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Entropy-based formulation of thermodynamics in arbitrary quantum evolution
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Given the evolution of an arbitrary open quantum system, we formulate a general and unambiguous method
to separate the internal energy change of the system into an entropy-related contribution and a part causing
no entropy change, identified as heat and work, respectively. We also demonstrate that heat and work admit
geometric and dynamical descriptions by developing a universal dynamical equation for the given trajectory of
the system. The dissipative and coherent parts of this equation contribute exclusively to heat and work, where
the specific role of a work contribution from a counterdiabatic drive is underlined. Next we define an expression
for the irreversible entropy production of the system which does not have explicit dependence on the properties
of the ambient environment; rather, it depends on a set of the system’s observables excluding its Hamiltonian
and is independent of internal energy change. We illustrate our results with three examples.
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Quantum thermodynamics holds center stage at the inter-
face of quantum information science, statistical mechanics,
and quantum technologies, and it has shed new light on the
laws of thermodynamics in the quantum regime [1–15]. Apart
from uncovering a plethora of new phenomena, quantum ther-
modynamics has also motivated efforts to engineer efficient
quantum machines in the laboratory [16–20].

Yet, several fundamental issues remain to be clarified. Most
notably, except for particular regimes (e.g., weak-coupling,
Markovian dynamics with slow driving [21]), an unequivo-
cal definition of heat and work in arbitrary open-quantum
system dynamics has been elusive. One problem is that
such thermodynamic variables are not observables described
by Hermitian operators [22]; rather, they are trajectory-
dependent quantities [23–27]. Existing definitions mostly
incorporate generators of the dynamics (besides the state)
and dynamical master equations with coherent and dissipative
parts [10,21,28–32]. For instance, in the widely-used con-
ventional framework [21,33] the internal energy change due
to the dissipative (coherent) part of the master equation has
been called heat (work) change. An alternative strategy uses
the potential of mean force that amounts to preaveraging the
total partition function over the environmental degrees of free-
dom [28–32]. In addition, there are semiclassical approaches
where a coarse-grained version of the system state in the
energy eigenbasis and semiclassical definitions of heat and
work have been employed [34–36].

Despite extensive efforts, some of the existing approaches
neither are consistent with each other nor always repro-
duce expected results according to thermodynamics. Although

there exist attempts to overcome such inconsistencies through
ad hoc methods [32,37,38], the issue remains unresolved.

To further clarify the issue, we note the following draw-
backs of the conventional framework. (i) Its formulation
has been originally devised only for particular conditions,
e.g., a Markovian dynamics with a constant or relatively
slow-varying Hamiltonian, when the dissipative part does not
explicitly depend on the physical system Hamiltonian. De-
spite this subtlety, the conventional definitions of heat and
work have been applied almost arbitrarily in the literature
to more general scenarios. In fact, the dissipative part of
a master equation may explicitly depend on the physical
Hamiltonian of the system [39,40]. Hence in such physical
scenarios, external driving may also contribute to the heat
exchanged. This aspect introduces further ambiguities and
hinders a clear and thermodynamically consistent assignment
of the heat and work concepts. (ii) Since the description of
the dynamics in the form of the conventional Lindblad master
equation is not unique [41], different energy values can be
assigned to differently chosen generators of the same dynam-
ics. This indicates that part of the energy assigned to the
dissipative part of the master equation may not necessarily
lead to an entropy change, and should be identified as work.
Specifically, for initial states of the decoherence-free subspace
type [42,43], the dynamics leads to no dissipation along the
corresponding trajectories, and all the energy change, if any,
would be of the work type. Recently, a scheme to partially
remedy the shortcomings of the conventional definitions has
been proposed in Ref. [44], where heat has been defined
by subtracting ergotropy (maximum extractable work from a
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system in a cyclic unitary process) [45] from the dissipative
part of the internal energy change by considering a virtual
instantaneous unitary transformation. Nevertheless, an exten-
sion of ergotropy to open systems is still elusive, and since
this extra transformation does not rely on the real physical
dynamics, trajectory-dependent quantities such as heat can be
fictitious. For an alternative approach, separating the internal
energy based on conserved quantities of the dynamics, see
Ref. [46].

In this Research Letter, on pure thermodynamic grounds
supplemented with dynamical and geometric arguments, we
circumvent the issue and ambiguities discussed above and
put forward a set of universal definitions for heat, work, and
entropy production based explicitly on trajectories in the state
space of a quantum system (note the difference with quantum
jump trajectories arising in stochastic dynamics of monitored
systems [47,48]). Our framework is general and independent
of the dynamics which generates the trajectory, and it is thus
applicable to any time-continuous evolution.

In particular, following standard thermodynamics wherein
energy change in a reversible isentropic process is identified as
work [49,50], we define heat solely as the part of the internal
energy of the system which can be associated with entropy
change. While the first law of thermodynamics treats heat
and work on an equal footing, the second law distinguishes
them. Essentially, heat is a form of disorganized energy, and
some disorganization (entropy) will flow with it [51]. Hence
heat is introduced as the part of the energy change which can
be accompanied by an entropy change, whereas the energy
transfer in the form of work definitely does not lead to any
entropy change. We use this key feature to identify heat and
work and accordingly obtain a computable expression for the
irreversible entropy production. We show that this quantity
varies due to the change in variables of the system other than
its energy. This clarifies why in general scenarios heat and
entropy changes are not necessarily monotonic with respect
to each other.

Consider the evolution of the system in a time interval
t ∈ [0, t f ] described by a time-dependent density matrix �(t ),
expressed in its spectral decomposition as

�(t ) =
D∑

k=1

rk (t )|rk (t )〉〈rk (t )|. (1)

One can consider {�(t )} as a trajectory in the state space
of the system, starting from given {�(0)} (for brevity, we
drop all time dependence henceforth unless necessary). Note
that the change in � can be decomposed as d� = d̄�(ev) +
d̄�(ep), where d̄�(ev) = ∑

kdrk|rk〉〈rk| is the change due to the
variation of the eigenvalues and d̄�(ep) = ∑

krk (|drk〉〈rk| +
|rk〉〈drk|) is due to the variation in the eigenprojectors, where
d̄ denotes inexact differential. In addition, we observe that the
entropy S(�) = −Tr[� ln �] changes only when the eigenval-
ues vary,

dS = −
∑

k

drk ln rk = −Tr[d̄�(ev) ln �]. (2)

In a system with the physical Hamiltonian H , the system
internal energy U = Tr[�H] changes along the trajectory with
t → t + dt as U → U = U + dU , with dU = Tr[d� H] +

Tr[� dH]. Here, the contribution associated with d̄�(ev) is
solely related to the change of the eigenvalues, which is in
line with how the entropy changes. Hence we define the heat
change as

d̄Q = Tr[d̄�(ev)H] =
∑

k

drk〈rk|H |rk〉 (3)

and assign the remaining variations to work change,

d̄W = Tr[� dH] + Tr[d̄�(ep)H]

=
∑

k

rk (〈rk|dH |rk〉 + 〈drk|H |rk〉 + 〈rk|H |drk〉), (4)

such that

dU = d̄Q + d̄W (5)

encompasses the first law of thermodynamics.
Dynamical analysis of the heat and work definitions. We use

a recently proposed trajectory-based shortcut to adiabaticity
(TB-STA) framework for open-system dynamics, which iden-
tifies a particular dynamical equation of motion that generates
any given time-dependent density matrix or trajectory [52].
This technique, based on the general Lindblad-like equa-
tion described later, is not limited by the system-environment
coupling strength or initial correlation. Since the TB-STA
equation describes a given trajectory, its coherent and dissipa-
tive parts are directly related to the coherences and dissipation
in the course of the evolution, which contrast with the conven-
tional Markovian Lindblad master equation. Our main result
shows that, among all possible dynamical equations describ-
ing a given trajectory, TB-STA allows us to unambiguously
separate the change of the internal energy into heat and work
for any open system. We prove that energy change assigned to
the (so-called) dissipative part of the equation is accompanied
by entropy change, and it is therefore heat. The coherent
part, which does not involve entropy change, corresponds to
a dissipative work, which for its relation to nonunitarity of
the dynamics entails the implicit existence of some ambient
environment.

Having a trajectory {�(t )} at hand, an associated differen-
tial equation describing its dynamics is given by the following
Lindblad-like equation [52]:

�̇ = −i[h, �] + DCD[�], (6)

where

h = i
∑

k

(|ṙk〉〈rk| − 〈rk|ṙk〉|rk〉〈rk|), (7)

DCD[�] =
∑

k j

ck j

(
Lk j�L

†
k j − 1

2
{L†

k jLk j, �}
)

, (8)

Lk j = |rk〉〈r j |, ck j = (1 − δr j 0)ṙk/(Drj ), (9)

with the dot denoting time differentiation. Several remarks are
in order: (i) h operates as a counterdiabatic (CD) Hamiltonian
which alone generates a parallel transport |rk (0)〉 → |rk (t )〉 ∀k
(cf. CD Hamiltonians in the energy sense [53,54]). (ii) In
the CD dissipator DCD the anticommutator identically van-
ishes, whence the dissipator reduces exclusively to jumps
in the instantaneous eigenbasis of �. (iii) The dynamical
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equation (6) is universal, irrespective of any physical set-
ting (system Hamiltonian and the environment) in which the
system has obtained this trajectory. In the standard techni-
cal sense [55,56], this dynamical equation for a trajectory is
different from the master equation of the system. The same
physical system prepared in a different initial condition with
the same physical setting can yield a different trajectory—
hence a different dynamical equation associated with the new
trajectory. (iv) A Lindblad-like master equation for general
open-system dynamics has also been introduced recently [57].

Comparison with the conventional definitions. Along the
trajectory, the conventional definitions are d̄ Q = Tr[d� H] for
heat change and d̄W = Tr[� dH ] for work exchange; hence
dU = d̄ Q + d̄W [cf. Eq. (5)]. Now rewrite d̄ Q as

d̄ Q =
∑

k

drk〈rk|H |rk〉 +
∑

k

rk (〈drk|H |rk〉 + 〈rk|H |drk〉).

(10)
The first sum originates from a change in the eigenvalues
of the state, contributing when not all drk’s vanish (simi-
lar to the reason for the change in S); the second sum is
solely associated with the change of the eigenvectors. The first
sum can be rewritten as Tr[DCD[�]H]dt , which is related to
the dissipative part of the trajectory dynamical equation (6);
whereas the second sum can be recast as −iTr[[H,h]�]dt ,
which is associated with the coherent part of the dynamical
equation—hence dissipative work. From this perspective, we
can consider the following relations as a justification of our
definitions:

d̄Q = d̄ Q − d̄WCD = Tr[DCD[�]H]dt, (11)

d̄W = d̄W + d̄WCD = Tr[�(Ḣ − i[H,h])]dt, (12)

where d̄WCD is an environment-induced dissipative work,

d̄WCD =
∑

k

rk (〈drk|H |rk〉 + 〈rk|H |drk〉)

= −iTr[[H,h]�]dt, (13)

and is generated due to the CD evolution. In this framework
the work is due to both driving the system through varying its
physical Hamiltonian (d̄W ) and the CD evolution along the
trajectory due to the environment (d̄WCD). Importantly, unlike
in Ref. [53], the CD term here is not related to an external
physical CD control of the Hamiltonian; rather, it corresponds
to the natural CD evolution along the state trajectory.

Relation to the semiclassical definitions. In the semiclassi-
cal formulation of thermodynamics for quantum systems, heat
and work are defined differently [36]. Using the instantaneous
eigenbasis of the system Hamiltonian H = ∑

n En|En〉〈En|,
we obtain U = ∑

n pnEn, where pn = 〈En|�|En〉 is the pop-
ulation of the energy eigenstate |En〉. From the identity dU =∑

nd pn En + ∑
n pn dEn, one can read the semiclassical heat

and work variations as

d̄ q =
∑

n

d pn En, (14)

d̄w =
∑

n

pn dEn. (15)

However, if instead of using the instantaneous eigenbasis of
H , we evaluate the trace in U in the instantaneous eigenbasis
of � [Eq. (1)], then U = ∑

k rkHk and dU = ∑
kdrk Hk +∑

krk dHk , where Hk = 〈rk|H |rk〉. As in the semiclassical set-
ting, one can now read the first term as the heat change and
the second one as the work change. We observe that these
are equivalent to the TB-STA definitions [Eqs. (11) and (12)],
d̄Q = ∑

kdrk Hk and d̄W = ∑
krk dHk . One can argue that

the instantaneous eigenbasis of � is preferred in calculating
the energy contributions [58]. A closer inspection of d̄ q re-
veals that it includes the energy (not heat) change d̄WCD

which we have assigned to the CD Hamiltonian in the form
of work,

d̄ q = d̄Q + d̄WCD+
∑

n

En(〈dEn|�|En〉 + 〈En|�|dEn〉).

(16)

Thus, since d̄ q has contributions from both heat and work
exchanges (in our sense), we conclude that in general the
semiclassical definitions of heat and work fail to properly ac-
count for various contributions to the internal energy change.

Irreversible or internal entropy production. The entropy
change dS [Eq. (2)], together with the heat change d̄Q
[Eq. (11)], give the change in the irreversible entropy S as

d̄S ≡ dS − β d̄Q =
∑

k

drk〈rk|(H − βH )|rk〉, (17)

where H = − ln � and β is the nonequilibrium, instantaneous
inverse temperature of the system given by (if kB ≡ 1) [59]

β = (∂S/∂U )x2,x3,...
= Cov(H,H)/Cov(H, H ). (18)

Here, {xi} are a set of independent variables obtained
from the expectation values of a complete set of traceless
orthonormal observables {Oi}D2−1

i=2 , with O0 = 1/
√

D (the
normalized identity operator of dimension D) and O1 =
(H − Tr[H]/D)/

√
D Cov(H, H ). In addition, Cov(X,Y ) ≡

Tr[XY ]/D − Tr[X ] Tr[Y ]/D2. In terms of the {xi} variables
we have d̄�(ev) = [D Cov(H, H )]−1/2 d̄QH + ∑

i�2 d̄ xi Oi,
where d̄ xi = Tr[d̄�(ev) Oi]. As a result, we obtain dS =
β d̄Q + ∑

i�2 Tr[OiH] d̄ xi, whence

d̄S =
∑
i�2

Tr[OiH] d̄ xi, (19)

which is indeed independent of the choice of {xi} [60].
We observe that d̄S is determined only in terms of the
system variables, independent of the existence of an environ-
ment in a thermal equilibrium, and the system Hamiltonian
does not play any explicit role therein; it is an irrelevant
observable—see Supplemental Material [60] for further dis-
cussion. We remark that, besides using d̄Q in our definition
of irreversible entropy production (17), unlike the earlier lit-
erature [61] here β is associated with the system (not with
a large environment or heat bath). A discussion of why
β is associated with the system can be found in Supple-
mental Material [60]. Another alternative expression for d̄S
can be obtained in terms of the relative entropy S(�‖�eq ) =
Tr[� ln � − � ln �eq] between the state � and the instantaneous
canonical Gibbs state �eq ≡ e−βH/Tr[e−βH ] as [60] d̄S =
−dS(�‖�eq ) + β d̄WCD + Tr[(� − �eq )d (βH )]. We also note
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that interestingly, from Eq. (19) an inequality can also be
derived as [60]

d̄S + b(O) d̄ B � 0, (20)

which is reminiscent of a generalized Clausius inequal-
ity [62,63] with all quantities depending explicitly on the
system. Here, b(O) is the spread of O = ∑

i�2 Oi ⊗ Oi and
d̄ B = −∑

k ln rk
∑

k′|drk′�0 drk′ .
For dynamically closed quantum systems (where

�̇ = −i[H, �], assuming h̄ ≡ 1), we have ṙk = 0 ∀k; hence
dU = d̄W = d̄W and d̄S = dS = d̄ Q = d̄Q = d̄WCD = 0.
This case also naturally includes phase-space-preserving
cooling processes [64]. For dynamically open quantum
systems weakly coupled to a large environment, when
H is constant or slowly driven, the dynamics obeys a
Markovian Lindblad master equation �̇ = L[�], where
L[�] = −i[H + HLamb, �] + D[�], with HLamb being the
environment-induced Lamb-shift correction and D[�] =∑

α cα (Lα�L†
α − (1/2){L†

αLα, �}) (cα > 0) being the quantum
dissipator [55,56] [cf. Eq. (8)]. Additionally, if the system
starts at �eq(0) and also �eq(t ) is the unique instantaneous
steady state of the dynamics [65,66], one can prove that
�(t ) ≈ �eq(t ) ∀t [67], namely, the trajectory remains near
the steady state, and also dS − β d̄ Q � 0 [10,21,33]. This
implies that d̄S − β d̄WCD � 0, where d̄WCD [Eq. (13)]
is an energetic cost associated with how different the real
trajectory is from the quasistatic one—compare with the
general relation (20). This relation can be considered as a
manifestation of the Clausius inequality [62,63]. Note that
in general, d̄W 
= d̄W and d̄Q 
= d̄ Q = Tr[D[�]H]dt [cf.
Eq. (11)]; whereas in the quasistatic regime �(t ) = �eq(t ), we
have |rk〉 = |Ek〉, H = βH , and thus d̄WCD = 0, d̄Q = d̄ Q,
d̄S = 0, and dS = β d̄ Q. The latter is a manifestation of the
thermodynamic reversibility [49].

Example I: A qubit in a Markovian environment. Consider
a qubit with H = ω0σz that weakly interacts with a Marko-
vian environment such that �̇ = −i[ω0σz, �] + γ (σx�σx − �),
where ω0 and γ are positive constants and σx = |0〉〈1| +
|1〉〈0| and σz = |0〉〈0| − |1〉〈1| are the x and z Pauli opera-
tors [55]. The quantity U̇ = Tr[H �̇] = −2γω0Tr[σz�] is fully
due to the dissipative part of the dynamics. We consider
three different initial states (for details, see Supplemental
Material [60]). (i) The first is the thermal state �eq(0), with
β(0) being the initial inverse temperature of the system (this
can differ from that of the environment, and the latter need
not be in a thermal state). In this case, we obtain Q̇ = U̇ =
2γω0e−2γ t tanh[β(0)ω0], q̇ = Q̇, and ẇ = Ẇ. (ii) The second
is the pure state |ψ (0)〉 = (|0〉 + |1〉)/

√
2. One can see that

U̇ = Q̇ = Ẇ = q̇ = ẇ = 0. (iii) Starting from �(0) = (1 +
[σx + σz]/2)/2, we can obtain the heat, work, and internal
energy change in the system (Fig. 1). It can be shown that
q̇ = U̇ = −(γ /2)e−2γ t and ẇ = 0.

Example II: A qubit in a dephasing environment. Con-
sider the dephasing master equation for a qubit, �̇ =
−i[ω0σz, �] + γ (σz�σz − �). Generally, in this process the
system energy is preserved, and there is no net energy ex-
change between the system and the environment. However,
the system and the environment can still exchange heat
and work. This can be contrasted with Landauer’s prin-

FIG. 1. Rates of internal energy (solid orange curve), heat (solid
blue curve), and work (dashed red curve) changes vs time (in natural
units h̄ ≡ kB ≡ 1), for a qubit in a heat bath as given in example
I, with γ = 0.1 and ω0 = 1. The integrated values are U = −0.25,
Q = −0.138, and W = −0.112, respectively, where X = ∫ 10

0 dt Ẋ
with X ∈ {U,Q,W}. Inset compares Ṡ and Q̇.

ciple, where the environment does work to erase phase
information and the system releases heat back into the envi-
ronment. Let ω0 = 1 and γ = 0.1 and consider the following
two different cases. (i) The initial state is |ψ (0)〉 = (|0〉 +√

2|1〉)/
√

3: We obtain that Q̇ = −ẆCD = (8/15)/[8 + e2t/5]
and Ṡ = 4 ln[(1 + 2�)/(1 − 2�)]/(15et/5

√
8 + e2t/5), where

� = (1/6)e−t/5
√

8 + e2t/5. This process can be compared
with an isothermal process in ideal gases, where the energy
is constant and the heat exchanged is equal to the work ex-
changed with the opposite sign. However, since this dynamics
does not exactly model an ideal gas (its internal energy is
not proportional to its temperature), β varies and thus the
process is not isothermal. (ii) The initial state is |ψ (0)〉 =
(|0〉 + |1〉)/

√
2: In this case, dU = d̄Q = d̄WCD = 0. How-

ever, dS 
= 0, which means that the whole entropy change
is due to the irreversible entropy production. This can be
compared with a free expansion process in classical (nonideal)
gases. For a further example of a driven qubit, see Ref. [68].

Another example, a quantum damped harmonic oscillator
in an environment of oscillators, has been worked out in
Supplemental Material [60]. It appears that at all times the
state of the oscillator is a Gibbs state with a time-dependent
inverse temperature and a constant Hamiltonian. Because only
the eigenvalues of the state change in time and the eigenvec-
tors remain constant, d̄WCD vanishes. Hence heat and work
here reduce to the values obtained from the conventional
definitions.

Summary. We have revisited the assignment of thermody-
namic quantities to an open quantum system strongly coupled
to an environment. In general, there is no unique way of sepa-
rating the system internal energy from that of the environment.
Despite this fundamental issue, by introducing a dissipative
work, we have shown that it is possible to consistently split the
internal energy change into work change (causing no entropy
change) and heat change (which can cause entropy change).
The key ingredient is to use the trajectory-based description
of the state of the system and its associated equation of mo-
tion, which is universally valid for any coupling strength and
yields a spectral decomposition of the system density matrix,
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separating the changes in the eigenvalues from those of the
eigenvectors. We have compared our entropy-based defini-
tions with the conventional and semiclassical ones and have
argued that these two approaches are inadequate. More im-
portantly, by using a definition of nonequilibrium temperature
in quantum systems, we have obtained the irreversible entropy
production in a general dynamical process. We have demon-
strated that the irreversible entropy production is a function
of the system variables other than the energy and does not
have any explicit dependence on the environmental degrees
of freedom. We have also derived an inequality which can be

contrasted with the generalized Clausius inequality. The con-
sistency of our formalism has been illustrated in paradigmatic
scenarios.

Note added. Recently, we learned about another indepen-
dent related study [69].
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