique steady-state of the dynamics corre-
sponds to the single eigenvalue located at E = 0. The spectra
in the two phases display clear differences. In the noninter-
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acting limit, λ = 0, the spectrum displays ladder structures
across both the imaginary and the real axis. The former are
a direct consequence of our choice of resonant parameters,
ωc = ωs, whereas the latter stem from the fragmentation of
the Liouville space due to the presence of continuous sym-
metries at λ = 0: the weak U(1) symmetry corresponding
to the conservation of superoperators [a†a, �] and the strong
U(1) symmetry corresponding to the conservation of Sz. In
the normal phase, 0 < λ < λ∗, the spectrum in Fig. 1(a) still
displays structured patterns that are inherited from the the
noninteracting limit. The effect of a small but finite interaction
can be seen as a renormalization of ωc, ωs, and κ , leading to
smearing of the patterned spectrum. There, the existence of
patterns across the real axis is robust and we suspect them
to be rooted in the fragmentation of Liouville space due to
the emergence of approximately conserved quantities. This
fragmentation disappears as λ approaches λ∗ and the spectrum
does not display such signature of emergent conservation laws
in the superradiant phase, λ > λ∗.

Spacing statistics of complex eigenvalues. In order to un-
veil the universal features of these complex spectra, we turn
to the study of level-spacing statistics. We first perform an
unfolding of the spectrum using standard procedures (see
the Appendixes). The unfolded spectrum is then used to
generate the histogram of the Euclidean distance s between
nearest-neighbor eigenvalues in the complex plane, yielding
the complex-level spacing distribution p(s).

The results are summarized in Fig. 2 for values of λ

corresponding to the normal and superradiant phases. For
comparison, we also plot the corresponding spacing distribu-
tion for independent complex random numbers, namely, the
2D Poisson distribution,

p2D-P(s) = π

2
s exp(−πs2/4), (3)

as well as the distribution for the eigenvalues of the cor-
responding non-Hermitian random matrix ensemble [40,44].
Given the absence of symmetry of our Liouvilian (the so-
called A class), it corresponds to the Ginibre unitary ensemble
(GinUE) [65–69],

pGinUE(s) = s̄ p̄GinUE(s̄s), (4)

with

p̄GinUE(s) =
∞∑
j=1

2s2 j+1 exp(−s2)

�(1 + j, s2)

∞∏
k=1

�(1 + k, s2)

k!
, (5)

and s̄ = ∫ ∞
0 dssp̄GinUE(s). Here, �(1 + k, s2) = ∫ ∞

s2 t ke−t dt is
the incomplete Gamma function.

Figure 2 demonstrates that the distributions computed from
the spectrum of L in Eq. (1) are in remarkable agreement with
the 2D Poisson distribution in the normal phase and with the
GinUE prediction in the superradiant phase. In the superra-
diant phase, this reflects the presence of complex-eigenvalue
repulsion characterized by a p(s) ∼ s3 suppression at small
energy spacings, which is consistent with Eq. (4). On the other
hand, in the normal phase we find p(s) ∼ s, consistent with
Eq. (3). This corresponds to the absence of level repulsion in
the 2D complex plane [24].

FIG. 2. Level-spacing distribution of the complex spectrum of
the Liouvillian L in (a) the normal phase with λ = 0.2 and (b) the
superradiant phase with λ = 1.0. We find remarkable agreement with
the 2D Poisson distribution p2D-P(s) given in Eq. (3) and that of the
GinUE RMT prediction pGinUE(s) given in Eq. (4) in the normal
phase and in the superradiant phase, respectively.

In order to better quantify the nature of the statistics as one
crosses from one phase to another, we introduce the metric
motivated by Refs. [58,70,71]

η ≡
∫ ∞

0 ds[p(s) − p2D-P(s)]2∫ ∞
0 ds[pGinUE(s) − p2D-P(s)]2 . (6)

By construction, η vanishes when the numerically obtained
distribution p(s) approaches the 2D Poisson distribution,
whereas η goes to 1 when p(s) approaches the GinUE pre-
diction. Figure 3, showing η versus λ, exhibits the crossover
from a 2D Poisson distribution to that of GinUE prediction
as one crosses the critical point. This crossover sharpens with
increasing the system size.

Complex-plane generalization of the consecutive level-
spacing ratio. Until now, we only probed spectral statistics
using the Euclidean distance s between complex levels. In
order to extract the angular information we resort to a recently
introduced diagnostic [72] involving the level-spacing ratio,

zi = rie
iθi = ENN

i − Ei

ENNN
i − Ei

, (7)
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FIG. 3. The metric η defined in Eq. (6) as we increase the
coupling λ from the normal phase to the superradiant phase. It
shows the crossover of the complex-eigenvalue spacing distribution
from integrable (η ∼ 0) to RMT (η ∼ 1) predictions. The crossover
sharpens as we increase the system size. At λ = 0 the dissipative
cavity decouples from the spin. Hence, the spectrum is expected
to display pathological statistics away from any universal behavior.
This explains the observed discrepancies close to λ = 0.

where superscripts NN (NNN) stand for nearest (next-nearest)
neighbor. Equation (7) is the generalization of the well-known
adjacent gap ratio [73,74] defined for isolated quantum sys-
tems. It captures information about next-nearest neighbors
which is missed in the conventional diagnostics of level-
spacing statistics. An additional advantage of this quantity is
that it does not rely on the unfolding procedure which may
sometimes be ambiguous and unreliable. In Fig. 4, we show
the scatter plots of zi below and above the critical point. The
anisotropy in the superradiant phase is another signature of
connection to RMT [72]. To quantitatively compare with the
predictions of 2D Poisson distribution and GinUE RMT, we
report 〈r〉 and 〈cos θ〉 for a range of λ values in the table below
Fig. 4.

FIG. 4. Scatter plot of the complex level-spacing ratio z intro-
duced in Eq. (7) for S = 10 (a) in the normal phase, λ = 0.2, and
(b) in the superradiant phase, λ = 1.0. The table gives 〈cos θ〉 and
〈r〉 for a range of λ values, along with their prediction from the 2D
Poisson distribution and GinUE RMT.

Conclusion. We investigated how the presence of a dissi-
pative quantum phase transition driven by an integrability-
breaking term affects the spectral statistics of the complex
Liouvillian spectrum of open quantum systems. Working in
the framework of the dissipative Dicke model, we found
the spectral features of integrability to be robust against the
integrability-breaking perturbation until the onset of the dis-
sipative quantum phase transition. In the symmetry-broken
phase, they are eventually replaced by RMT features indica-
tive of chaotic dynamics. While our results unambiguously
reveal a tight connection between dissipative quantum phase
transition driven by the integrability-breaking term and spec-
tral phase transition of the Liouvillian, whether they happen
simultaneously at λ = λ∗ has yet to be scrutinized. The ap-
proach we developed here can be straightforwardly adapted to
other dissipative quantum dynamics. This will be instrumental
to further establish whether this robustness of integrability
features against integrability-breaking terms is a general trait
in the context of open quantum systems.
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APPENDIX A: COMPUTING THE SPECTRUM OF THE
DISSIPATIVE DICKE LIOUVILLIAN

We use a convenient basis of the Liouville space spanned
by the states

|α〉〉 ≡ ||nl , ml〉〈nr, mr | 〉, (A1)

where |n, m〉 are the Fock states of the Dicke Hamiltonian
with n cavity excitations and m = −S/2,−S/2 + 1, . . . , S/2
is the quantum number associated with the z component of
the spin. α collects all the quantum numbers nl , ml , nr ,
and mr . The notation |α〉〉 underlines that operators on the
Hilbert space are states in the Liouville space. In practice,
we truncate the Hilbert and Liouville spaces by introducing
a cavity cutoff: n = 0, 1, . . . , ncutoff . In the above basis, the
Liouvillian can be represented by a matrix L with the elements
Lαα′ = 〈〈α|L|α′〉〉, where the Hilbert-Schmidt inner product
[24,75] is given by

〈〈α|α′〉〉 ≡ Tr[(|nl , ml〉〈nr, mr |)†|n′
l , m′

l〉〈n′
r, m′

r |] (A2)

and the trace is performed over the Hilbert space. Let us recall
that L has a parity symmetry [59–61], [L,Π ] = 0, where the
superoperator Π acts on the basis states as

Π |α〉〉 = Π |nl , ml〉〈nr, mr | = ζ |α〉〉, (A3)
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FIG. 5. Scatter plot of the Liouvillian spectrum of the dissipative
Dicke model for different ncutoff = 20, 30, and 40 in (a) the normal
phase, λ = 0.2, and (b) the superradiant phase, λ = 1.0 (S = 10).

with ζ = +1 if (nl + ml ) − (nr + mr ) is even and ζ = −1 if
it is odd. This weak Z2 symmetry of L guarantees that it does
not couple states of the Liouville space with different parities.
Hence, L can be organized as a two-by-two block-diagonal
matrix. To avoid spurious overlaps of eigenvalues, we discard
the odd-parity block. Finally, the even-parity block matrix is
fed to a diagonalization algorithm of the LAPACK library suited
to complex non-Hermitian matrices.

APPENDIX B: UNFOLDING THE COMPLEX SPECTRUM

To eliminate the system-specific features of the level-
spacing statistics, we first perform an unfolding procedure of
the spectrum. Several methods have been proposed for the
case of a complex spectrum [66,76]. We use the method of
Ref. [44]. First, we compute the Euclidean distance of each
of the N complex eigenvalues to its nearest neighbor (NN)

FIG. 6. 〈cos θ〉 and 〈r〉 versus ncutoff , computed from the consecu-
tive complex level-spacing ratio distribution of z introduced in Eq. (7)
(S = 10).

si ≡ |Ei − ENN
i |. Next, we rescale these distances as

si → s′
i = si

√
ρav(Ei )

s̄
, (B1)

where ρav(Ei ) is the local average density approximated by

ρav(E ) = 1

2πσ 2N

N∑
i=1

exp

(
−|E − Ei|2

2σ 2

)
(B2)

and σ is chosen greater than the global mean level spacing
given by s̃ = (1/N )

∑N
i=1 si. This guarantees a smooth distri-

bution function on the scale of s̃. In practice, we work with
σ = 4.5 × s̃. s̄ in Eq. (B1) is set to ensure that the global mean
level spacing of the s′

i is unity: (1/N )
∑N

i=1 s′
i = 1. Finally, the

statistics of nearest-level spacings are computed from the s′
i.

In the main text, we drop the prime notation in s′
i for the sake

of simplicity.

APPENDIX C: CONVERGENCE OF THE STATISTICAL
PROPERTIES OF THE SPECTRUM WITH RESPECT TO

THE CAVITY CUTOFF

While the introduction of a finite ncutoff is essential to the
numerical diagonalization of the Liouvillian, the repercus-
sions on the resulting spectrum must be dealt with care. In
Fig. 5, we plot the spectrum of L both in the normal and in
the superradiant phase for different values of ncutoff = 20, 30,
and 40 and focusing on the window ReE ∈ [− 2

3 × 40 κ, 0].
In the normal phase, the three cutoffs yield the same highly
patterned spectrum in the window ReE ∈ [−10 κ, 0]. The pat-
terned region of the spectrum grows as ncutoff is increased. For
ncutoff = 40, the whole window ReE ∈ [− 2

3 × 40 κ, 0] is pat-
terned. In the superradiant phase, convergence is obtained in
the window ReE ∈ [−5 κ, 0]. Rather than convergence of the
eigenvalues, it is more important to ensure the convergence of
their spectral statistics. In Fig. 6, we follow the convergence of
properties extracted from the consecutive level-spacing ratio
distribution [72] introduced in Eq. (7). Both 〈r〉 and 〈cos θ〉
remarkably converge when ncutoff ≈ 30. All results presented
in the main text were produced with ncutoff = 40.
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